Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros












Intervalo de año de publicación
1.
Virus Genes ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907176

RESUMEN

The cotton leafroll dwarf virus (CLDV), an important viral pathogen responsible for substantial losses in cotton crops, has recently emerged in the United States (US). Although CLDV shares similarities with other members of the genus Polerovirus in terms of encoded proteins, their functional characteristics remain largely unexplored. In this study, we expressed and analyzed each protein encoded by CLDV to determine its intracellular localization using fluorescence protein fusion. We also evaluated their potential to induce plant responses, such as the induction of hypersensitive response-like necrosis and the generation of reactive oxygen species. Our findings show that the proteins encoded by CLDV exhibit comparable localization patterns and elicit similar robust plant responses as observed with cognate proteins from other viruses within the genus Polerovirus. This study contributes to our understanding of the functional repertoire of genes carried by Polerovirus members, particularly to CLDV that has recently emerged as a widespread viral pathogen infecting cotton in the US.

2.
Viruses ; 16(3)2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38543745

RESUMEN

Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular aspects of HDV and associated liver damage. For the purpose of this study, we generated HDV genomes modified by site-directed mutagenesis aimed to (i) prevent some post-translational modifications of HDV antigens (HDAgs) such as large-HDAg (L-HDAg) isoprenylation or short-HDAg (S-HDAg) phosphorylation; (ii) alter the localization of HDAgs within the subcellular compartments; and (iii) inhibit the right conformation of the delta ribozyme. First, the different HDV mutants were tested in vitro using plasmid-transfected Huh-7 cells and then in vivo in C57BL/6 mice using AAV vectors. We found that Ser177 phosphorylation and ribozymal activity are essential for HDV replication and HDAg expression. Mutations of the isoprenylation domain prevented the formation of infectious particles and increased cellular toxicity and liver damage. Furthermore, altering HDAg intracellular localization notably decreased viral replication, though liver damage remained unchanged versus normal HDAg distribution. In addition, a mutation in the nuclear export signal impaired the formation of infectious viral particles. These findings contribute valuable insights into the intricate mechanisms of HDV biology and have implications for therapeutic considerations.


Asunto(s)
Virus de la Hepatitis Delta , ARN Viral , Animales , Ratones , Antígenos de Hepatitis delta/genética , Antígenos de Hepatitis delta/metabolismo , ARN Viral/metabolismo , Ratones Endogámicos C57BL , Replicación Viral/genética , Procesamiento Proteico-Postraduccional , Hígado/metabolismo
3.
Cell Mol Biol Lett ; 29(1): 27, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383288

RESUMEN

BACKGROUND: The R-RAS2 is a small GTPase highly similar to classical RAS proteins at the regulatory and signaling levels. The high evolutionary conservation of R-RAS2, its links to basic cellular processes and its role in cancer, make R-RAS2 an interesting research topic. To elucidate the evolutionary history of R-RAS proteins, we investigated and compared structural and functional properties of ancestral type R-RAS protein with human R-RAS2. METHODS: Bioinformatics analysis were used to elucidate the evolution of R-RAS proteins. Intrinsic GTPase activity of purified human and sponge proteins was analyzed with GTPase-GloTM Assay kit. The cell model consisted of human breast cancer cell lines MCF-7 and MDA-MB-231 transiently transfected with EsuRRAS2-like or HsaRRAS2. Biological characterization of R-RAS2 proteins was performed by Western blot on whole cell lysates or cell adhesion protein isolates, immunofluorescence and confocal microscopy, MTT test, colony formation assay, wound healing and Boyden chamber migration assays. RESULTS: We found that the single sponge R-RAS2-like gene/protein probably reflects the properties of the ancestral R-RAS protein that existed prior to duplications during the transition to Bilateria, and to Vertebrata. Biochemical characterization of sponge and human R-RAS2 showed that they have the same intrinsic GTPase activity and RNA binding properties. By testing cell proliferation, migration and colony forming efficiency in MDA-MB-231 human breast cancer cells, we showed that the ancestral type of the R-RAS protein, sponge R-RAS2-like, enhances their oncogenic potential, similar to human R-RAS2. In addition, sponge and human R-RAS2 were not found in focal adhesions, but both homologs play a role in their regulation by increasing talin1 and vinculin. CONCLUSIONS: This study suggests that the ancestor of all animals possessed an R-RAS2-like protein with oncogenic properties similar to evolutionarily more recent versions of the protein, even before the appearance of true tissue and the origin of tumors. Therefore, we have unraveled the evolutionary history of R-RAS2 in metazoans and improved our knowledge of R-RAS2 properties, including its structure, regulation and function.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al GTP Monoméricas , Animales , Femenino , Humanos , Neoplasias de la Mama/genética , Proliferación Celular , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Transducción de Señal
4.
J Biol Chem ; 300(2): 105654, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237680

