RESUMEN
Drainage canal water (DCW), a mixture of Nile water, drainage water and municipal wastewater, is largely used for irrigation in the Nile Delta. Facultative lagoons (FL) and constructed wetlands (CWs) represent interesting options for DCW treatment before its agricultural re-use, but very few studies investigated their implementation in Egypt. This work aimed at developing at demonstration scale (250 m3 d-1) a FL + CW treatment train capable to turn DCW into an effluent reusable in agriculture. Three types of hybrid CWs were tested in parallel for 530 days. The combination of FL with a cascade hybrid CW, operated at a 200 L d-1 m-2 surface loading rate, led to medium-to-high removal efficiencies (suspended solids 90%, total nitrogen 84%, phosphate 80%, COD 67%, faecal coliforms 2.2 Log) and surface removal rates (COD 47.5 t y-1 ha-1, total nitrogen 10.9 t y-1 ha-1, faecal coliforms 1.5 â 1011 MPN y-1 ha-1). The effluent, compliant with class C of EU 2020/741 regulation, is potentially reusable to irrigate numerous Egyptian crops. The results show that the combination of FLs with cascade hybrid CWs has a great potential for the treatment of DCW and low-strength municipal wastewater, with near-zero energy consumption, null consumption of chemicals and a land requirement varying between 1.1% and 1.5% of the agricultural land irrigated with the treated DCW.
RESUMEN
Cyanobacterial biodiversity and potential toxicity in coastal lagoons have barely been studied despite these transitional water systems being very important in conservation and for the preservation of economic resources. Most of these transitional systems have been affected by eutrophication, and climate change will severely affect them by promoting cyanobacteria growth, especially in Mediterranean areas. This study aims to characterize the diversity of epipelic and epiphytic cyanobacteria species in a Mediterranean coastal lagoon and their potential for toxins production (microcystins and saxitoxins). Strains were isolated and genetically identified. Toxins were extracted and quantified by LC/MS-MS. All the taxa belong to the former Oscillatoriales. The presence of Nodosilinea and Toxifilum is reported for the first time for Spanish waters, but Pseudanabaena, Phormidium, Geitlerinema and Synechococcus also formed part of benthic mats. All the strains contained Microcystin-YR (MC-YR), but saxitoxin (STX) was present only in the extracts of Nodosilinea and Pseudanabena. MC-LY, MC-LW and [D-Asp3] MC-LR were detected in the extracts of Synechococcus and MC-LF in Toxifilum, but at concentrations that did not permit quantification. Toxins production by epipelic and epiphytic strains in coastal lagoons may represent a hazard, but also an opportunity to obtain potentially interesting compounds that should be further studied.
Asunto(s)
Cambio Climático , Cianobacterias , Microcistinas , Cianobacterias/metabolismo , Microcistinas/análisis , Saxitoxina/toxicidad , Saxitoxina/análisis , Toxinas Marinas/análisis , Toxinas Marinas/toxicidad , Toxinas Bacterianas , Espectrometría de Masas en Tándem , Eutrofización , Agua de Mar/microbiología , Salinidad , EspañaRESUMEN
The increasing use of chemicals requires a better understanding of their presence and dynamics in the environment, as well as their impact on ecosystems. The aim of this study was to validate the first steps of an innovative multi-omics approach based on metabolomics and 16S metabarcoding data for analyses of the fate and impact of contaminants in Mediterranean lagoons. Semi-targeted analytical procedures for water and sediment matrices were implemented to assess chemical contamination of the lagoon: forty-six compounds were detected, 28 of which could be quantified in water (between 0.09 and 47.4 ng/L) and sediment (between 0.008 and 26.3 ng/g) samples using the UHPLC-MS/MS instrument. In addition, a non-targeted approach (UHPLC-HRMS) using four different sample preparation protocols based on solid/liquid extractions or an automated pressurized fluid extraction system (EDGE®) was carried out to determine the protocol with the best metabolome coverage, efficiency and reproducibility. Solid/liquid extraction using the solvent mixture acetonitrile/methanol (50/50) was evaluated as the best protocol. Microbial diversity in lagoon sediment was also measured after DNA extraction using five commercial extraction kits. Our study showed that the DNeasy PowerSoil Pro Qiagen kit (Promega, USA) was the most suitable for assessing microbial diversity in fresh sediment.
