Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 330: 118218, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38677570

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Zanthoxylum bungeanum Maxim. (Z. bungeanum), a member of the Rutaceae family, has a rich history of traditional use in Asia for treating arthritis and toothache conditions. As characteristic chemical components, numerous kinds of alkaloids have been extracted from plants and their diverse biological activities have been reported. However, research on the isoquinoline alkaloid, a specific type of alkaloids, in Z. bungeanum was scarce. AIM OF THE STUDY: The study aimed to isolate a novel isoquinoline alkaloid from Z. bungeanum and explore its pharmacological activity in vitro and analgesic activity in vivo. MATERIALS AND METHODS: Isoquinoline alkaloid isolation and identification from Z. bungeanum were conducted using chromatographic and spectroscopic methods. The whole-cell patch-clamp technique was applied to assess its impact on neuronal excitability, and endogenous voltage-gated potassium (Kv) and sodium (Nav) currents in acutely isolated mouse small-diameter dorsal root ganglion (DRG) neurons. Its inhibitory impacts on channels were further validated with HEK293 cells stably expressing Nav1.7 and Nav1.8, and Chinese hamster ovary (CHO) cells transiently expressing Kv2.1. The formalin inflammatory pain model was utilized to evaluate the potential analgesic activity in vivo. RESULTS: A novel isoquinoline alkaloid named HJ-69 (N-13-(3-methoxyprop-1-yl)rutaecarpine) was isolated and identified from Z. bungeanum for the first time. HJ-69 significantly suppressed the firing frequency and amplitudes of action potentials in DRG neurons. Consistently, it state-dependently inhibited endogenous Nav currents of DRG neurons, with half maximal inhibitory concentration (IC50) values of 13.06 ± 2.06 µM and 30.19 ± 2.07 µM for the inactivated and resting states, respectively. HJ-69 significantly suppressed potassium currents in DRG neurons, which notably inhibited the delayed rectifier potassium (IK) currents (IC50 = 6.95 ± 1.29 µM) and slightly affected the transient outward potassium (IA) currents (IC50 = 523.50 ± 39.16 µM). Furtherly, HJ-69 exhibited similar potencies on heterologously expressed Nav1.7, Nav1.8, and Kv2.1 channels, which correspondingly represent the main components in neurons. Notably, intraperitoneal administration of 30 mg/kg and 100 mg/kg HJ-69 significantly alleviated pain behaviors in the mouse inflammatory pain model induced by formalin. CONCLUSION: The study concluded that HJ-69 is a novel and active isoquinoline alkaloid, and the inhibition of Nav and Kv channels contributes to its analgesic activity. HJ-69 may be a promising prototype for future analgesic drug discovery based on the isoquinoline alkaloid.


Asunto(s)
Analgésicos , Ganglios Espinales , Dolor , Zanthoxylum , Animales , Zanthoxylum/química , Humanos , Células HEK293 , Analgésicos/farmacología , Analgésicos/química , Analgésicos/aislamiento & purificación , Analgésicos/uso terapéutico , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ratones , Masculino , Dolor/tratamiento farmacológico , Isoquinolinas/farmacología , Isoquinolinas/aislamiento & purificación , Isoquinolinas/química , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/química , Alcaloides/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Inflamación/tratamiento farmacológico , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/aislamiento & purificación , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/química , Ratones Endogámicos C57BL , Cricetulus
2.
Poult Sci ; 103(5): 103654, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537403

RESUMEN

Extensive mechanistic evidence to support the beneficial function of dietary phytobiotic applications for broiler performance, gut function and health is highly warranted. In particular, for isoquinoline alkaloids (IQ) the underlying mechanisms related to critical gut homeostasis components such as cytoprotection and gut barrier are scarce, especially for young broilers at the starter growth stage (d1-10). The aim of this study was to investigate the effect of a standardized blend of IQs on the relative gene expression of critical biomarkers relevant for antioxidant response and barrier function along the intestine of young broilers at the end of starter growth phase. For this purpose, 182 one-day-old Ross 308 broilers were allocated in 2 treatments with 7 replicates of 13 broilers each: control diet-no other additions (NC), and control diet containing a standardized blend of IQs at 200 mg/kg of diet (M) for the starter growth period (1-10d). The results revealed that the IQs blend significantly upregulated (P < 0.05) the expression of genes related to antioxidant response in all intestinal segments. Moreover, the IQs blend enhanced (P < 0.05) gut barrier components primarily at duodenal level. In conclusion, the blend of IQs beneficially affected critical pathway components relevant for the gut antioxidant capacity and barrier along the intestine of young broilers.