RESUMEN

The mammalian SID-1 transmembrane family members, SIDT1 and SIDT2, are multipass transmembrane proteins that mediate the cellular uptake and intracellular trafficking of nucleic acids, playing important roles in the immune response and tumorigenesis. Previous work has suggested that human SIDT1 and SIDT2 are N-glycosylated, but the precise site-specific N-glycosylation information and its functional contribution remain unclear. In this study, we use high-resolution liquid chromatography tandem mass spectrometry to comprehensively map the N-glycosites and quantify the N-glycosylation profiles of SIDT1 and SIDT2. Further molecular mechanistic probing elucidates the essential role of N-linked glycans in regulating cell surface expression, RNA binding, protein stability, and RNA uptake of SIDT1. Our results provide crucial information about the potential functional impact of N-glycosylation in the regulation of SIDT1-mediated RNA uptake and provide insights into the molecular mechanisms of this promising nucleic acid delivery system with potential implications for therapeutic applications.


Asunto(s)
Proteínas de Transporte de Nucleótidos , ARN , Humanos , Transporte Biológico , Glicosilación , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , ARN/metabolismo
5.
Cells ; 12(20)2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37887313

RESUMEN

De novo mutations in GNAO1, the gene encoding the major neuronal G protein Gαo, cause a spectrum of pediatric encephalopathies with seizures, motor dysfunction, and developmental delay. Of the >80 distinct missense pathogenic variants, many appear to uniformly destabilize the guanine nucleotide handling of the mutant protein, speeding up GTP uptake and deactivating GTP hydrolysis. Zinc supplementation emerges as a promising treatment option for this disease, as Zn2+ ions reactivate the GTP hydrolysis on the mutant Gαo and restore cellular interactions for some of the mutants studied earlier. The molecular etiology of GNAO1 encephalopathies needs further elucidation as a prerequisite for the development of efficient therapeutic approaches. In this work, we combine clinical and medical genetics analysis of a novel GNAO1 mutation with an in-depth molecular dissection of the resultant protein variant. We identify two unrelated patients from Norway and France with a previously unknown mutation in GNAO1, c.509C>G that results in the production of the Pro170Arg mutant Gαo, leading to severe developmental and epileptic encephalopathy. Molecular investigations of Pro170Arg identify this mutant as a unique representative of the pathogenic variants. Its 100-fold-accelerated GTP uptake is not accompanied by a loss in GTP hydrolysis; Zn2+ ions induce a previously unseen effect on the mutant, forcing it to lose the bound GTP. Our work combining clinical and molecular analyses discovers a novel, biochemically distinct pathogenic missense variant of GNAO1 laying the ground for personalized treatment development.


Asunto(s)
Encefalopatías , Humanos , Niño , Mutación/genética , Proteínas de Unión al GTP/metabolismo , Iones/metabolismo , Guanosina Trifosfato , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
6.
J Glob Antimicrob Resist ; 35: 210-215, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37816433

RESUMEN

OBJECTIVES: Mycoplasma hominis, an opportunistic pathogen of the human lower urogenital tract, can survive and replicate within the protozoan Trichomonas vaginalis, establishing an endosymbiotic relationship. The intracellular location may provide a means for the bacteria to evade the immune system and protection from antimicrobial activities. Our aim was to investigate the influence of the endosymbiotic association of M. hominis with trichomonad cells on bacterial antibiotic susceptibility. METHODS: We evaluated antibiotic resistance patterns in a group of M. hominis isolated from T. vaginalis clinical specimens as well as in M. hominis isolated from patients without trichomoniasis. Using an experimental model system, we compared the minimum inhibitory concentration (MIC) and lethal concentration (MLC) of tetracycline on M. hominis endosymbionts of T. vaginalis and extracellular bacteria. RESULTS: The incidence rate of M. hominis strains resistant to C14 and C15 macrolide antibiotics was higher in intracellular strains associated with T. vaginalis compared with extracellular bacteria isolated from women not affected by trichomoniasis. However, sensitivity to tetracycline and quinolones was similar in both groups. In vitro experiments demonstrated that M. hominis strains, when isolated as endosymbionts from T. vaginalis, exhibited reduced sensitivity to tetracycline when cultured extracellularly for at least eight weeks. CONCLUSION: The intracellular localization of bacteria within trichomonad cells may affect antibiotic susceptibility.