RESUMEN
Microplastic pollution poses an escalating concern, particularly in coastal lagoons rich in biodiversity. This study delved into the occurrence of microplastics (MPs) in Magallana gigas (formerly Crassostrea gigas) from the Orbetello and Varano coastal lagoons (Italy), also investigating the response of these filter-feeding organisms to various colors (P = pink; B = blue; W = white) of high-density polyethylene (HDPE) MP fragments. Oysters were exposed for 7 days under controlled conditions. Subsequently, the oysters underwent analysis for both MP presence and biochemical markers of oxidative stress. Diverse ingestion rates of HDPE were noted among oysters from the two lagoons, eliciting antioxidant responses and modifying baseline activity. The two-way ANOVA revealed the significant effects of treatment (control; HDPE_B; HDPE_P; HDPE_W), site, and the interaction between treatment and site on all biomarkers. Non-metric multidimensional scaling showed a divergent effect of HDPE color on biomarkers. Further investigation is warranted to elucidate the mechanisms underlying the influence of MP color, dose-dependent effects, and the long-term impacts of exposure. Comprehending these intricacies is imperative for devising effective strategies to mitigate plastic pollution and safeguard marine health.
RESUMEN
Invasive species that outcompete endemic ones and toxic harmful algae that cause algal blooms threaten marine resources like fisheries, aquaculture, and even tourism. Environmental DNA (eDNA) metabarcoding can help as a method for early alert. In this study, we have analyzed communities inhabiting six lagoons within the Gulf of Lion (northwest Mediterranean Sea) with spatial protection as RAMSAR and Natura 2000 sites. Employing the COI gene as the only metabarcode, we found 15 genera that have caused recognized algal bloom outbreaks in the studied lagoons since 2000. In addition, seven alien invasive species that can pose risks to the rich marine resources of the zone and lagoons were also found. The results found from eDNA are consistent with events of toxic algae blooms before and after the sampling moment and with reported occurrences of the invasive species in nearby Mediterranean areas. Multivariate multiple analysis showed the importance of anthropic pressure in the abundance of these nuisance species. Mitigation actions and routine eDNA metabarcoding in zones of special interest like these fragile French Mediterranean lagoons are recommended for early alert of nuisance species in order to plan timely management actions.
Asunto(s)
ADN Ambiental , Monitoreo del Ambiente , Especies Introducidas , Mar Mediterráneo , ADN Ambiental/genética , ADN Ambiental/análisis , Monitoreo del Ambiente/métodos , Código de Barras del ADN Taxonómico , Floraciones de Algas Nocivas , AnimalesRESUMEN
Plastic pollution is a global challenge that affects all marine ecosystems, and reflects all types of uses and activities of human society in these environments. In marine ecosystems, microplastics and mesoplastics interact with invertebrates and become available to higher predators, such as fish, which can ingest these contaminants. This study aimed to analyze how ecological food interactions (diet overlap and trophic niche amplitude) among fish species contribute to the ingestion of plastic particles. The gastrointestinal contents of six fish species (Atherinella brasiliensis, Eucinostomus melanopterus, Eucinostomus argenteus, Genidens genidens, Coptodon rendalli, and Geophagus brasiliensis) were analyzed to identify prey items and plastic ingestion. Based on the ontogenetic classification, A. brasiliensis, E. melanopterus, and G. genidens were divided into juveniles and adults, and the six fish species analyzed were divided into nine predator groups. Most of the plastics ingested by the fish species were blue microplastic (MP) fibers (< 0.05 mm) classified as polyester terephthalate, polyethylene, and polybutadiene. Considering all the analyzed predators, the average number and weight of plastics ingested per individual were 2.01 and 0.0005 g, respectively. We observed that predators with a high trophic overlap could present a relationship with the intake of MP fibers owing to predation on the same resources. In addition, we observed the general pattern that when a species expands its trophic diversity and niche, it can become more susceptible to plastic ingestion. For example, the species with the highest Levin niche amplitude, E. argenteus juveniles, had the highest mean number (2.9) of ingested MP fibers. Understanding the feeding ecology and interactions among species, considering how each predator uses habitats and food resources, can provide a better understanding of how plastic particle contamination occurs and which habitats are contaminated with these polluting substances.
