Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39127914

RESUMEN

PURPOSE: To introduce a method to calculate retinal irradiance caused by ophthalmoscopy. This may be used to verify the compliance of an instrument with the radiation limits set by light hazard standards. The proposed method is simpler to use and less prone to error than the methods currently found in the light hazard standards. METHODS: The optical properties of the standardised human eye, specified by current light hazard standards, are used to calculate the magnification of an aerial image of the retinal surface by the combination of the optics of eye and the auxiliary lens used for ophthalmoscopy. The magnification of the aerial image is used to transform the spectral irradiance of the instrument illumination source to retinal irradiation values. The spectral irradiance of the instrument illumination source can be measured directly as the aerial image is located in the focal plane of the viewing optics of the ophthalmoscope. These spectral irradiation values are then processed using weightings specified by current light hazard standards to give a weighted irradiance which is converted directly to a retinal irradiance value. RESULTS: A single formula is provided to calculate the retinal irradiance using the processed, measured spectral irradiance values of the illumination source. CONCLUSION: The new method introduced here is simpler to use, requires fewer physical measurements and is less likely to introduce measurement error than that currently found in light hazard standards. The only physical measurement that needs to be taken is the illumination source spectral irradiance measured in the viewing focal plane of the instrument. These values are weighted using given in the light hazard standards. The combined irradiance value is then converted to retinal irradiance using the formula given in this paper.

2.
Sensors (Basel) ; 24(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39124081

RESUMEN

Given the recent increase in demand for electricity, it is necessary for renewable energy sources (RESs) to be widely integrated into power networks, with the two most commonly adopted alternatives being solar and wind power. Nonetheless, there is a significant amount of variation in wind speed and solar irradiance, on both a seasonal and a daily basis, an issue that, in turn, causes a large degree of variation in the amount of solar and wind energy produced. Therefore, RES technology integration into electricity networks is challenging. Accurate forecasting of solar irradiance and wind speed is crucial for the efficient operation of renewable energy power plants, guaranteeing the electricity supply at the most competitive price and preserving the dependability and security of electrical networks. In this research, a variety of different models were evaluated to predict medium-term (24 h ahead) wind speed and solar irradiance based on real-time measurement data relevant to the island of Crete, Greece. Illustrating several preprocessing steps and exploring a collection of "classical" and deep learning algorithms, this analysis highlights their conceptual design and rationale as time series predictors. Concluding the analysis, it discusses the importance of the "features" (intended as "time steps"), showing how it is possible to pinpoint the specific time of the day that most influences the forecast. Aside from producing the most accurate model for the case under examination, the necessity of performing extensive model searches in similar studies is highlighted by the current work.

3.
Adv Sci (Weinh) ; : e2304420, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39081001

RESUMEN

Quantitative measurement of light intensity is a key step in ensuring the reliability and the reproducibility of scientific results in many fields of physics, biology, and chemistry. The protocols presented so far use various photoactive properties of manufactured materials. Here, leaves are introduced as an easily accessible green material to calibrate light intensity. The measurement protocol consists in monitoring the chlorophyll fluorescence of a leaf while it is exposed to a jump of constant light. The inverse of the characteristic time of the initial chlorophyll fluorescence rise is shown to be proportional to the light intensity received by the leaf over a wide range of wavelengths and intensities. Moreover, the proportionality factor is stable across a wide collection of plant species, which makes the measurement protocol accessible to users without prior calibration. This favorable feature is finally harnessed to calibrate a source of white light from exploiting simple leaves collected from a garden.

4.
J Oral Sci ; 66(3): 182-188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010166

RESUMEN

PURPOSE: To evaluate the influence of the polymerization distance of monowave and polywave light curing units (LCUs) on the measured irradiance relative to the value reported by the manufacturer in relation to the physical properties of resin-based composites (RBCs). METHODS: Four LCUs were used: one monowave and three polywave. The irradiance was measured with a digital radiometer. Depth of cure (DC) and flexural strength (FS) tests were performed according to ISO 4049:2019 at polymerization distances of 0 mm and 5 mm. RESULTS: The irradiance of all LCUs was higher than that reported by the manufacturer (>25-64%). The irradiance of the four LCUs was reduced when polymerization was performed at between 0 to 5 mm (paired t-test, P < 0.001). The DC at 0 mm was similar in all groups but was significantly decreased at 5 mm distance (ANOVA P < 0.001). FS showed differences among the LCUs at 0 mm (ANOVA P < 0.001) and was affected by the polymerization distance. The elastic modulus was unaffected by the LCU used or the distance (ANOVA P > 0.001). CONCLUSIONS: The LCU must be positioned as near as possible to RBCs during the polymerization process, as increased distance negatively affects the depth of cure and flexural strength.