Asunto(s)
Tricomoniasis , Trichomonas vaginalis , Humanos , Femenino , Metronidazol/farmacología , Mycoplasma hominis , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Bacterias , Tetraciclinas
7.
Colloids Surf B Biointerfaces ; 228: 113397, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37348267

RESUMEN

We investigated the distribution of intravenously administered thiol-organosilica particle (thiol-OS) in the spleen to evaluate their size effect in mice. A single administration of particles of thiol-OS containing rhodamine B (Rh) (90, 280, 340, 450, 630, 1110, 1670, and 3030 nm in diameter) was performed. After 24 h, we conducted a combination analysis using histological studies by fluorescent microscopy and quantitative inductively coupled plasma optical emission spectrometry (ICP-OES), which revealed no clear correlation between the particle size and spleen uptake of particle weight and number per tissue weight, and the injection dose. Moreover, Rh with 450 nm diameter (Rh450) showed the highest uptake, and Rh with 340 nm diameter (Rh340) showed the lowest uptake. Histologically, large fluorescent areas in the marginal zone (MZ) and red pulp (RP) of the spleen were observed for all particle sizes, but less in the follicle of white pulp. Using combination analysis using the particle weights of ICP-OES and the fluorescent area, we compared the distributions of each particle in each region. Rh450 had the largest accumulated weight in the MZ and RP. Particles larger than Rh450 showed negative correlations between their sizes and accumulated weight in the MZ and RP. Simultaneous dual administration of particles using Rhs and thiol-OS containing fluorescein (90 nm in diameter) showed the size-dependent difference in cellular distribution and intracellular localization. Immunohistochemical staining against macrophage markers, CD169, and F4/80 showed various colocalization patterns with macrophages that uptook particles, indicating differences in particle uptake in each macrophage may have novel significance.


Asunto(s)
Nanopartículas , Ratones , Animales , Nanopartículas/química , Bazo , Compuestos de Sulfhidrilo/química , Microscopía Fluorescente , Colorantes Fluorescentes , Tamaño de la Partícula
8.
Biochem Biophys Res Commun ; 673: 1-8, 2023 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-37352571

RESUMEN

Cyclic GMP-AMP synthase (cGAS), which recognizes double-stranded DNA (dsDNA) and activates the innate immune system, is mainly localized in the cytosol, but also shows nuclear localization. Here, we sought to determine the role of nuclear cGAS by mutating known nuclear localization signal (NLS) motifs in cGAS and assessing its functionality by monitoring phosphorylation of the downstream target, interferon regulatory factor-3 (IRF3). Interestingly, NLS2-mutated cGAS failed to promote phosphorylation of IRF3, reflecting the loss of its ability to produce cyclic GMP-AMP (cGAMP). We further found that insertion of an NLS from SV40 large T antigen could not restore this loss of activity, indicating that this loss was attributable to the mutation of NLS2 itself, but not dependent on the inability of cGAS to enter the nucleus. NLS2-mutant cGAS protein also showed decreased stability dependent on polyubiquitination, an effect that was independent of both its loss of catalytic function and its inability to enter into the nucleus. Collectively, these findings indicate that the NLS2 motif of cGAS is not only involved in regulating the subcellular localization of cGAS protein but also influences its stability and enzymatic activity through independent mechanisms, highlighting the novel roles of NLS2 in regulating the intracellular functions of cGAS.