Asunto(s)
Alimentación Animal , Antioxidantes , Pollos , Dieta , Suplementos Dietéticos , Isoquinolinas , Animales , Pollos/fisiología , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Antioxidantes/metabolismo , Isoquinolinas/administración & dosificación , Isoquinolinas/farmacología , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Alcaloides/administración & dosificación , Alcaloides/farmacología , Intestinos/efectos de los fármacos , Intestinos/fisiología , Distribución Aleatoria , Masculino , Expresión Génica/efectos de los fármacos
3.
Ecotoxicol Environ Saf ; 271: 115940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218103

RESUMEN

Coptis chinensis Franch is a perennial herb from the Ranunculaceae family with a long history of medicinal use. As the medicinal part, the rhizome of coptis often accumulates excessive cadmium (Cd) even at low concentrations in the soil, which not only compromises its medicinal safety but also raises concerns about adverse effects on human health. Therefore, effective strategies are needed to mitigate this accumulation and ensure its safe use in traditional medicine. This study utilized transcriptome profiling and physiological analysis to explore molecular mechanisms associated with ecological significance and the active accumulation of Cd in C. chinensis. The response to Cd in C. chinensis was assessed through RNA sequencing, Cd determination and isoquinoline alkaloid measurement using its roots, stems, and leaves. The transcriptome revealed, a total of 2667, 2998, or 2815 up-regulated deferentially expressed genes in roots, stems or leaves in response to Cd exposure. Furthermore, we identified phenylpropanoid and isoquinoline alkaloid biosynthesis as the key pathways response to Cd exposure, which suggests that C. chinensis may improve its tolerance to Cd through regulating the phenylpropanoid biosynthesis pathway. Under Cd exposure, plant-pathogen interaction in leaves was identified as the key pathway, which indicates that upregulation of genes involved in plant-pathogen interaction could enhance disease resistance in C. chinensis. WGCNA analysis identified WRKY8 (Cluster-55763.31419) and WRKY47 (Cluster-55763.221590) as potential regulators of secondary metabolic synthesis and plant-pathogen interaction pathway in C. chinensis triggered by Cd. The measurement of berberine, coptisine, palmatine, and epiberberine also demonstrated that Cd simulated the four isoquinoline alkaloids in roots. Therefore, our study not only presented a transcriptome expression profiles that revealed significant upregulation of genes involved in metal transport and detoxification pathways but also suggested a possible mechanism to cope with Cd accumulation. This knowledge provides a new insight into gene manipulation for controlling Cd accumulation, enhancing resistance and promoting synthesis of secondary metabolites with potential medicinal properties in other medicinal plant species.


Asunto(s)
Alcaloides , Cadmio , Humanos , Cadmio/toxicidad , Coptis chinensis , Resistencia a la Enfermedad , Alcaloides/análisis , Perfilación de la Expresión Génica , Transcriptoma , Isoquinolinas
4.
J Hepatocell Carcinoma ; 10: 935-948, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361906

RESUMEN

Purpose: To reveal the potential mechanism of PDA on hepatocellular carcinoma SMMC-7721 cells in vitro. Methods: The cytotoxic activity, colony formation, cell cycle distribution, apoptosis and their associated protein analysis, intracellular reactive oxygen species (ROS) and Ca2+ levels, proteins in Nrf2 and Ntoch pathways and metabolite profiles of PDA against hepatocellular carcinoma were investigated. Results: PDA with cytotoxic activity inhibited cell proliferation and migration, increased intracellular ROS, Ca2+ levels and MCUR1 protein expression in a dose-dependent manner, caused cell cycle arrest in the S phase and induced apoptosis via adjusting the levels of Bcl-2, Bax, and Caspase 3 proteins, and inhibited the activation of Notch1, Jagged, Hes1, Nrf2 and HO-1 proteins. Metabonomics data showed that PDA significantly regulated 144 metabolite levels tend to be normal level, especially carnitine derivatives, bile acid metabolites associated with hepatocellular carcinoma, and mainly enriched in ABC transporter, arginine and proline metabolism, primary bile acid biosynthesis, Notch signaling pathway, etc, and proved that PDA markedly adjusted Notch signaling pathway. Conclusion: PDA exhibited the proliferation inhibition of SMMC-7721 cells by inhibiting ROS/Nrf2/Notch signaling pathway and significantly affected the metabolic profile, suggesting PDA could be a potential therapeutic agent for patients with hepatocellular carcinoma.

