Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Beilstein J Org Chem ; 20: 1436-1443, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952962

RESUMEN

An efficient protocol for the synthesis of polyfunctionalized tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine-3,4b,5,6,7(1H)-pentacarboxylates was developed by a three-component reaction. In the absence of any catalyst, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates and 5,6-unsubstituted 1,4-dihydropyridines in refluxing acetonitrile afforded polyfunctionalized tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine-3,4b,5,6,7(1H)-pentacarboxylates in high yields and with high diastereoselectivity. The reaction was finished by in situ generation of activated 5-(alkylimino)cyclopenta-1,3-dienes from addition of alkyl isocyanide to two molecules of but-2-ynedioates and sequential formal [3 + 2] cycloaddition reaction with 5,6-unsubstituted 1,4-dihydropyridine.

2.
Adv Sci (Weinh) ; : e2404266, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38986026

RESUMEN

Precisely controlling the product selectivity of a reaction is an important objective in organic synthesis. α-Ketoamides are vital intermediates in chemical transformations and privileged motifs in numerous drugs, natural products, and biologically active molecules. The selective synthesis of α-ketoamides from feedstock chemicals in a safe and operationally simple manner under mild conditions is a long-standing catalysis challenge. Herein, an unprecedented TBD-switched Pd-catalyzed double isocyanide insertion reaction for assembling ketoamides in aqueous DMSO from (hetero)aryl halides and pseudohalides under mild conditions is reported. The effectiveness and utility of this protocol are demonstrated by its diverse substrate scope (93 examples), the ability to late-stage modify pharmaceuticals, scalability to large-scale synthesis, and the synthesis of pharmaceutically active molecules. Mechanistic studies indicate that TBD is a key ligand that modulates the Pd-catalyzed double isocyanide insertion process, thereby selectively providing the desired α-ketoamides in a unique manner. In addition, the imidoylpalladium(II) complex and α-ketoimine amide are successfully isolated and determined by X-ray analysis, confirming that they are probable intermediates in the catalytic pathway.

3.
Molecules ; 29(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474631

RESUMEN

A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Complejos de Coordinación , Metano/análogos & derivados , Neoplasias Ováricas , Fosfinas , Femenino , Humanos , Cisplatino/química , Platino (Metal)/química , Línea Celular Tumoral , Cianuros , Espectroscopía Infrarroja por Transformada de Fourier , Complejos de Coordinación/química , Antineoplásicos/química , Ligandos
4.
Chempluschem ; 89(6): e202300633, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38350019

RESUMEN

Multicomponent diversity-oriented synthesis (DOS) of conformationally anchored structural peptidomimetics like 2,5-diketopiperazines (2,5-DKP) containing heterocyclic bioisosteres of the amide bond, such as 1,2,3-triazoles and 1,5-disubstituted tetrazoles (1,5-DS-T) is described. Structural peptidomimetics are synthesized from similar available starting materials, via a strategy based on isocyanide-based multicomponent reactions (IMCRs): Ugi-4CR and Ugi-Azide (UA), followed by a one-pot process: SN2/intramolecular alkyne-azide cycloaddition (IAAC). The sequential aligning of two powerful synthetic tools (IMCR and IAAC) has parallelly contributed to generate anchored conformation and complexity in target molecules, which are considered structural peptidomimetics of 2,5-DKP. Herein, the 1,2,3-triazole ring plays a key role in the preference for the boat conformation. Furthermore, the use of UA reaction generates scaffold diversity at the N-1 α-carbon of the pyrazinone ring, replacing a linear amide bond with a heterocyclic bioisostere such as 1,5-DS-T leading to the synthesis of novel tricyclic peptidomimetics. The DFT calculations confirmed the boat conformation of the synthesized molecules.

5.
Angew Chem Int Ed Engl ; 63(15): e202319804, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329155

RESUMEN

Ligand-exchange reactions on a mangana(II)cyclopentasilane complex that contains two THF ligands with aryl isocyanides led to the formation of manganese(0) bis(η2-disilene) complexes via a retrocyclization. In stark contrast, ligand-exchange reactions with CNtBu, an N-heterocyclic carbene, or pyridine-based ligands furnished manganese(II) complexes wherein the manganacyclopentasilane framework remained intact. The thermolysis of the obtained bis(η2-disilene) complex in the presence of mesityl isocyanide led to the formation of a cyclotetrasilane via the formal dimerization of the two η2-disilene moieties. The insertion of a mesityl isocyanide into the Mn-Siß bond results in the formation of a manganese(II) complex supported by a [SiCSi]-type tridentate ligand scaffold.

