Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39181131

RESUMEN

Interspecies blastocyst complementation holds great potential to address the global shortage of transplantable organs by growing human organs in animals. However, a major challenge in this approach is the limited chimerism of human cells in evolutionarily distant animal hosts due to various xenogeneic barriers. Here, we reveal that human pluripotent stem cells (PSCs) struggle to adhere to animal PSCs. To overcome this barrier, we developed a synthetic biology strategy that leverages nanobody-antigen interactions to enhance interspecies cell adhesion. We engineered cells to express nanobodies and their corresponding antigens on their outer membranes, significantly improving adhesion between different species' PSCs during in vitro assays and increasing the chimerism of human PSCs in mouse embryos. Studying and manipulating interspecies pluripotent cell adhesion will provide valuable insights into cell interaction dynamics during chimera formation and early embryogenesis.

2.
Cell ; 187(13): 3194-3219, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906095

RESUMEN

Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.


Asunto(s)
Quimera , Organogénesis , Animales , Humanos , Quimera/embriología , Implantación del Embrión , Embrión de Mamíferos/citología , Desarrollo Embrionario , Células Madre Embrionarias , Modelos Biológicos , Organoides , Medicina Regenerativa , Ingeniería de Tejidos/métodos
3.
Cell ; 187(9): 2129-2142.e17, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670071

RESUMEN

Interspecies blastocyst complementation (IBC) provides a unique platform to study development and holds the potential to overcome worldwide organ shortages. Despite recent successes, brain tissue has not been achieved through IBC. Here, we developed an optimized IBC strategy based on C-CRISPR, which facilitated rapid screening of candidate genes and identified that Hesx1 deficiency supported the generation of rat forebrain tissue in mice via IBC. Xenogeneic rat forebrain tissues in adult mice were structurally and functionally intact. Cross-species comparative analyses revealed that rat forebrain tissues developed at the same pace as the mouse host but maintained rat-like transcriptome profiles. The chimeric rate of rat cells gradually decreased as development progressed, suggesting xenogeneic barriers during mid-to-late pre-natal development. Interspecies forebrain complementation opens the door for studying evolutionarily conserved and divergent mechanisms underlying brain development and cognitive function. The C-CRISPR-based IBC strategy holds great potential to broaden the study and application of interspecies organogenesis.


Asunto(s)
Prosencéfalo , Animales , Prosencéfalo/metabolismo , Prosencéfalo/embriología , Ratones , Ratas , Blastocisto/metabolismo , Femenino , Sistemas CRISPR-Cas/genética , Transcriptoma , Organogénesis , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Masculino , Ratones Endogámicos C57BL
4.
Cell Transplant ; 32: 9636897231164712, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37219048

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disease with limited therapeutic options. Cellular transplantation of healthy exogenic neurons to replace and restore neuronal cell function has previously been explored in AD animal models, yet most of these transplantation methods have utilized primary cell cultures or donor grafts. Blastocyst complementation offers a novel approach to generate a renewable exogenic source of neurons. These exogenic neurons derived from stem cells would develop with the in vivo context of the inductive cues within a host, thus recapitulating the neuron-specific characteristics and physiology. AD affects many different cell types including hippocampal neurons and limbic projection neurons, cholinergic nucleus basis and medial septal neurons, noradrenergic locus coeruleus neurons, serotonergic raphe neurons, and limbic and cortical interneurons. Blastocyst complementation can be adapted to generate these specific neuronal cells afflicted by AD pathology, by ablating important cell type and brain region-specific developmental genes. This review discusses the current state of neuronal transplantation to replace specific neural cell types affected by AD, and the developmental biology to identify candidate genes for knockout in embryos for creating niches to generate exogenic neurons via blastocyst complementation.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad
5.
Cell Transplant ; 31: 9636897221110525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36173102

RESUMEN

A growing need for organs and novel cell-based therapies has provided a niche for approaches like interspecies chimeras. To generate organs from one donor species in another host species requires techniques such as blastocyst complementation and gene editing to successfully create an embryo that has cells from both the donor and the host. However, the task of developing highly efficacious and competent interspecies chimeras is met by many challenges. These interspecies chimeric barriers impede the formation of chimeras, often leading to lower levels of chimeric competency. The barriers that need to be addressed include the evolutionary distance between species, stage-matching, temporal and spatial synchronization of developmental timing, interspecies cell competition and the survival of pluripotent stem cells and embryos, compatibility of ligand-receptor signaling between species, and the ethical concerns of forming such models. By overcoming the interspecies chimera barriers and creating highly competent chimeras, the technology of organ and cellular generation can be honed and refined to develop fully functioning exogenic organs, tissues, and cells for transplantation.


Asunto(s)
Quimera , Células Madre Pluripotentes , Blastocisto , Edición Génica , Ligandos
6.
Development ; 148(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34132325

RESUMEN

Growing human organs in animals sounds like something from the realm of science fiction, but it may one day become a reality through a technique known as interspecies blastocyst complementation. This technique, which was originally developed to study gene function in development, involves injecting donor pluripotent stem cells into an organogenesis-disabled host embryo, allowing the donor cells to compensate for missing organs or tissues. Although interspecies blastocyst complementation has been achieved between closely related species, such as mice and rats, the situation becomes much more difficult for species that are far apart on the evolutionary tree. This is presumably because of layers of xenogeneic barriers that are a result of divergent evolution. In this Review, we discuss the current status of blastocyst complementation approaches and, in light of recent progress, elaborate on the keys to success for interspecies blastocyst complementation and organ generation.


Asunto(s)
Blastocisto/citología , Quimera , Organogénesis , Trasplantes , Animales , Apoptosis , Blastocisto/metabolismo , Diferenciación Celular , Histocompatibilidad , Humanos , Ganado , Especificidad de Órganos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Trasplante Heterólogo
7.
Biochem Biophys Res Commun ; 510(1): 78-84, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30660369

RESUMEN

Generating human organs inside interspecies chimeras might one day produce patient-specific organs for clinical applications, but further advances in identifying human chimera-competent pluripotent stem (PS) cells are needed. Moreover, the potential for human PS cells to contribute to the brains in human-animal chimeras raises ethical questions. The use of non-human primate (NHP) chimera-competent PS cells would allow one to test interspecies organogenesis strategies while also bypassing such ethical concerns. Here, we provide the first evidence for a putative chimera-competent pluripotent state in NHPs. Using histone deacetylase (HDAC) and selective kinase inhibition, we converted the PS cells of an Old World monkey, the African Green monkey (aGM), to an ERK-independent cellular state that can be propagated in culture conditions similar to those that sustain chimera-competency in rodent cells. The obtained stem cell lines indefinitely self-renew in MEK inhibitor-containing culture media lacking serum replacement and FGF. Compared to conventional PS cells, the novel stem cells express elevated levels of KLF4, exhibit more intense nuclear staining for TFE3, and manifest increased mitochondrial membrane depolarization. These data are preliminary but indicate that the key to deriving primate chimera-competent PS cells is to shield cells from the activation of ERK, PKC, and WNT signaling. Because of the similarity of aGMs to humans, the more ethically palatable use of NHP cells, and the more similar gestation length between aGMs and large animals such as sheep, the aGM cell lines described herein will serve as a useful tool for evaluating the efficacy and safety of interspecies organogenesis strategies. Future studies will examine chimera-competency and generalizability to human cells.


Asunto(s)
Quimera/embriología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Células Madre Pluripotentes/citología , Animales , Bioética , Células Cultivadas , Chlorocebus aethiops , Humanos , Factor 4 Similar a Kruppel , Organogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...