Asunto(s)
Resinas Compuestas , Luces de Curación Dental , Polimerizacion , Resinas Compuestas/química , Ensayo de Materiales , Resistencia Flexional , Módulo de Elasticidad
5.
Comput Biol Med ; 179: 108903, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059211

RESUMEN

Exposure to ambient ultraviolet radiation is associated with various ocular pathologies. Estimating the irradiance received by the eyes is therefore essential from a preventive perspective and to study the relationship between light exposure and eye diseases. However, measuring ambient irradiance on the ocular surface is challenging. Current methods are either approximations or rely on simplified setups. Additionally, factors like head rotation further complicate measurements for prolonged exposures. This study proposes a novel numerical approach to address this issue by developing an analytical model for calculating irradiance received by the eye and surrounding ocular area. The model takes into account local ambient irradiance, sun position, and head orientation. It offers a versatile and cost-effective means of calculating ocular irradiance, adaptable to diverse scenarios, and serves both as a predictive tool and as a way to compute correction factors, such as the fraction of diffuse irradiance received by the eyes. Furthermore, it can be tailored for prolonged durations, facilitating the calculation of radiant dose obtained during extended exposures.


Asunto(s)
Ojo , Cabeza , Modelos Biológicos , Humanos , Ojo/efectos de la radiación , Cabeza/efectos de la radiación , Cabeza/anatomía & histología , Rayos Ultravioleta
6.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38894464

RESUMEN

A new cost-effective radiometer has been designed, built, and tested to measure direct normal solar irradiance (DNI). The proposed instrument for solar irradiance measurement is based on an optical fiber as the light beam collector, a semiconductor photodiode to measure the optical power, and a calibration algorithm to convert the optical power into solar irradiance. The proposed radiometer offers the advantage of separating the measurement point, where the optical fiber collects the solar irradiation, from the place where the optical power is measured. A calibration factor is mandatory because the semiconductor photodiode is only spectrally responsive to a limited part of the spectral irradiance. Experimental tests have been conducted under different conditions to evaluate the performance of the proposed device. The measurements confirm that the proposed instrument performs similarly to the expensive high-accuracy pyrheliometer used as a reference.

7.
Sci Total Environ ; 943: 173958, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38871320

RESUMEN

Accurately and precisely estimating global horizontal irradiance (GHI) poses significant challenges due to the unpredictable nature of climate parameters and geographical limitations. To address this challenge, this study proposes a forecasting framework using an integrated model of the convolutional neural network (CNN), long short-term memory (LSTM), and gated recurrent unit (GRU). The proposed model uses a dataset of four different districts in Rajasthan, each with unique solar irradiance patterns. Firstly, the data was preprocessed and then trained with the optimized parameters of the standalone and hybrid models and compared. It can be observed that the proposed hybrid model (CNN-LSTM-GRU) consistently outperformed all other models regarding Mean absolute error (MAE) and Root mean squared error (RMSE). The experimental results demonstrate that the proposed method forecasts accurate GHI with a RMSE of 0.00731, 0.00730, 0.00775, 0.00810 and MAE of 0.00516, 0.00524, 0.00552, 0.00592 for Barmer, Jaisalmer, Jodhpur and Bikaner respectively. This indicates that the model is better at minimizing prediction errors and providing more accurate GHI estimates. Additionally, the proposed model achieved a higher coefficient of determination (R (Ghimire et al., 2019)), suggesting that it best fits the dataset. A higher R2 value signifies that the proposed model could explain a significant portion of the variance in the GHI dataset, further emphasizing its predictive capabilities. In conclusion, this work demonstrates the effectiveness of the hybrid algorithm in improving adaptability and enhancing prediction accuracy for GHI estimation.