Asunto(s)
Monitoreo del Ambiente , Peces , Cadena Alimentaria , Microplásticos , Contaminantes Químicos del Agua , Animales , Peces/fisiología , Contaminantes Químicos del Agua/análisis , Contenido Digestivo/química , Plásticos/análisis , EcosistemaRESUMEN
The primary objective of this study is to contribute to the conservation and sustainable use of seas by promoting Ocean Literacy. It investigates the impact of an educational program on Greek primary and secondary public school students' knowledge about coastal lagoons and attitudes towards marine environment conservation. An educational resource titled "Exploring the Coastal Lagoons" was developed to facilitate the non-formal educational intervention. The program involved classroom, fieldwork/outdoor and laboratory activities, focusing on enhancing understanding of coastal lagoons' abiotic and biotic characteristics and human interconnection. Results showed improved knowledge and slightly more positive attitudes after the didactic intervention. The study underlines the effectiveness of targeted educational interventions in marine sciences, suggesting that non-formal educational settings influence student outcomes more than family or informal sources. Younger students appeared more adaptable and responsive to educational stimuli. The study advocates for refined educational strategies integrating cognitive and emotional elements, emphasizing real nature experience.
Asunto(s)
Conservación de los Recursos Naturales , Estudiantes , Grecia , Estudiantes/psicología , Humanos , Masculino , Actitud , Conocimiento , Femenino , Adolescente , NiñoRESUMEN
AIM: The aim of this study was to determine the prevalence of microbial pathogens in manure of dairy lagoons in California. METHODS AND RESULTS: To determine pathogens in dairy manure stored in anaerobic lagoons of dairy farm, an extensive field study was conducted across California to sample manure from 20 dairy farms. Samples were analyzed to determine the prevalence of indicator Escherichia coli, Shiga toxin producing E. coli (STEC), Salmonella, and E. coli O157: H7. To test the E. coli, STEC, and Salmonella, we used agar culture-based method followed by polymerase chain reaction (PCR) method. In addition, a real- time PCR based method was used to determine the presence of E coli O157: H7. Study demonstrated that the prevalence of Salmonella in manure sample is lower than E. coli. The presence of Salmonella was found in 2.26% of the samples, and both the culture-based and PCR methods yielded comparable outcomes in detecting Salmonella. Moreover, â¼11.30% of the total samples out of the 177 were identified as positive for STEC by qPCR. CONCLUSION: These findings demonstrate that indicator E. coli are abundantly present in anaerobic lagoons. However, the presence of STEC, and Salmonella is substantially low.