Asunto(s)
Núcleo Celular , Nucleotidiltransferasas , Núcleo Celular/metabolismo , ADN/metabolismo , Inmunidad Innata/genética , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Fosforilación/genética , Proteolisis
9.
Zoolog Sci ; 40(3): 208-218, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37256568

RESUMEN

Two cytochrome P450 genes homologous to human CYP7A1 and CYP27A1 were cloned from the non-parasitic Japanese lamprey Lethenteron reissneri. Lamprey cyp7a1 mRNA had varied expression levels among individuals: about four orders of magnitude differences in larval liver and nearly three orders of magnitude differences in male adult liver. Overexpressed Cyp7a1 protein tagged with green fluorescent protein (GFP) was localized to the endoplasmic reticulum. Lamprey cyp27a1 mRNA had relatively constant expression levels: within two orders of magnitude differences in larvae and adult liver and intestine. GFP-tagged Cyp27a1 protein was localized to mitochondria. The expression profiles of lamprey cyp7a1 and cyp27a1 genes and the cellular localizations of their products were in good agreement with their counterparts in mammals, where these two P450s catalyze initial hydroxylation reactions of cholesterol in classical and alternative pathways of bile acid synthesis, respectively. The cyp7a1 mRNA levels in adult male liver showed significant negative correlations to both body weight and total length of the animal, implying the involvement of the gene in the production of female-attractive pheromones in sexually matured male livers. The lamprey Cyp7a1 contains a long extension of 116 amino acids between helices D and E of the protein. Possible roles of this extension in regulating the enzymatic activity of lamprey Cyp7a1 are discussed.


Asunto(s)
Lampreas , Hígado , Animales , Femenino , Masculino , Ácidos y Sales Biliares/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Lampreas/genética , Lampreas/metabolismo , Hígado/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Mar Drugs ; 21(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827160

RESUMEN

The determination of the protein's intracellular localization is essential for understanding its biological function. Protein localization studies are mainly performed on primary and secondary vertebrate cell lines for which most protocols have been optimized. In spite of experimental difficulties, studies on invertebrate cells, including basal Metazoa, have greatly advanced. In recent years, the interest in studying human diseases from an evolutionary perspective has significantly increased. Sponges, placed at the base of the animal tree, are simple animals without true tissues and organs but with a complex genome containing many genes whose human homologs have been implicated in human diseases, including cancer. Therefore, sponges are an innovative model for elucidating the fundamental role of the proteins involved in cancer. In this study, we overexpressed human cancer-related proteins and their sponge homologs in human cancer cells, human fibroblasts, and sponge cells. We demonstrated that human and sponge MYC proteins localize in the nucleus, the RRAS2 in the plasma membrane, the membranes of the endolysosomal vesicles, and the DRG1 in the cell's cytosol. Despite the very low transfection efficiency of sponge cells, we observed an identical localization of human proteins and their sponge homologs, indicating their similar cellular functions.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Neoplasias , Poríferos , Animales , Humanos , Genoma , Evolución Biológica , Línea Celular , Transfección , Proteínas de la Membrana
11.
J Gen Virol ; 104(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748631

RESUMEN

Equine herpesvirus type 1 (EHV-1) UL11 is a 74-amino-acid (aa) protein encoded by ORF51. UL11 is modified by acylation including myristoylation and palmitoylation. Myristoylation of EHV-1 UL11 is assumed to occur on the N-terminal glycine, while palmitoylation is assumed to occur on the seventh and ninth cysteines. ORF51, which encodes the first 24 aa, overlaps ORF50 encoding UL12. We previously demonstrated that UL11 was essential for EHV-1 replication in cultured cells and that UL11 was localized at the Golgi apparatus where herpesviruses obtain their final envelope. It is unclear whether the acylation is related to the localization of EHV-1 UL11 and viral replication. In this study, we investigated the role of UL11 acylation in the intracellular localization and viral growth and replication of EHV-1. We constructed seven UL11 acylation mutant plasmids and seven UL11 acylation mutant BAC DNAs; then, we analysed the localizations of the mutant UL11s and attempted virus rescue. We found that both the N-terminal glycine and the seventh or ninth cysteine, especially N-terminal glycine, were involved in the localization of UL11 and viral replication. Taken together, these results suggest that EHV-1 viral growth requires that UL11 is modified by myristoylation of an N-terminal glycine and by palmitoylation of at least one of the cysteines, and that UL11 is localized at the Golgi apparatus. This study shows that a single amino acid in EHV-1 can determine the fate of viral replication.


