Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 917
Filtrar
1.
Front Physiol ; 15: 1464678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239311

RESUMEN

Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder that causes severe cardiovascular disease, resulting in the death of patients in their teenage years. The disease pathology is caused by the accumulation of progerin, a mutated form of the nuclear lamina protein, lamin A. Progerin binds to the inner nuclear membrane, disrupting nuclear integrity, and causes severe nuclear abnormalities and changes in gene expression. This results in increased cellular inflammation, senescence, and overall dysfunction. The molecular mechanisms by which progerin induces the disease pathology are not fully understood. Progerin's detrimental impact on nuclear mechanics and the role of the nucleus as a mechanosensor suggests dysfunctional mechanotransduction could play a role in HGPS. This is especially relevant in cells exposed to dynamic, continuous mechanical stimuli, like those of the vasculature. The endothelial (ECs) and smooth muscle cells (SMCs) within arteries rely on physical forces produced by blood flow to maintain function and homeostasis. Certain regions within arteries produce disturbed flow, leading to an impaired transduction of mechanical signals, and a reduction in cellular function, which also occurs in HGPS. In this review, we discuss the mechanics of nuclear mechanotransduction, how this is disrupted in HGPS, and what effect this has on cell health and function. We also address healthy responses of ECs and SMCs to physiological mechanical stimuli and how these responses are impaired by progerin accumulation.

2.
Cell Mol Life Sci ; 81(1): 400, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264480

RESUMEN

Dendritic cells (DCs) play a crucial role in orchestrating immune responses, particularly in promoting IFNγ-producing-CD8 cytotoxic T lymphocytes (CTLs) and IFNγ-producing-CD4 T helper 1 (Th1) cells, which are essential for defending against viral infections. Additionally, the nuclear envelope protein lamin A/C has been implicated in T cell immunity. Nevertheless, the intricate interplay between innate and adaptive immunity in response to viral infections, particularly the role of lamin A/C in DC functions within this context, remains poorly understood. In this study, we demonstrate that mice lacking lamin A/C in myeloid LysM promoter-expressing cells exhibit a reduced capacity to induce Th1 and CD8 CTL responses, leading to impaired clearance of acute primary Vaccinia virus (VACV) infection. Remarkably, in vitro-generated granulocyte macrophage colony-stimulating factor bone marrow-derived DCs (GM-CSF BMDCs) show high levels of lamin A/C. Lamin A/C absence on GM-CSF BMDCs does not affect the expression of costimulatory molecules on the cell membrane but it reduces the cellular ability to form immunological synapses with naïve CD4 T cells. Lamin A/C deletion induces alterations in NFκB nuclear localization, thereby influencing NF-κB-dependent transcription. Furthermore, lamin A/C ablation modifies the gene accessibility of BMDCs, predisposing these cells to mount a less effective antiviral response upon TLR stimulation. This study highlights the critical role of DCs in interacting with CD4 T cells during antiviral responses and proposes some mechanisms through which lamin A/C may modulate DC function via gene accessibility and transcriptional regulation.


Asunto(s)
Células Dendríticas , Lamina Tipo A , Ratones Endogámicos C57BL , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Ratones , FN-kappa B/metabolismo , Virus Vaccinia/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Ratones Noqueados , Vaccinia/inmunología , Células TH1/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Sinapsis Inmunológicas/metabolismo , Sinapsis Inmunológicas/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo
3.
bioRxiv ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39282307