Asunto(s)
Industria Lechera , Escherichia coli , Estiércol , Salmonella , Escherichia coli Shiga-Toxigénica , Estiércol/microbiología , Salmonella/aislamiento & purificación , Salmonella/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/genética , Animales , Prevalencia , Escherichia coli/aislamiento & purificación , Escherichia coli/genética , Bovinos , California , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Studies focusing on patterns of spatial variation in marine soft-bottom assemblages suggest that variability is mainly concentrated at small spatial scale (from tens of centimeters to few meters), but there is still a lack of knowledge about the consistency of this spatial pattern across habitats and seasons. To address this issue, we quantified the variability in the structure of macrozoobenthic assemblages and in the abundance of dominant macroinvertebrate species in the Mellah Lagoon (Algeria) at three spatial scales, i.e., Plot (meters apart), Station (10's m apart) and Site (kms apart) scale, in Ruppia maritima (Ruppia) beds and unvegetated sediments (Unvegetated), and in two dates in winter and two dates in summer 2016. Spatial variability of the most dominant bivalve Mytilaster marioni varied significantly between habitats, but consistent across the two seasons, with a more heterogeneous distribution in Ruppia than in Unvegetated at the Station scale. Furthermore, a second-order interaction among the hierarchical nature of spatial variability, season and habitat emerged for the assemblage structure. Spatial variability between habitats varied significantly in winter, with the largest variation at the Plot scale in Unvegetated and more heterogenous assemblages at the Plot and Site scales than at the Station scale in Ruppia, but did not vary in summer when most of the variance was at the Site scale. We demonstrate that the scales of influence of the processes operating in the Mellah Lagoon are contingent on the specific habitat and/or period of the year at which the study was conducted, highlighting the importance of examining all these sources of variation simultaneously to increase the accuracy of explanatory models derived from the observed patterns in sedimentary environments.
Asunto(s)
Alismatales , Biodiversidad , Animales , Estaciones del Año , Invertebrados , EcosistemaRESUMEN
Coastal lagoons are among the most productive marine ecosystems in the world. Annual primary production varies from 50 to > 500 g C m-2 year-1, being of the same order of magnitude as that of the upwelling areas. Many lagoons lie within the range of eutrophic (300-500 g C m-2 year-1) or hypereutrophic (> 500 g C m-2 year-1) conditions. The high productivity of coastal lagoons makes them subject of exploitation by many marine fishes and invertebrates, that use them as nursery areas and feeding grounds during their early life cycle phases, and most lagoons support important fisheries or maintain aquaculture exploitations. The high levels of their biological production can be explained by some of their common features as shallowness and the strong influence of terrestrial systems. Shallowness favors that the photic zone extends to the lagoon bottom and that wind can promote the resuspension of nutrients and organisms. The interaction with land also introduces significant amounts of nutrients. However, trophic variables can explain < 43 % of the fishing yields, and further than the trophic status of the lagoons, several works showed that the biological productivity of coastal lagoons can be explained by their geomorphological features such as the positive influence of shoreline development and the negative influence of depth. Using the Mar Menor lagoon as a case study, we propose that although nutrient inputs and light can be limiting factors for photosynthetic based productivity, increasing fishing yield up to a certain limit, the productivity of lagoons is mainly promoted by more general forces associated to physical and chemical gradients.
Asunto(s)
Ecosistema , Caza , Animales , Invertebrados , Acuicultura , Explotaciones PesquerasRESUMEN
The investigations on ecological processes that structure abundant and rare sub-communities are limited from the benthic compartments of tropical brackish lagoons. We examined the spatial and temporal patterns in benthic bacterial communities of a brackish lagoon; Chilika. Abundant and rare bacteria showed differences in niche specialization but exhibited similar distance-decay patterns. Abundant bacteria were mostly habitat generalists due to their broader niche breadth, environmental response thresholds, and greater functional redundancy. In contrast, rare bacteria were mostly habitat specialists due to their narrow niche breadth, lower environmental response thresholds, and functional redundancy. The spatial patterns in abundant bacteria were largely shaped by stochastic processes (88.7 %, mostly dispersal limitation). In contrast, rare bacteria were mostly structured by deterministic processes (56.4 %, mostly heterogeneous selection). These findings provided a quantitative assessment of the different forces namely spatial, environmental, and biotic that together structured bacterial communities in the benthic compartment of a marginally eutrophic lagoon.
