Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 56(10): 1541-1551.e6, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34004152

RESUMEN

Limb regeneration, while observed lifelong in salamanders, is restricted in post-metamorphic Xenopus laevis frogs. Whether this loss is due to systemic factors or an intrinsic incapability of cells to form competent stem cells has been unclear. Here, we use genetic fate mapping to establish that connective tissue (CT) cells form the post-metamorphic frog blastema, as in the case of axolotls. Using heterochronic transplantation into the limb bud and single-cell transcriptomic profiling, we show that axolotl CT cells dedifferentiate and integrate to form lineages, including cartilage. In contrast, frog blastema CT cells do not fully re-express the limb bud progenitor program, even when transplanted into the limb bud. Correspondingly, transplanted cells contribute to extraskeletal CT, but not to the developing cartilage. Furthermore, using single-cell RNA-seq analysis we find that embryonic and adult frog cartilage differentiation programs are molecularly distinct. This work defines intrinsic restrictions in CT dedifferentiation as a limitation in adult regeneration.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Regeneración/fisiología , Ambystoma mexicanum , Animales , Tipificación del Cuerpo , Cartílago/citología , Reprogramación Celular , Células del Tejido Conectivo/citología , Dermis/citología , Embrión no Mamífero/citología , Larva , Xenopus laevis/embriología
2.
FEMS Microbiol Lett ; 364(12)2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28535292

RESUMEN

Combined experimental evolutionary and molecular biology approaches have been used to investigate the adaptive radiation of Pseudomonas fluorescens SBW25 in static microcosms leading to the colonisation of the air-liquid interface by biofilm-forming mutants such as the Wrinkly Spreader (WS). In these microcosms, the ecosystem engineering of the early wild-type colonists establishes the niche space for subsequent WS evolution and colonisation. Random WS mutations occurring in the developing population that deregulate diguanylate cyclases and c-di-GMP homeostasis result in cellulose-based biofilms at the air-liquid interface. These structures allow Wrinkly Spreaders to intercept O2 diffusing into the liquid column and limit the growth of competitors lower down. As the biofilm matures, competition increasingly occurs between WS lineages, and niche divergence within the biofilm may support further diversification before system failure when the structure finally sinks. A combination of pleiotropic and epistasis effects, as well as secondary mutations, may explain variations in WS phenotype and fitness. Understanding how mutations subvert regulatory networks to express intrinsic genome potential and key innovations providing a selective advantage in novel environments is key to understanding the versatility of bacteria, and how selection and ecological opportunity can rapidly lead to substantive changes in phenotype and in community structure and function.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Evolución Molecular , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/efectos de la radiación , Adaptación Fisiológica/genética , Biopelículas/efectos de la radiación , Evolución Biológica , Ecología , Ecosistema , Ambiente , Genotipo , Mutación , Fenotipo , Pseudomonas fluorescens/fisiología , Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...