RESUMEN

During cancer development, the interplay between the nucleus and the cell cycle leads to a state of genomic instability, often accompanied by observable morphological aberrations. These aberrations can be controlled by tumor cells to evade cell death, either by preventing or eliminating genomic instability. In epithelial ovarian cancer (EOC), overexpression of the multifunctional protein claudin-4 is a key contributor to therapy resistance through mechanisms associated with genomic instability. However, the molecular mechanisms underlying claudin-4 overexpression in EOC remain poorly understood. Here, we altered claudin-4 expression and employed a unique claudin-4 targeting peptide (CMP) to manipulate the function of claudin-4. We found that claudin-4 facilitates genome maintenance by linking the nuclear envelope and cytoskeleton dynamics with cell cycle progression. Claudin-4 caused nuclei constriction by excluding lamin B1 and promoting perinuclear F-actin accumulation, associated with remodeling nuclear architecture, thus altering nuclear envelope dynamics. Consequently, cell cycle modifications due to claudin-4 overexpression resulted in fewer cells entering the S-phase and reduced genomic instability. Importantly, disrupting biological interactions of claudin-4 using CMP and forskolin altered oxidative stress cellular response and increased the efficacy of PARP inhibitor treatment. Our data indicate that claudin-4 protects tumor genome integrity by remodeling the crosstalk between the nuclei and the cell cycle, leading to resistance to genomic instability formation and the effects of genomic instability-inducing agents.

4.
J Mech Behav Biomed Mater ; 160: 106748, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39332142

RESUMEN

The escalating plastic pollution crisis necessitates sustainable alternatives, and one promising solution involves replacing petroleum-based polymers with fibrous proteins. This study focused on the recombinant production of intracellular fibrous proteins, specifically Caenorhabditis elegans lamin (Ce-lamin). Ce-lamins spontaneously organize within the cell nucleus, forming a network of nanofilaments. This intricate structure serves as an active layer that responds dynamically to mechanical strain and stress. Herein, we investigated the arrangement of nanofilaments into nanofibrils within wet-spun Ce-lamin fibers using alcoholic solutions as coagulants. Our goal was to understand their structural and mechanical properties, particularly in comparison with those produced with solutions containing Ca+2 ions, which typically result in the formation of nanofibrils with a collagen-like pattern. The introduction of ethanol solutions significantly altered this pattern, likely through rearrangement of the nanofilaments. Nevertheless, the resulting fibers exhibited superior toughness and strain, outperforming various synthetic fibers. The significance of the nanofilament structure in enhancing fiber toughness was emphasized through both the secondary structure transition during stretching and the influence of the Q159K point mutation. This study improves our understanding of the structural and mechanical aspects of Ce-lamin fibers, paving the way for the development of eco-friendly and high-quality fibers suitable for various applications, including medical implants and composite materials.

5.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273272

RESUMEN

Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder that causes accelerated aging, due to a pathogenic variant in the LMNA gene. This pathogenic results in the production of progerin, a defective protein that disrupts the nuclear lamina's structure. In our study, we conducted a histopathological analysis of various organs in the LmnaG609G/G609G mouse model, which is commonly used to study HGPS. The objective of this study was to show that progerin accumulation drives systemic but organ-specific tissue damage and accelerated aging phenotypes. Our findings show significant fibrosis, inflammation, and dysfunction in multiple organ systems, including the skin, cardiovascular system, muscles, lungs, liver, kidneys, spleen, thymus, and heart. Specifically, we observed severe vascular fibrosis, reduced muscle regeneration, lung tissue remodeling, depletion of fat in the liver, and disruptions in immune structures. These results underscore the systemic nature of the disease and suggest that chronic inflammation and fibrosis play crucial roles in the accelerated aging seen in HGPS. Additionally, our study highlights that each organ responds differently to the toxic effects of progerin, indicating that there are distinct mechanisms of tissue-specific damage.


Asunto(s)
Modelos Animales de Enfermedad , Fibrosis , Inflamación , Lamina Tipo A , Progeria , Animales , Progeria/genética , Progeria/patología , Progeria/metabolismo , Ratones , Inflamación/patología , Inflamación/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Especificidad de Órganos , Pulmón/patología , Pulmón/metabolismo
6.
FEBS J ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288210

RESUMEN

The nuclear lamina is a dense network of intermediate filaments beneath the inner nuclear membrane. Composed of A-type lamins (lamin A/C) and B-type lamins (lamins B1 and B2), the nuclear lamina provides a scaffold for the nuclear envelope and chromatin, thereby maintaining the structural integrity of the nucleus. A-type lamins are also found inside the nucleus where they interact with chromatin and participate in gene regulation. Viruses replicating in the cell nucleus have to overcome the nuclear envelope during the initial phase of infection and during the nuclear egress of viral progeny. Here, we focused on the role of lamins in the replication cycle of a dsDNA virus, mouse polyomavirus. We detected accumulation of the major capsid protein VP1 at the nuclear periphery, defects in nuclear lamina staining and different lamin A/C phosphorylation patterns in the late phase of mouse polyomavirus infection, but the nuclear envelope remained intact. An absence of lamin A/C did not affect the formation of replication complexes but did slow virus propagation. Based on our findings, we propose that the nuclear lamina is a scaffold for replication complex formation and that lamin A/C has a crucial role in the early phases of infection with mouse polyomavirus.