5.
Trop Med Health ; 51(1): 12, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859380

RESUMEN

BACKGROUND: Current therapeutic agents, including nifurtimox and benznidazole, are not sufficiently effective in the chronic phase of Trypanosoma cruzi infection and are accompanied by various side effects. In this study, 120 kinds of extracts from medicinal herbs used for Kampo formulations and 94 kinds of compounds isolated from medicinal herbs for Kampo formulations were screened for anti-T. cruzi activity in vitro and in vivo. METHODS: As an experimental method, a recombinant protozoan cloned strain expressing luciferase, namely Luc2-Tulahuen, was used in the experiments. The in vitro anti-T. cruzi activity on epimastigote, trypomastigote, and amastigote forms was assessed by measuring luminescence intensity after treatment with the Kampo extracts or compounds. In addition, the cytotoxicity of compounds was tested using mouse and human feeder cell lines. The in vivo anti-T. cruzi activity was measured by a murine acute infection model using intraperitoneal injection of trypomastigotes followed by live bioluminescence imaging. RESULTS: As a result, three protoberberine-type alkaloids, namely coptisine chloride, dehydrocorydaline nitrate, and palmatine chloride, showed strong anti-T. cruzi activities with low cytotoxicity. The IC50 values of these compounds differed depending on the side chain, and the most effective compound, coptisine chloride, showed a significant effect in the acute infection model. CONCLUSIONS: For these reasons, coptisine chloride is a hit compound that can be a potential candidate for anti-Chagas disease drugs. In addition, it was expected that there would be room for further improvement by modifying the side chains of the basic skeleton.

6.
Front Immunol ; 14: 1335359, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38299145

RESUMEN

This study sought to explore the effects and potential mechanisms of dietary supplementation with isoquinoline alkaloids (IA) from Macleaya cordata to alleviate lipopolysaccharide (LPS)-induced intestinal epithelium injury in broilers. A total of 486 1-day-old broilers were assigned at random to a control (CON) group, LPS group, and LPS+IA group in a 21-d study. The CON and LPS groups received a basal diet, while the LPS+IA group received a basal diet supplemented with 0.6 mg/kg IA. At 17, 19, and 21 days of age, the LPS and LPS+BP groups were injected intraperitoneally with LPS, and the CON group was intraperitoneally injected equivalent amount of saline solution. The results manifested that LPS injection caused intestinal inflammation and lipid peroxidation, disrupted intestinal barrier and function, and increased the abundance of harmful microorganisms. However, dietary IA supplementation alleviated LPS-induced adverse changes in intestinal morphology, apoptosis, mucosal barrier integrity, cecum microorganisms, and homeostasis disorder by decreasing inflammatory cytokines and enhancing antioxidant-related genes expressions; inhibited LPS-induced increases in TLR4 and NF-κB expressions and decreases in Nrf2 and GPX1 genes expressions. Our findings indicated that Macleaya cordata IA addition attenuated LPS-induced intestinal epithelium injury and disorder of intestinal homeostasis by enhancing the anti-inflammatory and antioxidant capacity of broiler chickens possibly via co-regulating TLR4/MyD88/NF-κB and Nrf2 signaling pathways.


Asunto(s)
Antioxidantes , FN-kappa B , Animales , FN-kappa B/metabolismo , Antioxidantes/farmacología , Pollos , Lipopolisacáridos/farmacología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Transducción de Señal , Isoquinolinas/farmacología
7.
Nat Prod Res ; : 1-6, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377743

RESUMEN

Two new isoquinoline alkaloids, hypecocarpinine (1) and leptocaramine (2) along with five known ones including leptopidine (3), corydamine (4), protopine (5), dihydroprotopine (6) and oxohydrastinine (7), were isolated from Hypecoum leptocarpum Hook. f. et Thoms. Structures of the compounds were elucidated using spectroscopic methods, including UV, IR, HR-ESI-MS, 1 D and 2 D NMR. The cytotoxic activities of these compounds were evaluated using MTT assay. The results showed that compounds 2, 4, and 7 have moderate cytotoxicity against human lung cancer (A549) and human gastric carcinoma (MGC-803) cell lines.