6.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256119

RESUMEN

To develop a novel 99mTc-labeled ubiquicidin 29-41 derivative for bacterial infection single-photon emission computed tomography (SPECT) imaging with improved target-to-nontarget ratio and lower nontarget organ uptake, a series of isocyanide ubiquicidin 29-41 derivatives (CNnUBI 29-41, n = 5-9) with different carbon linkers were designed, synthesized and radiolabeled with the [99mTc]Tc(I)+ core, [99mTc][Tc(I)(CO)3(H2O)3]+ core and [99mTc][Tc(V)N]2+ core. All the complexes are hydrophilic, maintain good stability and specifically bind Staphylococcus aureus in vitro. The biodistribution in mice with bacterial infection and sterile inflammation demonstrated that [99mTc]Tc-CN5UBI 29-41 was able to distinguish bacterial infection from sterile inflammation, which had an improved abscess uptake and a greater target-to-nontarget ratio. SPECT imaging study of [99mTc]Tc-CN5UBI 29-41 in bacterial infection mice showed that there was a clear accumulation in the infection site, suggesting that this radiotracer could be a potential radiotracer for bacterial infection imaging.


Asunto(s)
Proteínas Ribosómicas , Infecciones Estafilocócicas , Animales , Ratones , Distribución Tisular , Infecciones Estafilocócicas/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único , Cianuros , Inflamación/diagnóstico por imagen
7.
Molecules ; 29(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257258

RESUMEN

A new class of palladium-indenyl complexes characterized by the presence of one bulky alkyl isocyanide and one aryl phosphine serving as ancillary ligands has been prepared, presenting high yields and selectivity. All the new products were completely characterized using spectroscopic and spectrometric techniques (NMR, FT-IR, and HRMS), and, for most of them, it was also possible to define their solid-state structures via X-ray diffractometry, revealing that the indenyl fragment always binds to the metal centre with a hapticity intermediate between ƞ3 and ƞ5. A reactivity study carried out using piperidine as a nucleophilic agent proved that the indenyl moiety is the eligible site of attack rather than the isocyanide ligand or the metal centre. All complexes were tested as potential anticancer agents against three ovarian cancer cell lines (A2780, A2780cis, and OVCAR-5) and one breast cancer cell line (MDA-MB-231), displaying comparable activity with respect to cisplatin, which was used as a positive control. Moreover, the similar cytotoxicity observed towards A2780 and A2780cis cells (cisplatin-sensitive and cisplatin-resistant, respectively) suggests that our palladium derivatives presumably act with a mechanism of action different than that of the clinically approved platinum drugs. For comparison, we also synthesized Pd-ƞ3-allyl derivatives, which generally showed a slightly higher activity towards ovarian cancer cells and lower activity towards breast cancer cells with respect to their Pd-indenyl congeners.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Fosfinas , Humanos , Femenino , Cisplatino , Línea Celular Tumoral , Ligandos , Paladio , Espectroscopía Infrarroja por Transformada de Fourier , Cianuros
8.
Chemistry ; 30(5): e202303350, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37872737

RESUMEN

Three series of palladium(II) complexes supported by a phosphine-iminophosphorane ligand built upon an ortho-phenylene core were investigated to study the influence of the iminophosphorane N substituent. Cis-dichloride palladium(II) complexes 1 in which the N atom bears an isopropyl (iPr, 1 a), a phenyl (Ph, 1 b), a trimethylsilyl (TMS, 1 c) group or an H atom (1 d) were synthesized in high yield. They were characterized by NMR, IR spectroscopy, HR-mass spectrometry, elemental analysis, and X-ray diffraction. A substantial bond length difference between the Pd-Cl bonds was observed in 1. Complexes 1 a-d were converted into [Pd(LR )Cl(CNt Bu)](OTf)] 2 a-d whose isocyanide is located trans to the iminophosphorane. The corresponding dicationic complexes [Pd(LR )(CNt Bu)2 ](OTf)2 3 a-d were also synthesized, however they exhibited lower stability in solution than 2, the isopropyl derivative 3 a being the most stable of the series. Molecular modeling was performed to rationalize the regioselectivity of the substitution of the single chloride by isocyanide (from 1 to 2) and to study the electronic distribution in the complexes. In particular differences between the TMS and H containing complexes vs. the iPr and Ph ones were found. This suggests that the nature of the N substituent is far from innocent and can help tune the reactivity of iminophosphorane complexes.