8.
Polymers (Basel) ; 16(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891413

RESUMEN

BACKGROUND: This study investigated effects of rapid high-intensity light-curing (3 s) on increasing transdentinal temperature and cell viability. METHODS: A total of 40 dentin discs (0.5 mm) obtained from human molars were prepared, included in artificial pulp chambers (4.5 × 5 mm), and subjected to four light-curing protocols (n = 5), with a Valo Grand light curing unit: (i) 10 s protocol with a moderate intensity of 1000 mW/cm2 (Valo-10 s); (ii) 3 s protocol with a high intensity of 3200 mW/cm2 (Valo-3 s); (iii) adhesive system + Filtek Bulk-Fill Flow bulk-fill composite resin in 10 s (FBF-10 s); (iv) adhesive system + Tetric PowerFlow bulk-fill composite resin in 3 s (TPF-3 s). Transdentinal temperature changes were recorded with a type K thermocouple. Cell viability was assessed using the MTT assay. Data were analyzed using one-way ANOVA and Tukey tests for comparison between experimental groups (p < 0.05). RESULTS: The 3 s high-intensity light-curing protocol generated a higher temperature than the 10 s moderate-intensity standard (p < 0.001). The Valo-10 s and Valo-3 s groups demonstrated greater cell viability than the FBF-10s and TPF-3 s groups and statistical differences were observed between the Valo-3 s and FBF-10 s groups (p = 0.023) and Valo-3 s and TPF-3 s (p = 0.025), with a potential cytotoxic effect for the FBF-10 s and TPF-3 s groups. CONCLUSIONS: The 3 s rapid high-intensity light-curing protocol of bulk-fill composite resins caused a temperature increase greater than 10 s and showed cell viability similar to and comparable to the standard protocol.

9.
Sensors (Basel) ; 24(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38931674

RESUMEN

The transition to a low-carbon economy is one of the main challenges of our time. In this context, solar energy, along with many other technologies, has been developed to optimize performance. For example, solar trackers follow the sun's path to increase the generation capacity of photovoltaic plants. However, several factors need consideration to further optimize this process. Important variables include the distance between panels, surface reflectivity, bifacial panels, and climate variations throughout the day. Thus, this paper proposes an artificial intelligence-based algorithm for solar trackers that takes all these factors into account-mainly weather variations and the distance between solar panels. The methodology can be replicated anywhere in the world, and its effectiveness has been validated in a real solar plant with bifacial panels located in northeastern Brazil. The algorithm achieved gains of up to 7.83% on a cloudy day and obtained an average energy gain of approximately 1.2% when compared to a commercial solar tracker algorithm.

10.
Mar Environ Res ; 199: 106589, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852494

RESUMEN

This study investigated the physiological responses of two tropical seagrass species, Halophila ovalis and Thalassia hemprichii, to heat stress under varying light conditions in a controlled 5-day experiment. The experimental design included four treatments: control, saturating light, heat stress under sub-saturating light, and heat stress under saturating light (combined stress). We assessed various parameters, including chlorophyll fluorescence, levels of reactive oxygen species (ROS), antioxidant enzyme activities, and growth rates. In H. ovalis, heat stress resulted in a significant reduction in the maximum quantum yield of photosystem II (Fv/Fm) regardless of the light condition. However, the effects of heat stress on the effective quantum yield of photosystem II (ɸPSII) were more pronounced under saturating light conditions. In T. hemprichii, saturating irradiance exacerbated the heat stress effects on Fv/Fm and ɸPSII, although the overall photoinhibition was less severe than in H. ovalis. Heat stress led to ROS accumulation in H. ovalis and reduced the activity of superoxide dismutase (SOD) and ascorbate peroxidase in the sub-saturating light condition. Conversely, T. hemprichii exhibited elevated SOD activity under saturating light. Heat stress suppressed the growth of both seagrass species, regardless of the light environment. The Biomarker Response Index indicated that H. ovalis displayed severe effects in the heat stress treatment under both light conditions, while T. hemprichii exhibited moderate effects in sub-saturating light and major effects in saturating light conditions. However, the Effect Addition Index revealed an antagonistic interaction between heat stress and high light in both seagrass species. This study underscores the intricate responses of seagrasses, emphasizing the importance of considering both local and global stressors when assessing their vulnerability.