8.
Arch Pharm Res ; 45(9): 631-643, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36121609

RESUMEN

(±)-Decumicorine A (1) and (±)-epi-decumicorine A (2), two pairs of enantiomeric isoquinoline alkaloids featuring a novel phenylpropanoid-conjugated protoberberine skeleton, were isolated and purified from the rhizomes of Corydalis decumbens. The separation of (±)-1 and (±)-2 was achieved by chiral HPLC to produce four optically pure enantiomers. The structures and absolute configurations of compounds (-)-1, (+)-1, (-)-2, and (+)-2 were elucidated by spectroscopic analysis, ECD calculations, and X-ray crystallographic analyses. The two racemates were generated from a Diels-Alder [4 + 2] cycloaddition between jatrorrhizine and ferulic acid in the proposed biosynthetic pathways, which were fully verified by a biomimetic synthesis. Moreover, compound (+)-1 exhibited an antiviral entry effect on SARS-CoV-2 pseudovirus by blocking spike binding to the ACE2 receptor on HEK-293T-ACE2h host cells.


Asunto(s)
Alcaloides , Tratamiento Farmacológico de COVID-19 , Corydalis , Alcaloides/química , Enzima Convertidora de Angiotensina 2 , Antivirales/farmacología , Alcaloides de Berberina , Biomimética , Corydalis/química , Humanos , Isoquinolinas , Estructura Molecular , Rizoma , SARS-CoV-2
9.
Front Pharmacol ; 13: 973587, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147356

RESUMEN

Coronavirus disease (COVID-19) has spread worldwide and its effects have been more devastating than any other infectious disease. Importantly, patients with severe COVID-19 show conspicuous increases in cytokines, including interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, IL-8, tumor necrosis factor (TNF)-α, IL-1, IL-18, and IL-17, with characteristics of the cytokine storm (CS). Although recently studied cytokine inhibitors are considered as potent and targeted approaches, once an immunological complication like CS happens, anti-viral or anti-inflammation based monotherapy alone is not enough. Interestingly, certain isoquinoline alkaloids in Coptis chinensis Franch. (CCFIAs) exerted a multitude of biological activities such as anti-inflammatory, antioxidant, antibacterial, and immunomodulatory etc, revealing a great potential for calming CS. Therefore, in this timeline review, we report and compare the effects of CCFIAs to attenuate the exacerbation of inflammatory responses by modulating signaling pathways like NF-ĸB, mitogen-activated protein kinase, JAK/STAT, and NLRP3. In addition, we also discuss the role of berberine (BBR) in two different triggers of CS, namely sepsis and viral infections, as well as its clinical applications. These evidence provide a rationale for considering CCFIAs as therapeutic agents against inflammatory CS and this suggestion requires further validation with clinical studies.

10.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2676-2680, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35718486

RESUMEN

The chemical constituents from the roots of Thalictrum cultratum and T. baicalense were investigated. By various isolation methods, such as silica gel, aluminium oxide, ODS, and Sephadex LH-20 column chromatographies, and semi-preparative HPLC, 11 simple isoquinoline alkaloids were isolated from the ethanol extract of the roots of these two plants, including a new compound, named dehydrothalflavine(1), and ten known ones(2-11): N-methylcorydaline(2), N-methylthalidaldine(3), thaliflavine(4), oxyhydrastinine(5), noroxyhydrastinine(6), dimethoxyisoquinolone(7), thalactamine(8), dehydronoroxyhydrastinine(9), 6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline(10), and isopicnarrhine(11). Their structures were elucidated on the basis of HR-ESI-MS and 1 D and 2 D NMR techniques. Compound 1 was a new isoquinoline alkaloid. Compound 11 was obtained from Tha-lictrum plant for the first time. All compounds did not show cytotoxic activities against HL-60, U937, HCT116, Caco-2, and HepG2 cancer cell lines.