Asunto(s)
Bacterias , EcosistemaRESUMEN
In dairy manure, a wide array of microorganisms, including many pathogens, survive and grow under suitable conditions. This microbial community offers a tremendous opportunity for studying animal health, the transport of microbes into the soil, air, and water, and consequential impacts on public health. The aim of this study was to assess the impacts of manure management practices on the microbial community of manure. The key novelty of this work is to identify the impacts of various stages of manure management on microbes living in dairy manure. In general, the majority of dairy farms in California use a flush system to manage dairy manure, which involves liquid-solid separations. To separate liquid and solid in manure, Multi-stage Alternate Dairy Effluent Management Systems (ADEMS) that use mechanical separation systems (MSS) or weeping wall separation systems (WWSS) are used. Thus, this study was conducted to understand how these manure management systems affect the microbial community. We studied the microbial communities in the WWSS and MSS separation systems, as well as in the four stages of the ADEMS. The 16S rRNA gene from the extracted genomic DNA of dairy manure was amplified using the NovoSeq Illumina next-generation sequencing platform. The sequencing data were used to perform the analysis of similarity (ANOSIM) and multi-response permutation procedure (MRRP) statistical tests, and the results showed that microbial communities among WWSS and MSS were significantly different (p < 0.05). These findings have significant practical implications for the design and implementation of manure management practices in dairy farms.
RESUMEN
Despite concerns over the ubiquity of per- and polyfluoroalkyl substances (PFAS), little is known about the diversity of input sources to surface waters and their seasonal dynamics. Frequent use of PFAS in textiles means both active and closed textile mills require evaluation as PFAS sources. We deployed passive samplers at seven sites in an urban river and estuary adjacent to textile mills in Southern Rhode Island (USA) over 12 months. We estimated monthly mass flows (g month-1) of perfluorohexanoic acid (PFHxA: 45±56), and perfluorooctanoic acid (PFOA: 30±45) from the upstream river influenced by an active mill. Average mass flows were 73-155% higher downstream, where historical textile waste lagoons contributed long chain perfluoroalkyl acids (PFAA). Mass flows of PFNA increased from 7.5 to 21 g month-1 between the upstream and downstream portions of the rivers. Distinct grouping of the two main PFAS sources, active textile mills and historical waste lagoons, were identified using principal components analysis. Neither suspect screening nor extractable organofluorine analysis revealed measurable PFAS were missing beyond the targeted compounds. This research demonstrates that both closed and active textile mills are important ongoing PFAS sources to freshwater and marine regions and should be further evaluated as a source category.
RESUMEN
The rapid spread of the protozoan Haplosporidium pinnae is having a strong negative effect on Pinna nobilis populations. A case study on a residual population in Lake Faro (Sicily, Central Mediterranean), whose long-term monitoring has revealed a dramatic decline following the 2018-2020 mass mortality event, is presented. In the framework of such monitoring, we performed tissue sampling on nine living P. nobilis, detecting the pathogen in seven of them. In contrast, other pathogens associated with P. nobilis disease in other areas, i.e., Mycobacterium spp. and Vibrio mediterranei, were not recorded. The surviving individuals (approximately twenty) showed that brackish areas only weakly mitigate the effects of H. pinnae disease and might not be resolutive. Nevertheless, the results show that Lake Faro may constitute one of the last Mediterranean P. nobilis sanctuaries.
Asunto(s)
Bivalvos , Haplosporidios , Mycobacterium , Humanos , Animales , Lagos , Bivalvos/microbiologíaRESUMEN
The water of high Andean lakes is strongly affected by anthropic activities. However, due to its complexity this ecosystem is poorly researched. This study analyzes water quality using Sentinel-2 (S2) images in high Andean lakes with apparent different eutrophication states. Spatial and temporal patterns are assessed for biophysical water variables from automatic products as obtained from versions of C2RCC (Case 2 Regional Coast Color) processor (i.e., C2RCC, C2X, and C2X-COMPLEX) to observe water characteristics and eutrophication states in detail. These results were validated using in situ water sampling. C2X-COMPLEX appeared to be an appropriate option to study bodies of water with a complex dynamic of water composition. C2RCC was adequate for lakes with high transparency, typical for lakes of highlands with excellent water quality. The Yambo lake, with chlorophyll-a concentration (CHL) values of 79.6 ± 5 mg/m3, was in the eutrophic to hyper-eutrophic state. The Colta lake, with variable values of CHL, was between the oligotrophic to mesotrophic state, and the Atillo lakes, with values of 0.16 ± 0.1 mg/m3, were oligotrophic and even ultra-oligotrophic, which remained stable in the last few years. Automatic S2 water products give information about water quality, which in turn makes it possible to analyze its causes.