Asunto(s)
Respuesta al Choque Térmico , Hydrocharitaceae , Estrés Oxidativo , Fotosíntesis , Hydrocharitaceae/fisiología , Hydrocharitaceae/metabolismo , Hydrocharitaceae/efectos de la radiación , Respuesta al Choque Térmico/fisiología , Especies Reactivas de Oxígeno/metabolismo , Luz , Clorofila/metabolismo , Superóxido Dismutasa/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
11.
Ann Bot ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946023

RESUMEN

BACKGROUND AND AIMS: Long-term exposure over several days to Far-Red (FR) increases leaf expansion, while short-term exposure (minutes) may enhance the PSII operating efficiency (ϕPSII). The interaction between these responses at different time scales, and their impact on photosynthesis at whole-plant level is not well understood. Our study aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance) both in the long and short-term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant. METHODS: Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR(SUN(FR-) vs. SUN). To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf level. At whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves. KEY RESULTS: SUN(FR-) plants had lower leaf area, shorter stems, and darker leaves than SUN plants. While reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the growth light treatment and leaf position. Interestingly, the kinetics of ϕPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants. CONCLUSIONS: Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.

12.
New Phytol ; 243(2): 662-673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769735

RESUMEN

It is well established that solar irradiance greatly influences tree metabolism and growth through photosynthesis, but its effects acting through individual climate metrics have not yet been well quantified. Understanding these effects is crucial for assessing the impacts of climate change on forest ecosystems. To describe the effects of solar irradiance on tree growth, we installed 110 automatic dendrometers in two old-growth mountain forest reserves in Central Europe, performed detailed terrestrial and aerial laser scanning to obtain precise tree profiles, and used these to simulate the sum of solar irradiance received by each tree on a daily basis. Generalized linear mixed-effect models were applied to simulate the probability of growth and the growth intensity over seven growing seasons. Our results demonstrated various contrasting effects of solar irradiance on the growth of canopy trees. On the one hand, the highest daily growth rates corresponded with the highest solar irradiance potentials (i.e. the longest photoperiod). Intense solar irradiance significantly decreased tree growth, through an increase in the vapor pressure deficit. These effects were consistent for all species but had different magnitude. Tree growth is the most effective on long rainy/cloudy days with low solar irradiance.


Asunto(s)
Bosques , Tallos de la Planta , Estaciones del Año , Luz Solar , Árboles , Árboles/crecimiento & desarrollo , Árboles/efectos de la radiación , Árboles/fisiología , Europa (Continente) , Tallos de la Planta/efectos de la radiación , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Fotosíntesis/efectos de la radiación
13.
Arch Microbiol ; 206(6): 276, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38777923

RESUMEN

Due to its increased safety over ultraviolet light, there is interest in the development of antimicrobial violet-blue light technologies for infection control applications. To ensure compatibility with exposed materials and tissue, the light irradiances and dose regimes used must be suitable for the target application. This study investigates the antimicrobial dose responses and germicidal efficiency of 405 nm violet-blue light when applied at a range of irradiance levels, for inactivation of surface-seeded and suspended bacteria. Bacteria were seeded onto agar surfaces (101-108 CFUplate-1) or suspended in PBS (103-109 CFUmL-1) and exposed to increasing doses of 405-nm light (≤ 288 Jcm-2) using various irradiances (0.5-150 mWcm-2), with susceptibility at equivalent light doses compared. Bacterial reductions ≥ 96% were demonstrated in all cases for lower irradiance (≤ 5 mWcm-2) exposures. Comparisons indicated, on a per unit dose basis, that significantly lower doses were required for significant reductions of all species when exposed at lower irradiances: 3-30 Jcm-2/0.5 mWcm-2 compared to 9-75 Jcm-2/50 mWcm-2 for low cell density (102 CFUplate-1) surface exposures and 22.5 Jcm-2/5 mWcm-2 compared to 67.5 Jcm-2/150 mWcm-2 for low density (103 CFUmL-1) liquid exposures (P ≤ 0.05). Similar patterns were observed at higher densities, excluding S. aureus exposed at 109 CFUmL-1, suggesting bacterial density at predictable levels has minimal influence on decontamination efficacy. This study provides fundamental evidence of the greater energy efficacy of 405-nm light for inactivation of clinically-significant pathogens when lower irradiances are employed, further supporting its relevance for practical decontamination applications.