Asunto(s)
Alcaloides , Thalictrum , Alcaloides/análisis , Células CACO-2 , Humanos , Isoquinolinas/farmacología , Raíces de Plantas/química , Thalictrum/química
11.
Molecules ; 27(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744831

RESUMEN

Traditionally, herbal compounds have been the focus of scientific interest for the last several centuries, and continuous research into their medicinal potential is underway. Berberine (BBR) is an isoquinoline alkaloid extracted from plants that possess a broad array of medicinal properties, including anti-diarrheal, anti-fibrotic, antidiabetic, anti-inflammatory, anti-obesity, antihyperlipidemic, antihypertensive, antiarrhythmic, antidepressant, and anxiolytic effects, and is frequently utilized as a traditional Chinese medicine. BBR promotes metabolisms of glucose and lipids by activating adenosine monophosphate-activated protein kinase, stimulating glycolysis and inhibiting functions of mitochondria; all of these ameliorate type 2 diabetes mellitus. BBR has also been shown to have benefits in congestive heart failure, hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, Alzheimer's disease, and polycystic ovary syndrome. BBR has been investigated as an interesting pharmacophore with the potential to contribute significantly to the research and development of novel therapeutic medicines for a variety of disorders. Despite its enormous therapeutic promise, the clinical application of this alkaloid was severely limited because of its unpleasant pharmacokinetic characteristics. Poor bioavailability, limited absorption, and poor water solubility are some of the obstacles that restricted its use. Nanotechnology has been suggested as a possible solution to these problems. The present review aims at recent updates on important therapeutic activities of BBR and different types of nanocarriers used for the delivery of BBR in different diseases.


Asunto(s)
Alcaloides , Berberina , Diabetes Mellitus Tipo 2 , Antiinflamatorios , Berberina/farmacocinética , Berberina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Humanos , Nanotecnología , Preparaciones Farmacéuticas
12.
Bioorg Med Chem ; 60: 116705, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35286954

RESUMEN

Isoquinoline alkaloid displays significant anti-gastric cancer effects due to its unique structure, which is attracting more and more attention for the development of anti-gastric cancer drugs. In this study, we explore the active components against gastric cancer from the Tibetan Medicine Corydalis hendersonii Hemsl, which is rich in isoquinoline alkaloids. 14 compounds including 2 previously undescribed natural products were obtained. Interestingly, an new active compound displays potent anti-gastric cancer activity. After accomplishing the total syntheses of the active compound and its derivatives, the anti-gastric cancer activity of the active compound was further investigated. In vitro experiments revealed that the active compound significantly attenuated the proliferative capacity, caused G2/M phase arrest, inhibited the cell migration and invasion, and induced cell apoptosis. Mechanistically, the active compound could increase the Bax/Bcl-2 ratio, elevate cytochrome c in the cytosol, and activate caspase-9/3, along with inactivating the upstream PI3K/Akt/mTOR signaling pathway. In addition, the active compound could also cause gastric cancer cell death by inhibiting topoisomerase I activity. More importantly, the anti-gastric cancer activity of the active compound was confirmed in MGC-803 xenograft nude mice in vivo. This work not only promotes the exploitation of Corydalis hendersonii Hemsl., but also provides some experience for discovering new entities from natural sources.


Asunto(s)
Alcaloides , Corydalis , Neoplasias Gástricas , Alcaloides/química , Alcaloides/farmacología , Alcaloides/uso terapéutico , Animales , Apoptosis , Corydalis/química , Humanos , Isoquinolinas/química , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo
13.
Mar Drugs ; 20(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35049933

RESUMEN

Puniceusines A-N (1-14), 14 new isoquinoline alkaloids, were isolated from the extracts of a deep-sea-derived fungus, Aspergillus puniceus SCSIO z021. Their structures were elucidated by spectroscopic analyses. The absolute configuration of 9 was determined by ECD calculations, and the structures of 6 and 12 were further confirmed by a single-crystal X-ray diffraction analysis. Compounds 3-5 and 8-13 unprecedentedly contained an isoquinolinyl, a polysubstituted benzyl or a pyronyl at position C-7 of isoquinoline nucleus. Compounds 3 and 4 showed selective inhibitory activity against protein tyrosine phosphatase CD45 with IC50 values of 8.4 and 5.6 µM, respectively, 4 also had a moderate cytotoxicity towards human lung adenocarcinoma cell line H1975 with an IC50 value of 11.0 µM, and 14, which contained an active center, -C=N+, exhibited antibacterial activity. An analysis of the relationship between the structures, enzyme inhibitory activity and cytotoxicity of 1-14 revealed that the substituents at C-7 of the isoquinoline nucleus could greatly affect their bioactivity.