RESUMEN
Marine biotoxins have posed a persistent problem along various coasts for many years. Coastal lagoons are ecosystems prone to phytoplankton blooms when altered by eutrophication. The Mar Menor is the largest hypersaline coastal lagoon in Europe. Sixteen marine toxins, including lipophilic toxins, yessotoxins, and domoic acid (DA), in seawater samples from the Mar Menor coastal lagoon were measured in one year. Only DA was detected in the range of 44.9-173.8 ng L-1. Environmental stressors and mechanisms controlling the presence of DA in the lagoon are discussed. As an enrichment and clean-up method, we employed solid phase extraction to filter and acidify 75 mL of the sample, followed by pre-concentration through a C18 SPE cartridge. The analytes were recovered in aqueous solutions and directly injected into the liquid chromatography system (LC-MS), which was equipped with a C18 column. The system operated in gradient mode, and we used tandem mass spectrometry (MS/MS) with a triple quadrupole (QqQ) in the multiple reaction monitoring mode (MRM) for analysis. The absence of matrix effects was checked and the limits of detection for most toxins were low, ranging from 0.05 to 91.2 ng L-1, depending on the compound. To validate the measurements, we performed recovery studies, falling in the range of 74-122%, with an intraday precision below 14.9% RSD.
Asunto(s)
Ecosistema , Toxinas Marinas , Espectrometría de Masas en Tándem , Cromatografía Liquida , Europa (Continente)RESUMEN
Acanthamoeba is an opportunistic free-living heterotrophic protist that is the most predominant amoeba in diverse ecological habitats. Acanthamoeba causes amoebic keratitis (AK), a painful and potentially blinding corneal infection. Major risk factors for AK have been linked to non-optimal contact lens hygiene practices and Acanthamoeba contamination of domestic and recreational water. This study investigated the incidence and seasonal variation of Acanthamoeba spp. within coastal lagoons located on the eastern coast of Australia and then examined the association between Acanthamoeba and water abiotic factors and bacterial species within the water. Water samples were collected from four intermittently closed and open lagoons (ICOLLs) (Wamberal, Terrigal, Avoca and Cockrone) every month between August 2019 to July 2020 except March and April. qPCR was used to target the Acanthamoeba 18S rRNA gene, validated by Sanger sequencing. Water abiotic factors were measured in situ using a multiprobe metre and 16S rRNA sequencing (V3-V4) was performed to characterise bacterial community composition. Network analysis was used to gauge putative associations between Acanthamoeba incidence and bacterial amplicon sequence variants (ASVs). Among 206 water samples analysed, 79 (38.3%) were Acanthamoeba positive and Acanthamoeba level was significantly higher in summer compared with winter, spring, or autumn (p = 0.008). More than 50% (23/45) water samples of Terrigal were positive for Acanthamoeba which is a highly urbanised area with extensive recreational activities while about 32% (16/49) samples were positive from Cockrone that is the least impacted lagoon by urban development. All sequenced strains belonged to the pathogenic genotype T4 clade except two which were of genotype clades T2 and T5. Water turbidity, temperature, intl1 gene concentration, and dissolved O2 were significantly associated with Acanthamoeba incidence (p < 0.05). The ASVs level of cyanobacteria, Pseudomonas spp., Candidatus spp., and marine bacteria of the Actinobacteria phylum and Acanthamoeba 18S rRNA genes were positively correlated (Pearson's r ≥ 0.14). The presence of Acanthamoeba spp. in all lagoons, except Wamberal, was associated with significant differences in the composition of bacterial communities (beta diversity). The results of this study suggest that coastal lagoons, particularly those in urbanised regions with extensive water recreational activities, may pose an elevated risk to human health due to the relatively high incidence of pathogenic Acanthamoeba in the summer. These findings underscore the importance of educating the public about the rare yet devastating impact of AK on vision and quality of life, highlighting the need for collaborative efforts between public health officials and educators to promote awareness and preventive measures, especially focusing lagoons residents and travellers.