Asunto(s)
Herpesvirus Équido 1 , Animales , Caballos , Herpesvirus Équido 1/genética , Glicina/metabolismo , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Línea Celular , Aminoácidos/metabolismo , Cisteína
12.
Hum Pathol ; 134: 74-84, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36549600

RESUMEN

Human telomerase reverse transcriptase (hTERT) is highly expressed in various cancers, including breast cancer. Although telomere elongation is an essential role for hTERT, the nuclear export after oxdative stress has also been shown in several cancer cell lines and is associated with drug-resistance in vitro. As only a few reports focused on the subcellular localization of hTERT in clinical specimens, we performed immunohistochemistry (IHC) and analyzed the correlation between intracellular hTERT expression and the clinicopathological characteristics to identify the clinical significance of hTERT subcellular expression in breast cancers. 144 invasive breast cancers classified by IHC subtype without primary systemic therapy (PST), were selected from a surgical resection cohort and were immunostained for hTERT, p-STAT3, p-AKT and p-ERK. The nuclear and/or cytoplasmic staining intensity and proportion of hTERT were scored and compared with clinicopathological parameters. The nuclear hTERT expression was significantly correlated with HER2 expression (p = 0.00156), and the scores were significantly correlated with p-STAT3 and p-AKT expression scores (r = 0.532, p = 0.000587 and r = 0.345, p = 0.0339, respectively) in the HER2-immunopositive breast cancer including luminal-HER2 and HER2 subtypes. Furthermore, hTERT was expressed more in cytoplasm in the specimens after PST than those before PST, and the score tended to be negatively correlated with tumor shrinkage rate in HER2 subtype (r = -0.593, p = 0.0705). These results suggest that nuclear and/or cytoplasmic hTERT may play a different role before and after PST including the tumorigenesis and drug-resistance in breast cancer. Suppression of cytoplasmic hTERT expression may lead to more effective strategy for drug-resistant HER2 subtype in breast cancer.


Asunto(s)
Neoplasias de la Mama , Telomerasa , Femenino , Humanos , Neoplasias de la Mama/patología , Núcleo Celular/patología , Transformación Celular Neoplásica , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
Virus Res ; 323: 198967, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36241037

RESUMEN

Cherax quadricarinatus iridovirus (CQIV), a new member of family Iridoviridae, mainly infects the shrimps and crayfish with a high mortality rate. Previous gel-based LC-MS/MS study on CQIV has identified 30 structural proteins. In this study, one of the structural proteins, CQIV-168L, was selected for further analysis. RT-PCR and Western-blotting (WB) detection revealed that the transcript and the protein appeared late during infection of C. quadricarinatus cells and that the transcript was blocked by viral DNA replication inhibitor, indicating that CQIV-168L is a late expression gene. The specific antiserum against CQIV-168L was raised and immunofluorescence analysis showed that CQIV-168L was localized in the cytoplasm and associated with virus factories. Western-blotting (WB) assay suggested that CQIV-168L antiserum bound specifically to a 57-kDa protein in both the intact virions and the envelope fraction. As revealed by immunogold labeling, CQIV-168L was a component of the viral envelope. Findings in this work help to further understand the structure and entry mechanism of CQIV.

14.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557943

RESUMEN

Three novel luminescent Eu(III) complexes, Eu1-Eu3, have been synthesized and characterized with CHN analysis, mass-spectrometry and 1H NMR spectroscopy. The complexes display strong emission in dichloromethane solution upon excitation at 405 and 800 nm with a quantum yield from 18.3 to 31.6%, excited-state lifetimes in the range of 243-1016 ms at 20 °C, and lifetime temperature sensitivity of 0.9%/K (Eu1), 1.9%/K (Eu2), and 1.7%/K (Eu3). The chromophores were embedded into biocompatible latex nanoparticles (NPs_Eu1-NPs_Eu3) that prevented emission quenching and kept the photophysical characteristics of emitters unchanged with the highest temperature sensitivity of 1.3%/K (NPs_Eu2). For this probe cytotoxicity, internalization dynamics and localization in CHO-K1 cells were studied together with lifetime vs. temperature calibration in aqueous solution, phosphate buffer, and in a mixture of growth media and fetal bovine serum. The obtained data were then averaged to give the calibration curve, which was further used for temperature estimation in biological samples. The probe was stable in physiological media and displayed good reproducibility in cycling experiments between 20 and 40 °C. PLIM experiments with thermostated CHO-K1 cells incubated with NPs_Eu2 indicated that the probe could be used for temperature estimation in cells including the assessment of temperature variations upon chemical shock (sample treatment with mitochondrial uncoupling reagent).