Asunto(s)
Alcaloides/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , Aspergillus , Isoquinolinas/farmacología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Alcaloides/química , Animales , Antibacterianos/química , Antineoplásicos/química , Organismos Acuáticos , Línea Celular Tumoral/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Isoquinolinas/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
14.
Curr Pharm Biotechnol ; 23(1): 60-71, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33557735

RESUMEN

Natural products are well known for their high potency with minimum side effects. Plant extracts are the most commonly used natural products because of their ease of availability and relatively low production cost. Berberine (BBR), a phytochemical component of some Chinese medicinal herbs (most commonly Berberis vulgaris), is an isoquinoline alkaloid with several biological and pharmacological effects including antioxidant, anti-inflammatory, antitumour, antimicrobial, antidepressant, hepatoprotective, hypolipidemic, and hypoglycemic actions. Interestingly, multiple studies have shown that BBR is a potential drug candidate with a multi-spectrum therapeutic application. However, the oral delivery of BBR is challenged owing to its poor bioavailability. Therefore, its oral bioavailability needs to be enhanced before it can be used in many clinical applications. This review provides an overview of the various studies that support the broad range of pharmacological activities of BBR. Also, it includes a section to address the issues and challenges related to the drug and methods to improve the properties of BBR, such as solubility, stability and bioavailability that may be explored to help patients reap the maximum benefit from this potentially useful drug.


Asunto(s)
Berberina , Berberis , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Humanos , Extractos Vegetales
15.
Molecules ; 26(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34576974

RESUMEN

Mosquito transmitted viruses, particularly those of the genus Flavivirus, are a significant healthcare burden worldwide, especially in tropical and sub-tropical areas. However, effective medicines for these viral infections remains lacking. Berberine (BBR) is an alkaloid found in some plants used in traditional medicines in Southeast Asia and elsewhere, and BBR has been shown to possess anti-viral activities. During a screen for potential application to mosquito transmitted viruses, BBR was shown to have virucidal activity against dengue virus (DENV; IC50 42.87 µM) as well as against Zika virus (IC50 11.42 µM) and chikungunya virus (IC50 14.21 µM). BBR was shown to have cellular effects that lead to an increase in cellular DENV E protein without a concomitant effect on DENV nonstructural proteins, suggesting an effect on viral particle formation or egress. While BBR was shown to have an effect of ERK1/2 activation this did not result in defects in viral egress mechanisms. The primary effect of BBR on viral production was likely to be through BBR acting through AMPK activation and disruption of lipid metabolism. Combined these results suggest that BBR has a dual effect on DENV infection, and BBR may have the potential for development as an anti-DENV antiviral.


Asunto(s)
Berberina , Virus del Dengue , Animales , Antivirales/farmacología , Chlorocebus aethiops , Virus del Dengue/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
16.
Phytochemistry ; 185: 112696, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33581597

RESUMEN

Metabolic networks can provide insight into the biosynthesis pathways of natural products present in plant-derived medicines. Here, we primarily established a highly efficient and targeted method for the systematic screening of isoquinoline alkaloids from the Macleaya genus. A total of 392 potential alkaloids were detected, 204 of which were further identified according to their tandem mass spectrometry (MS/MS) spectra and the characteristic fragmentation patterns of references. A metabolic network of isoquinoline alkaloids from the Macleaya genus was then constructed based on the structural relationships, metabolic level differences, and the isotopically labeled [ring-13C6]-tyrosine feeding experiments. New biosynthesis pathways for well-known alkaloids (berberine, sanguinarine, and chelerythrine) in the Macleaya genus were proposed on the basis of the established metabolic network. This work marks the first comprehensive study of the metabolic network of isoquinoline alkaloids in the Macleaya genus and provides a template for constructing the metabolic networks of other plant-derived medicines.


Asunto(s)
Alcaloides , Papaveraceae , Isoquinolinas , Redes y Vías Metabólicas , Espectrometría de Masas en Tándem
17.
Front Chem ; 9: 831173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35178381

RESUMEN

Secoyanhusamine A (1), a rare rearranged seco-isoquinoline alkaloid derived from ring oxidative cleavage, was isolated from an aqueous extract of Corydalis yanhusuo tubers, together with its biosynthetic precursor dehydrocorybulbine (2). Secoyanhusamine A (1) was the first example of a highly oxidized isoquinoline inner salt resulting in a 5-(2-azanylethyl)-2-carboxylate-4-oxo-4H-pyran ring system. The biosynthetic pathway of 1 was also postulated. Secoyanhusamine A (1) exhibited potent inhibition against acetylcholinesterase (AChE) with an IC50 value of 0.81 ± 0.13 µM. Molecular simulation docking demonstrated that 1 created a strong interaction with the Asp-74 residue of AChE via attractive charge of the quaternary nitrogen.