Asunto(s)
Descontaminación , Luz , Descontaminación/métodos , Bacterias/efectos de la radiación , Bacterias/efectos de los fármacos , Desinfección/métodos , Viabilidad Microbiana/efectos de la radiación , Staphylococcus aureus/efectos de la radiación , Staphylococcus aureus/efectos de los fármacos
14.
Nutrients ; 16(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794727

RESUMEN

A paucity of vitamin D is a common deficiency globally, with implications for many aspects of health besides the well-known impact on musculoskeletal health. The two sources of vitamin D are through oral intake, or through endogenous synthesis in the skin when exposed to ultraviolet radiation in sunlight. Assessing nutritional needs, whether by food, food fortification or supplementation, is aided by an understanding of local potential for cutaneous synthesis of the vitamin, dependent on latitude and climate, personal skin type and local culture. To aid these discussions we provide indicative exposure times for the maintenance of vitamin D status as a function of latitude, month and skin type, for the clear-sky case and all-sky conditions, for an ambulatory person wearing modest skirt/shorts and T-shirt. At latitudes greater than ±40 degrees, lack of available sunlight limits vitamin D synthesis in some months for all, while at the equator exposure times range from 3 to 15 min at noontime, for white and black skin, respectively. Rather than a sun exposure prescription, the data are intended to show where nutritional vitamin D intake is necessary, advisable, or can be mitigated by sun exposure, and allows for such advice to be personalized to account for different sub-groups in a multicultural population.


Asunto(s)
Luz Solar , Rayos Ultravioleta , Deficiencia de Vitamina D , Vitamina D , Humanos , Suplementos Dietéticos , Estado Nutricional , Estaciones del Año , Piel/metabolismo , Piel/efectos de la radiación , Factores de Tiempo , Vitamina D/administración & dosificación , Vitamina D/sangre
15.
Contemp Clin Dent ; 15(1): 35-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707663

RESUMEN

Background: This in vitro study assessed light transmission through ceramic discs varying in shade, translucency, and thickness using light-polymerizing units with different radiant power/flux (RP) outputs. Methods: Disc-shaped specimens (0.5 mm, 1.0 mm, and 2.0 mm) were made from high and low-translucency glass-ceramic ingots (IPS e.max Press) in shades A1 and A4, totaling 60 discs. Two light-polymerizing units with different power outputs were used, and their emission spectra were verified. The transmitted RP values for each ceramic specimen were measured and irradiance and radiant energy influx were calculated. Differences between the light-polymerizing units and the influence of the three ceramic parameters were evaluated using an independent-samples t-test and three-way analysis of variance (ANOVA) tests (α = 0.05). Results: A statistically significant difference was observed in the mean transmitted RP values between the two light-polymerizing units. Furthermore, the three-way ANOVA test showed a significant effect of shade, translucency, and thickness, as well as a significant interaction between each pair of variables and all three variables on the transmitted RP (P < 0.05). Conclusions: Despite the significant attenuation in the transmitted RP, especially in ceramics with higher shade chromaticity and thickness and lower translucency, the calculated minimal irradiance values for both light-polymerizing units (their emitted power ≥ 500 mW) were greater than the minimum recommended irradiance threshold (100 mW/cm2). However, the exposure duration needs to be increased to provide the resin with sufficient radiant exposure for adequate polymerization.