RESUMEN
Data from a bathymetric mapping project conducted in seven Israeli coastal micro-estuaries (Lachish, Sorek, Yarkon, Alexander, Hadera, Taninim, and Kishon) is presented. The data were collected by rowing a kayak along an S-shaped track through the estuaries. An echosounder equipped with a Global Positioning System (GPS) unit were mounted on the kayak. The data preparation consisted of a) manual removal of outliers, mostly caused by instrument echo in water depths below the instrument's 0.5 m minimum; b) correction of the measured water level to sea level; and c) interpolation of the sampling points into a regular grid using a terrain-following interpolation algorithm. For each of the estuaries, the raw measurements as a text (csv) file and the interpolated data both as a text (CSV) file and a GeoTiff file were produced.
RESUMEN
The Brazilian Atlantic Forest and its associated ecosystems are highly biodiverse but still understudied, especially with respect to eukaryotic microbes. Protists represent the largest proportion of eukaryotic diversity and play important roles in nutrient cycling and maintenance of the ecosystems in which they occur. However, much of protist diversity remains unknown, particularly in the Neotropics. Understanding the taxonomic and functional diversity of these organisms is urgently needed, not only to fill this gap in our knowledge, but also to enable the development of public policies for biological conservation. This is the first study to investigate the taxonomic and trophic diversity of the major protist groups in freshwater systems and brackish coastal lagoons located in fragments of the Brazilian Atlantic Forest by DNA metabarcoding, using high-throughput sequencing of the gene coding for the V4 region of the 18S rRNA gene. We compared α and ß diversity for all protist communities and assessed the relative abundance of phototrophic, consumer, and parasitic taxa. We found that the protist communities of coastal lagoons are as diverse as the freshwater systems studied in terms of α diversity, although differed significantly in terms of taxonomic composition. Our results still showed a notable functional homogeneity between the trophic groups in freshwater environments. Beta diversity was higher among freshwater samples, suggesting a greater level of heterogeneity within this group of samples concerning the composition and abundance of OTUs.Ciliophora was the most represented group in freshwater, while Diatomea dominated diversity in coastal lagoons.
Asunto(s)
Cilióforos , Ecosistema , Brasil , Biodiversidad , Bosques , Cilióforos/genéticaRESUMEN
AIM: Assessment of the fate of microbial contamination driven from treated wastewater disposal at a highly productive zone on a South European coastal lagoon (Ria Formosa). METHODS AND RESULTS: Microbial indicators of contamination (Total coliforms, Escherichia coli, and Enterococci) were evaluated monthly during September 2018-September 2020 at three study areas (Faro, Olhão, and Tavira) under different wastewater discharge flows and hydrodynamic conditions. Additional data on E. coli monitoring in bivalves, available from the national institution responsible for their surveillance was also considered. The maximum microbial contamination was found at Faro, the highest-load and less-flushed study area, contrasting the lowest contamination at Olhão, a lower-load and strongly flushed area. The wastewater impact decreased along the spatial dispersal gradients and during high water, particularly at Faro and Tavira study areas, due to a considerable dilution effect. Microbial contamination at Olhão increased during the summer, while at the other study areas seasonal evidence was not clear. Data also indicate that E. coli in bivalves from bivalve production zones next to the three study areas reflected the differentiated impact of the wastewater treatment plants effluents on the water quality of those areas. CONCLUSIONS: Effluent loads together with local hydrodynamics, water temperature, solar radiation, precipitation, and land runoff as well as seabirds populations and environmentally adapted faecal or renaturelized bacterial communities, contributed to microbial contamination of the study areas.