18.
Nat Prod Res ; 35(19): 3254-3260, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31872787

RESUMEN

Two new isoquinoline alkaloids, 6 R,6aS-N-nantenine Nß-oxide (1), 6S,6aS-N-nantenine Nα-oxide (2), along with nine known alkaloids, nantenine (3), oxonantenine (4), protopine (5), nornantenine (6), N-methyl-laurotetanine (7), isocorydine (8), O-methyflavinantine (9), N-methyl-2,3,6-trimethoxymorphinan-dien-7-one Nß-oxide (10) and (+)-10-O-methylhernovine Nß-oxide (11) were isolated from the seeds of Nandina domestica. Their structures were elucidated by extensive analyses of spectroscopic data (IR, UV, HRESIMS, 1 D and 2 D NMR), ECD calculation and comparison with the related literatures. In addition, the cytotoxicity against A549 cells of these alkaloids was determined by the MTT assay.


Asunto(s)
Alcaloides , Berberidaceae , Isoquinolinas/farmacología , Células A549 , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Berberidaceae/química , Humanos , Isoquinolinas/aislamiento & purificación , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales , Semillas/química
19.
Food Res Int ; 138(Pt B): 109799, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33288181

RESUMEN

Lindera aggregata(L. aggregata) is a wild shrub growing in the forests of Southeast Asia, whose main bioactive constituents are isoquinoline alkaloids. They are widely used in food and pharmaceutical industries. The studies on the metabolites and biosynthesis pathways inL. aggregata remain poorly understood. Nine isoquinoline alkaloid compounds were identified by UPLC Triple TOF-MS/MS in this study. Except for N-methyllaurotetanine, most isoquinoline alkaloid compounds were widely distributed in various parts ofL. aggregata and accumulated preferentially in roots than in leaves. Transcriptome data showed that several isoquinoline alkaloid biosynthetic genes, such as TyrAT, PPO, TDC, and SOMT, were identified to play important roles in generating differential metabolites in roots and leaves ofL. aggregata. Concentration-dependent analgesic effects and toxic effects of them were demonstrated in zebrafish experiments, and the overall ranking was JRAL > TRAL > LAL. The results of this study would provide useful information for the synthesis mechanisms of isoquinoline alkaloids inL. aggregata, and provide valuable information for the application of traditional non-medicinal parts ofL. aggregata in food and pharmaceutical industries.


Asunto(s)
Lindera , Analgésicos/farmacología , Animales , Metaboloma , Espectrometría de Masas en Tándem , Transcriptoma , Pez Cebra/genética
20.
Fitoterapia ; 146: 104697, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32739338

RESUMEN

Fumaria species, commonly known as fumitory or earth smoke, are considered weeds in many regions. However, several Fumaria species have long been used in folk medicine, such as F. capreolata L., F. densiflora DC., F. indica (Hausskn.) Pugsley, F. officinalis L., F. parviflora Lam., and F. vaillantii Loisel. as well. The ethnobotany, phytochemistry, and pharmacology of 24 Fumaria species have been investigated. Phytochemical studies on Fumaria species revealed the presence of numerous alkaloids, flavonoids, saponins, and terpenoids. Phthalideisoquinolines (PTIs), protoberberines, and spirobenzylisoquinolines (SBIs) are the major alkaloids in the genus Fumaria. The plants biosynthesize a diverse group of biologically active isoquinoline alkaloids, and these may help to explain the use of various Fumaria species in folk medicine. Pharmacological studies revealed a broad spectrum of bioactivities such as hepatoprotective, anti-inflammatory, antimicrobial, antioxidant, and antitumor activities. We found 159 articles published from 1969-2019 by searching the keyword "Fumaria" using databases such as SciFinder, Google Scholar, and PubMed. Based on our reading of these papers, Fumaria species appear to be a source of bioactive isoquinoline alkaloids and ethnomedicines. The lack of studies on pharmacological mechanisms, pharmacokinetics, clinical efficacy, quality control, and toxicology are discussed in this review. There is great potential for broader medicinal applications of this genus.


Asunto(s)
Alcaloides/farmacología , Fumaria/química , Isoquinolinas/farmacología , Alcaloides/aislamiento & purificación , Alcaloides de Berberina , Isoquinolinas/aislamiento & purificación , Medicina Tradicional , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...