16.
J Esthet Restor Dent ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38817077

RESUMEN

OBJECTIVES: To evaluate the compressive modulus, translucency, and light curing irradiance transmittance of four clear polyvinyl siloxane (PVS) materials used for the injection molding technique at varying thicknesses, and to assess the correlation between color parameters and irradiance transmittance. MATERIALS AND METHODS: Four clear PVS materials (Exaclear, Clear Bite Matrix, Affinity Crystal, and Memosil 2) were used in this study. Compressive modulus was measured by compressing cylindrical PVS specimens (n = 9; d = 10 mm; t = 6 mm) up to 30% strain using a universal testing machine. For the translucency analysis and irradiance transmittance, specimens (n = 5) were fabricated with five different thicknesses (d = 12 mm and t = 2, 4, 6, 8 and 10 mm). The L*, a, *b* values of specimens were obtained using a CIELab spectrophotometer (CMD-700, Konica Minolta) with calibrated white and black tiles; the translucency parameter was calculated. The same specimens were placed onto a spectrophotometer (MARC Light Collector) to measure irradiance transmitted through the specimens from a light curing unit (Valo Corded, Ultradent). Data were analyzed using analysis of variance (ANOVA) with Tukey post hoc test and the correlation between translucency and irradiance transmittance of materials for each thickness was evaluated using Pearson's correlation. RESULTS: Compressive modulus differences in PVS materials were significant (one-way ANOVA: df = 3, F = 76.27, p < 0.001); Affinity and Memosil 2 were highest with no significant difference between them (Tukey: t = -1.62; p = 0.382). Clear Bite was higher than Exaclear (Tukey: t = -3.70; p = 0.004). Exaclear was lowest. Translucency decreased with thickness (Two-way ANOVA: df = 3, F = 586.53, p < 0.001; thickness: df = 4, F = 1389.34, p < 0.001). Exaclear was most translucent at all thicknesses. L*, a*, b* values varied by material and thickness (L*: df = 3, F = 1213.32, p < 0.001; a*: df = 3, F = 10766.8, p < 0.001; b*: df = 3, F = 3260.42, p < 0.001). Memosil 2 had lowest b* values. Irradiance transmittance was affected by material and thickness (Two-way ANOVA: df = 4, F = 2388.86, p < 0.001). Exaclear had highest irradiance transmission, surpassing control at >6 mm. Violet/blue irradiance ratio decreased with thickness; Exaclear maintained a constant ratio, indicating preserved violet irradiance. There was a strong positive correlation between translucency and light irradiance (Pearson's r = 0.97, R2 = 0.86-0.96). Radiant exposure analysis suggests adjusting the curing time based on PVS thickness for optimal exposure (10 J/cm2) is achievable within 13-14 s for <2 mm and 21-30 s for 8-10 mm with Clear Bite, Affinity, and Memosil 2; whereas Exaclear requires less time. CONCLUSIONS: Compressive modulus in clear PVS materials varied by type; Affinity and Memosil 2 demonstrate higher modulus, offering more stability of the clear mold. Translucency and irradiance transmission through clear PVS materials decreased as their thickness increased, yet Exaclear exceled in maintaining high translucency and superior light transmission capabilities. Additionally, there is a strong positive linear correlation between translucency and light irradiance transmittance, offering a method to adjust curing times effectively based on material translucency. CLINICAL SIGNIFICANCE: The light curing time to adequately polymerize composite through clear impression material may need to be increased, particularly with thicker matrices or less translucent materials.

17.
Biology (Basel) ; 13(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38785788

RESUMEN

Cyanobacteria, photoautotrophic Gram-negative bacteria, play a crucial role in aquatic and terrestrial environments, contributing significantly to fundamental ecological processes and displaying potential for various biotechnological applications. It is, therefore, critical to identify viable strains for aquaculture and establish accurate culture parameters to ensure an extensive biomass supply for biotechnology purposes. This study aims to establish optimal laboratory batch culture conditions for Nostoc 136, sourced from Alga2O, Coimbra, Portugal. Preliminary investigations were conducted to identify the optimal culture parameters and to perform biomass analysis, including protein and pigment content. The highest growth was achieved with an initial inoculum concentration of 1 g.L-1, using modified BG11 supplemented with nitrogen, resulting in a Specific Growth Rate (SGR) of 0.232 ± 0.017 µ.day-1. When exposed to white, red, and blue LED light, the most favourable growth occurred under a combination of white and red LED light exhibiting an SGR of 0.142 ± 0.020 µ.day-1. The protein content was determined to be 10.80 ± 2.09%. Regarding the pigments, phycocyanin reached a concentration of 200.29 ± 30.07 µg.mL-1, phycoerythrin 148.29 ± 26.74 µg.mL-1, and allophycocyanin 10.69 ± 6.07 µg.mL-1. This study underscores the influence of light and nutrient supplementation on the growth of the Nostoc biomass.