9.
Chembiochem ; 25(3): e202300732, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37917130

RESUMEN

Natural products bearing isothiocyanate (ITC) groups are an important group of specialized metabolites that play various roles in health, nutrition, and ecology. Whereas ITC biosynthesis via glucosinolates in plants has been studied in detail, there is a gap in understanding the bacterial route to specialized metabolites with such reactive heterocumulene groups, as in the antifungal sinapigladioside from Burkholderia gladioli. Here we propose an alternative ITC pathway by enzymatic sulfur transfer onto isonitriles catalyzed by rhodanese-like enzymes (thiosulfate:cyanide sulfurtransferases). Mining the B. gladioli genome revealed six candidate genes (rhdA-F), which were individually expressed in E. coli. By means of a synthetic probe, the gene products were evaluated for their ability to produce the key ITC intermediate in the sinapigladioside pathway. In vitro biotransformation assays identified RhdE, a prototype single-domain rhodanese, as the most potent ITC synthase. Interestingly, while RhdE also efficiently transforms cyanide into thiocyanate, it shows high specificity for the natural pathway intermediate, indicating that the sinapigladioside pathway has recruited a ubiquitous detoxification enzyme for the formation of a bioactive specialized metabolite. These findings not only elucidate an elusive step in bacterial ITC biosynthesis but also reveal a new function of rhodanese-like enzymes in specialized metabolism.


Asunto(s)
Escherichia coli , Tiosulfato Azufretransferasa , Tiosulfato Azufretransferasa/genética , Tiosulfato Azufretransferasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sulfurtransferasas/metabolismo , Isotiocianatos , Azufre , Cianuros/metabolismo , Catálisis
10.
Curr Org Synth ; 21(2): 140-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37005400

RESUMEN

BACKGROUND: Isocyanide is an intriguing one-carbon synthon that is frequently employed in a variety of carbon-carbon and carbon-heteroatom bond-forming reactions. Isocyanide-based multicomponent reactions (IMCRs) are effective synthetic tools in organic synthesis for the preparation of complex heterocyclic molecules. The IMCRs in water have become an attractive research direction, enabling simultaneous growth of both IMCRs and green solvents towards ideal organic synthesis. OBJECTIVE: The goal of this review is to provide a general overview of IMCRs in water or biphasic aqueous systems for accessing various organic molecules, as well as an examination of their benefits and mechanistic insights. CONCLUSION: High atom economies, mild reaction conditions, high yields, and catalyst-free processes are crucial features of these IMCRs in water or biphasic aqueous systems.

11.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067492

RESUMEN

A series of platinum complexes featuring phosphine and isocyanide ligands [PtX2(PPh3)(CNCy)] (X = Cl, Br, and I) as well as their parent phosphine [PtX2(PPh3)2] and isocyanide [PtX2(CNCy)2] analogues have been prepared and evaluated as catalysts for the photocatalytic hydrosilylation of alkynes. Under violet light irradiation (λmax = 400 nm), phosphine-isocyanides complexes [PtX2(PPh3)(CNCy)] gave high yields of silylated products (product yield up to 99%, TONs up to 1.98 × 103). The blue light irradiation (λmax = 450 nm) was more suitable for the parent phosphine complexes [PtX2(PPh3)2], which showed comparable efficiency (product yield up to 99%, TON up to 1.98 × 103), while isocyanide complexes [PtX2(CNCy)2] were not active.