Asunto(s)
Europio , Nanopartículas , Europio/química , Sondas Moleculares , Temperatura , Reproducibilidad de los Resultados
15.
J Control Release ; 351: 692-702, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36150580

RESUMEN

Photodynamic therapy (PDT) is a robust cancer treatment modality, and the precise spatiotemporal control of its subcellular action site is crucial for its effectiveness. However, accurate comparison of the efficacy of different organelle-targeted PDT approaches is challenging since it is difficult to find a single system that can achieve separate targeting of different organelles with separable time windows and similar binding amounts. Herein, we conjugated chlorin e6 (Ce6) with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-5000] (ammonium salt) (DSPE-PEG5000-NH2) to afford DSPE-PEG-Ce6, which could migrate from mitochondrion to lysosome and ultimately to endoplasmic reticulum (ER) after cellular internalization. Benefiting from the dynamic subcellular distribution of DSPE-PEG-Ce6 with tunable organelle-binding amounts, we accurately determined the PDT efficacy order of the molecule, i.e., mitochondrion > ER > lysosome. This work proposes an ideal model system for accurately evaluating the specific organelle-targeted PDT efficacy and may promote the future development of effective PDT strategies.


Asunto(s)
Fotoquimioterapia , Porfirinas , Fototerapia , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Mitocondrias , Fármacos Fotosensibilizantes/química , Línea Celular Tumoral
16.
Insects ; 13(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35886807

RESUMEN

Heterochromatin protein 1 plays an important role in chromatin structure and gene expression regulation. Three HP1 genes have been found in Homo sapiens, and five HP1 genes have been reported in Drosophila melanogaster. On the other hand, in Bombyx mori, only two HP1 genes, BmHP1a and BmHP1b, were reported. In this research, we have reported the molecular and functional characterization of a novel Bombyx mori HP1 gene (BmHP1c), which had stronger transcriptional repression activity than BmHP1a. BmHP1a and BmHP1b is reported to form homo- and heterodimers, but in co-immunoprecipitation experiments, no homo- or hetero-dimer formation of BmHP1c with the other silkworm HP1s is detected. The intracellular localization of BmHP1c is not only in the nucleus but also in the cytoplasm like mammalian HP1γ. In contrast to human HP1a and b, all three BmHP1s were localized preferentially in the regions poorly stained with DAPI. Interestingly, the double knockdown of BmHP1a and b, but not BmHP1c with a or b, arrested the cell cycle at the G2/M phase. These results suggest that BmHP1c is not essential for cell progression and plays a different role than BmHP1a and BmHP1b.

17.
Front Cell Dev Biol ; 10: 862011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813206

RESUMEN

Reflectin proteins are natural copolymers consisting of repeated canonical domains. They are located in a biophotonic system called Bragg lamellae and manipulate the dynamic structural coloration of iridocytes. Their biological functions are intriguing, but the underlying mechanism is not fully understood. Reflectin A1, A2, B1, and C were found to present distinguished cyto-/nucleoplasmic localization preferences in the work. Comparable intracellular localization was reproduced by truncated reflectin variants, suggesting a conceivable evolutionary order among reflectin proteins. The size-dependent access of reflectin variants into the nucleus demonstrated a potential model of how reflectins get into Bragg lamellae. Moreover, RfA1 was found to extensively interact with the cytoskeleton, including its binding to actin and enrichment at the microtubule organizing center. This implied that the cytoskeleton system plays a fundamental role during the organization and transportation of reflectin proteins. The findings presented here provide evidence to get an in-depth insight into the evolutionary processes and working mechanisms of reflectins, as well as novel molecular tools to achieve tunable intracellular transportation.