18.
Antioxidants (Basel) ; 13(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38790710

RESUMEN

The effects of high-intensity blue light (HIBL, 500/1000 µmol m-2s-1, 450 nm) on Solanum lycopersicum mutants with high pigment (hp) and low pigment (lp) levels and cryptochrome 1 (cry1) deficiency on photosynthesis, chlorophylls, phenols, anthocyanins, nonenzymatic antioxidant activity, carotenoid composition, and the expression of light-dependent genes were investigated. The plants, grown under white light for 42 days, were exposed to HIBL for 72 h. The hp mutant quickly adapted to 500 µmol m-2s-1 HIBL, exhibiting enhanced photosynthesis, increased anthocyanin and carotenoids (beta-carotene, zeaxanthin), and increased expression of key genes involved in pigment biosynthesis (PSY1, PAL1, CHS, ANS) and PSII proteins along with an increase in nonenzymatic antioxidant activity. At 1000 µmol m-2s-1 HIBL, the lp mutant showed the highest photosynthetic activity, enhanced expression of genes associated with PSII external proteins (psbO, psbP, psbQ), and increased in neoxanthin content. This mutant demonstrated greater resistance at the higher HIBL, demonstrating increased stomatal conductance and photosynthesis rate. The cry1 mutant exhibited the highest non-photochemical quenching (NPQ) but had the lowest pigment contents and decreased photosynthetic rate and PSII activity, highlighting the critical role of CRY1 in adaptation to HIBL. The hp and lp mutants use distinct adaptation strategies, which are significantly hindered by the cry1 mutation. The pigment content appears to be crucial for adaptation at moderate HIBL doses, while CRY1 content and stomatal activity become more critical at higher doses.

19.
Sci Total Environ ; 930: 172571, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38663592

RESUMEN

Arctic fjords are considered to be one of the ecosystems changing most rapidly in response to climate change. In the Svalbard archipelago, fjords are experiencing a shift in environmental conditions due to the Atlantification of Arctic waters and the retreat of sea-terminating glaciers. These environmental changes are predicted to facilitate expansion of large, brown macroalgae, into new ice-free regions. The potential resilience of macroalgal benthic communities in these fjord systems will depend on their response to combined pressures from freshening due to glacial melt, exposure to warmer waters, and increased turbidity from meltwater runoff which reduces light penetration. Current predictions, however, have a limited ability to elucidate the future impacts of multiple-drivers on macroalgal communities with respect to ecosystem function and biogeochemical cycling in Arctic fjords. To assess the impact of these combined future environmental changes on benthic productivity and resilience, we conducted a two-month mesocosm experiment exposing mixed kelp communities to three future conditions comprising increased temperature (+ 3.3 and + 5.3°C), seawater freshening by ∼ 3.0 and ∼ 5.0 units (i.e., salinity of 30 and 28, respectively), and decreased photosynthetically active radiation (PAR, - 25 and - 40 %). Exposure to these combined treatments resulted in non-significant differences in short-term productivity, and a tolerance of the photosynthetic capacity across the treatment conditions. We present the first robust estimates of mixed kelp community production in Kongsfjorden and place a median compensation irradiance of ∼12.5 mmol photons m-2 h-1 as the threshold for positive net community productivity. These results are discussed in the context of ecosystem productivity and biological tolerance of kelp communities in future Arctic fjord systems.


Asunto(s)
Cambio Climático , Estuarios , Kelp , Regiones Árticas , Ecosistema , Svalbard , Agua de Mar
20.
Biomater Investig Dent ; 11: 40308, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645925

RESUMEN

Harnessing the power of light and its photonic energy is a powerful tool in biomedical applications. Its use ranges from biomaterials processing and fabrication of polymers to diagnostics and therapeutics. Dental light curable materials have evolved over several decades and now offer very fast (≤ 10 s) and reliable polymerization through depth (4-6 mm thick). This has been achieved by developments on two fronts: (1) chemistries with more efficient light absorption characteristics (camphorquinone [CQ], ~30 L mol-1 cm1 [ʎmax 470 nm]; monoacylphosphine oxides [MAPO], ~800 L mol-1 cm-1 [ʎmax 385 nm]; bisacylphosphine oxide [BAPO], ~1,000 L mol-1 cm-1 [ʎmax 385 nm]) as well mechanistically efficient and prolonged radical generation processes during and after light irradiation, and; (2) introducing light curing technologies (light emitting diodes [LEDs] and less common lasers) with higher powers (≤ 2 W), better spectral range using multiple diodes (short: 390-405 nm; intermediate: 410-450 nm; and long: 450-480 nm), and better spatial power distribution (i.e. homogenous irradiance). However, adequate cure of materials falls short for several reasons, including improper selection of materials and lights, limitations in the chemistry of the materials, and limitations in delivering light through depth. Photonic energy has further applications in dentistry which include transillumination for diagnostics, and therapeutic applications that include photodynamic therapy, photobiomodulation, and photodisinfection. Light interactions with materials and biological tissues are complex and it is important to understand the advantages and limitations of these interactions for successful treatment outcomes. This article highlights the advent of photonic technologies in dentistry, its applications, the advantages and limitations, and possible future developments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...