12.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 10): 931-935, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37817953

RESUMEN

In the title compound, [FeII(C44H24Cl4N4)(C5H9N)2] or [FeII(TClPP)(t-BuNC)2] [where TClPP and t-BuNC are 5,10,15,20-tetra-kis-(4-chloro-phen-yl)porphyrinate and tert-butyl isocyanide ligands, respectively], the metal ion lies on an inversion center and is octa-hedrally coordinated by the N atoms of the porphyrin ring in the equatorial plane and by carbon atoms of the trans t-BuNC ligands in the axial sites. The Fe-N bond length of 2.0074 (14) Šsuggests a low-spin complex (S = 0). The crystal packing of the title compound is sustained by C-H⋯Cl, C-H⋯N and C__H⋯Cg (Cg = the centroid of a pyrrole ring of the TClPP porphyrinate) inter-actions, leading to a three-dimensional network. The Hirshfeld surface (HS) analysis indicates that 61.4% of the inter-molecular inter-actions are from H⋯H contacts while other contributions are from C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N inter-actions, which comprise 21.3%, 13.3% and 3.6% of the HS, respectively.

13.
Fungal Genet Biol ; 169: 103839, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37709127

RESUMEN

Phytopathogenic Alternaria species are renown for production of toxins that contribute to virulence on host plants. Typically, these toxins belong to well-known secondary metabolite chemical classes including polyketides, non-ribosomal peptides and terpenes. However, the purported host toxin brassicicolin A produced by A. brassicicola is an isocyanide, a chemical class whose genetics and encoding gene structure is largely unknown. The chemical structure of brassicicolin A shows it to have similarity to the recently characterized fumicicolins derived from the Aspergillus fumigatus isocyanide synthase CrmA. Examination of the A. brassicicola genome identified AbcrmA, a putative homolog with 64% identity to A. fumigatus CrmA. Deletion of AbcrmA resulted in loss of production of brassicicolin A. Contrary to reports that brassicicolin A is a host-specific toxin, the ΔAbcrmA mutants were equally virulent as the wildtype on Brassica hosts. However, in line with results of A. fumigatus CrmA generated metabolites, we find that brassicicolin A increased 360-fold under copper limited conditions. Also, like A. fumigatus CrmA derived metabolites, we find brassicicolin A to be a broad-spectrum antimicrobial. We speculate that CrmA-like isocyanide synthase products provide the producing fungi a fitness advantage in copper depleted environments.


Asunto(s)
Alternaria , Antiinfecciosos , Alternaria/genética , Cianuros/metabolismo , Cobre/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Antiinfecciosos/metabolismo , Enfermedades de las Plantas/microbiología
14.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 7): 626-632, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37601576

RESUMEN

Irradiation of a toluene solution containing cyclo-penta-dienone tricarbonyl iron complexes and isocyanides with blue LEDs afforded the formation and isolation of 12 triisocyanide complexes, two of which, namely tris-(2,6-di-methyl-phenyl isocyanide)(η4-tetra-phenyl-cyclo-penatedienone)iron, [Fe(C9H9N)3(C29H20O)], and tris-(naphthalen-2-yl isocyanide)(η4-tetra-phenyl-cyclo-penatedienone)iron acetone hemisolvate, [Fe(C11H7N)3(C29H20O)]2·C3H6O, could be characterized crystallographically. The air-stable compounds were purified by column chroma-tography and were characterized by 1H NMR, 13C NMR, elemental analysis and HRMS. NMR and XRD data indicate generally more electron-rich Fe0 centers compared to the corresponding tricarbonyl compounds.

15.
Molecules ; 28(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513215

RESUMEN

α-Ketoamide moieties, as privileged units, may represent a valuable option to develop compounds with favorable biological activities, such as low toxicity, promising PK and drug-like properties. An efficient silver-catalyzed decarboxylative acylation of α-oxocarboxylic acids with isocyanides was developed to derivatize the α-ketoamide functional group via a multicomponent reaction (MCR) cascade sequence in one pot. A series of α-ketoamides was synthesized with three components of isocyanides, aromatic α-oxocarboxylic acid analogues and water in moderate yields. Based on the research, the silver-catalyzed decarboxylative acylation confirmed that an oxygen atom of the amide moiety was derived from the water and air as a sole oxidant for the whole process.

16.
Beilstein J Org Chem ; 19: 727-735, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284590

RESUMEN

Peptidomimetics with a substituted imidazo[1,2-a]pyridine fragment were synthesized by a tandem of Groebke-Blackburn-Bienaymé and Ugi reactions. The target products contain substituted imidazo[1,2-a]pyridine and peptidomimetic moieties as pharmacophores with four diversity points introduced from readily available starting materials, including scaffold diversity. A small focused compound library of 20 Ugi products was prepared and screened for antibacterial activity.