18.
Biochim Biophys Acta Biomembr ; 1864(10): 183994, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35724739

RESUMEN

SARS-CoV-2 contains four structural proteins in its genome. These proteins aid in the assembly and budding of new virions at the ER-Golgi intermediate compartment (ERGIC). Current fundamental research efforts largely focus on one of these proteins - the spike (S) protein. Since successful antiviral therapies are likely to target multiple viral components, there is considerable interest in understanding the biophysical role of its other structural proteins, in particular structural membrane proteins. Here, we have focused our efforts on the characterization of the full-length envelope (E) protein from SARS-CoV-2, combining experimental and computational approaches. Recombinant expression of the full-length E protein from SARS-CoV-2 reveals that this membrane protein is capable of independent multimerization, possibly as a tetrameric or smaller species. Fluorescence microscopy shows that the protein localizes intracellularly, and coarse-grained MD simulations indicate it causes bending of the surrounding lipid bilayer, corroborating a potential role for the E protein in viral budding. Although we did not find robust electrophysiological evidence of ion-channel activity, cells transfected with the E protein exhibited reduced intracellular Ca2+, which may further promote viral replication. However, our atomistic MD simulations revealed that previous NMR structures are relatively unstable, and result in models incapable of ion conduction. Our study highlights the importance of using high-resolution structural data obtained from a full-length protein to gain detailed molecular insights, and eventually permitting virtual drug screening.


Asunto(s)
COVID-19 , SARS-CoV-2 , Calcio , Humanos , Proteínas del Envoltorio Viral/química , Ensamble de Virus
19.
Pharmaceutics ; 14(6)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35745743

RESUMEN

In this investigation, we extensively studied the mechanism of antitumor activity of bovine pancreatic RNase A. Using confocal microscopy, we show that after RNase A penetration into HeLa and B16 cells, a part of the enzyme remains unbound with the ribonuclease inhibitor (RI), resulting in the decrease in cytosolic RNAs in both types of cells and rRNAs in the nucleoli of HeLa cells. Molecular docking indicates the ability of RNase A to form a complex with Ku70/Ku80 heterodimer, and microscopy data confirm its localization mostly inside the nucleus, which may underlie the mechanism of RNase A penetration into cells and its intracellular traffic. RNase A reduced migration and invasion of tumor cells in vitro. In vivo, in the metastatic model of melanoma, RNase A suppressed metastases in the lungs and changed the expression of EMT markers in the tissue adjacent to metastatic foci; this increased Cdh1 and decreased Tjp1, Fn and Vim, disrupting the favorable tumor microenvironment. A similar pattern was observed for all genes except for Fn in metastatic foci, indicating a decrease in the invasive potential of tumor cells. Bioinformatic analysis of RNase-A-susceptible miRNAs and their regulatory networks showed that the main processes modulated by RNase A in the tumor microenvironment are the regulation of cell adhesion and junction, cell cycle regulation and pathways associated with EMT and tumor progression.

20.
Reprod Toxicol ; 111: 83-91, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35595151

RESUMEN

Endocrine disruption mechanisms in prostate are an overlooked issue. The anti-androgenic properties of the fungicide vinclozolin (VIN) and its active metabolites - 2-[[(3,5- dichlorophenyl)-carbamoyl]oxy]- 2-methyl-3-butenoic acid (M1) and 3'5'-dichloro-2-hydroxy-2- methylbut-3-enanilide (M2) - were assessed on human prostate-derived cells (LNCaP); the effects were investigated also upon co-treatment with 5α-dihydrotestosterone (DHT), the physiological androgen receptor (AR)-agonist, and compared to the anti-androgenic drugs, 2-hydroxy-flutamide (2OH-FTA) and bicalutamide (BIC). Assessed endpoints were the cellular uptake and subcellular localization of VIN, M1 and M2, DHT-induced PSA gene expression and secretion. VIN, its metabolites, and the reference drugs, significantly reduced DHT-induced PSA secretion and gene expression, M2 showing the strongest downregulation. In absence of DHT, 2OH-FTA and BIC showed a very high (>98%) LNCaP uptake with a predominant intranuclear localization (BIC=80%, 2OH-FTA=70%). VIN cellular uptake was 42%: 24.7% made up by M2, mostly localized at nuclear level, differently from VIN and M1. Upon DHT co-treatment, VIN intracellular uptake increased by 28%, especially in the microsomal fraction (MF); M2 also increased mainly in MF but also, to a lower extent, in the intranuclear fraction. Finally, in a 72-hr time-course, the LNCaP uptake of VIN and its metabolites was much faster compared to purified M1 and M2. Overall, M2 resulted the leading compound for VIN endocrine-disrupting effects in LNCaP.


Asunto(s)
Dihidrotestosterona , Neoplasias de la Próstata , Antagonistas de Andrógenos/farmacología , Andrógenos/farmacología , Línea Celular Tumoral , Dihidrotestosterona/farmacología , Flutamida , Humanos , Masculino , Oxazoles , Antígeno Prostático Específico , Receptores Androgénicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...