17.
Angew Chem Int Ed Engl ; 62(34): e202307352, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37319123

RESUMEN

The C-C bond formation between C1 molecules plays an important role in chemistry as manifested by the Fischer-Tropsch (FT) process. Serving as models for the FT process, we report here the reactions between a neutral AlI complex (Me NacNac)Al (1, Me NacNac=HC[(CMe)(NDipp)]2 , Dipp=2,6-diisopropylphenyl) and various isocyanides. The step-by-step coupling mechanism was studied in detail by low-temperature NMR monitoring, isotopic labeling, as well as quantum chemical calculations. Three different products were isolated in reaction of 1 with the sterically encumbered 2,6-bis(benzhydryl)-4-Me-phenyl isocyanide (BhpNC). These products substantiate carbene intermediates. The reaction between 1 and adamantyl isocyanide (AdNC) generated a trimerization product, and a corresponding carbene intermediate could be trapped in the form of a molybdenum(0) complex. Tri-, tetra-, and even pentamerization products were isolated with the sterically less congested phenyl and p-methoxyphenyl isocyanides (PhNC and PMPNC) with concurrent construction of quinoline or indole heterocycles. Overall, this study provides evidence for carbene intermediates in FT-type chemistry of aluminium(I) and isocyanides.

18.
Antibiotics (Basel) ; 12(5)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37237752

RESUMEN

Multicomponent reactions (MCR) have been used to synthesize a wide range of analogs from several classes of heterocyclic compounds, with multifaceted medicinal uses. The synthesis of highly functionalized molecules in a single pot is a unique property of MCR, allowing researchers to quickly assemble libraries of compounds of biological interest and uncover novel leads as possible therapeutic agents. Isocyanide-based multicomponent reactions have proven to be extremely effective at swiftly specifying members of compound libraries, particularly in the discovery of drugs. The understanding of structure-activity correlations that drive the development of new goods and technology requires structural variety in these libraries. In today's world, antibiotic resistance is a major ongoing problem that poses risks to public health. The implementation of isocyanide-based multicomponent reactions upholds a significant potential in this regard. By utilizing such reactions, new antimicrobial compounds can be discovered and subsequently used to fight against such concerns. This study discusses the recent developments in antimicrobial medication discovery using isocyanide-based multicomponent reactions (IMCRs). Furthermore, the article emphasizes the potential of IMCRs (Isocyanide-based multicomponent based reactions) in the near future.

19.
Mol Divers ; 27(5): 2345-2352, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36752999

RESUMEN

This paper describes the development of 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate compound as a heterocyclic enols containing a Michael acceptor so that it participates in an Ugi-type multicomponent condensation through a Smiles rearrangement in replacement of acid components. The new four-component containing 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylate, aldehyde derivatives, amine derivatives and isocyanides process leads readily and efficiently to heterocyclic enamines. This report is an outstanding strategy for the preparation of new biologically structures containing peptidic or pseudo-peptidic with quinolin-2(1H)-one scaffolds.


Asunto(s)
Aminoácidos , Ácidos Carboxílicos , Aldehídos
20.
Molecules ; 28(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36838630

RESUMEN

The Ugi four-component reaction (Ugi-4CR) undoubtedly is the most prominent multicomponent reaction (MCRs) that has sparked organic chemists' interest in the field. It has been widely used in the synthesis of diverse heterocycle molecules such as potential drugs, natural product analogs, pseudo peptides, macrocycles, and functional materials. The Ugi-4CRs involve the use of an amine, an aldehyde or ketone, an isocyanide, and a carboxylic acid to produce an α-acetamido carboxamide derivative, which has significantly advanced the field of isocyanide-based MCRs. The so-called intermediate nitrilium ion could be trapped by a nucleophile such as azide, N-hydroxyphthalimide, thiol, saccharin, phenol, water, and hydrogen sulfide instead of the original carboxylic acid to allow for a wide variety of Ugi-type reactions to occur.ß In addition to isocyanide, there are alternative reagents for the other three components: amine, isocyanide, and aldehyde or ketone. All these alternative components render the Ugi reaction an aptly diversity-oriented synthesis of a myriad of biologically active molecules and complex scaffolds. Consequently, this review will delve deeper into alternative components used in the Ugi MCRs, particularly over the past ten years.


Asunto(s)
Aminas , Péptidos , Cianuros/química , Ácidos Carboxílicos , Aldehídos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...