7.
Heliyon ; 10(18): e36583, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309767

RESUMEN

The interaction between lamin A and the cytoplasmic skeleton plays a key role in maintaining nuclear mechanical properties. However, the effect of destruction of the cytoplasmic skeleton on the 3D submicroscopic structure of lamin A has not been elucidated. In this study, we developed an image quantization algorithm to quantify changes in the submicroscopic structure of the intact lamin A 3D network within the nucleus. We used blebbistatin or nocodazole to disrupt the fibrillar structure of F-actin or tubulin, respectively, and then quantified changes in the lamin A super-resolution network structure, the morphological and mechanical properties of the nucleus and the spatial distribution of chromosomes. Ultimately, we found for the first time that disruption of the cytoplasmic skeleton changes the lamin A submicroscopic network and nuclear structural characteristics. In summary, this study contributes to understanding the trans-nuclear membrane interaction characteristics of lamin A and the cytoplasmic skeleton.

8.
Anim Cells Syst (Seoul) ; 28(1): 401-416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176289

RESUMEN

Lamin A/C, a core component of the nuclear lamina, forms a mesh-like structure beneath the inner nuclear membrane. While its structural role is well-studied, its involvement in DNA metabolism remains unclear. We conducted sequential protein fractionation to determine the subcellular localization of early DNA damage response (DDR) proteins. Our findings indicate that most DDR proteins, including ATM and the MRE11-RAD50-NBS1 (MRN) complex, are present in the nuclease - and high salt-resistant pellet fraction. Notably, ATM and MRN remain stably associated with these structures throughout the cell cycle, independent of ionizing radiation (IR)-induced DNA damage. Although Lamin A/C interacts with ATM and MRN, its depletion does not disrupt their association with nuclease-resistant structures. However, it impairs the IR-enhanced association of ATM with the nuclear matrix and ATM-mediated DDR signaling, as well as the interaction between ATM and MRN. This disruption impedes the recruitment of MRE11 to damaged DNA and the association of damaged DNA with the nuclear matrix. Additionally, Lamin A/C depletion results in reduced protein levels of CtIP and RAD51, which is mediated by transcriptional regulation. This, in turn, impairs the efficiency of homologous recombination (HR). Our findings indicate that Lamin A/C plays a pivotal role in DNA damage repair (DDR) by orchestrating ATM-mediated signaling, maintaining HR protein levels, and ensuring efficient DNA repair processes.

9.
EMBO J ; 43(18): 3968-3999, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103492

RESUMEN

Senescence of nondividing neurons remains an immature concept, with especially the regulatory molecular mechanisms of senescence-like phenotypes and the role of proteins associated with neurodegenerative diseases in triggering neuronal senescence remaining poorly explored. In this study, we reveal that the nucleolar polyglutamine binding protein 3 (PQBP3; also termed NOL7), which has been linked to polyQ neurodegenerative diseases, regulates senescence as a gatekeeper of cytoplasmic DNA leakage. PQBP3 directly binds PSME3 (proteasome activator complex subunit 3), a subunit of the 11S proteasome regulator complex, decreasing PSME3 interaction with Lamin B1 and thereby preventing Lamin B1 degradation and senescence. Depletion of endogenous PQBP3 causes nuclear membrane instability and release of genomic DNA from the nucleus to the cytosol. Among multiple tested polyQ proteins, ataxin-1 (ATXN1) partially sequesters PQBP3 to inclusion bodies, reducing nucleolar PQBP3 levels. Consistently, knock-in mice expressing mutant Atxn1 exhibit decreased nuclear PQBP3 and a senescence phenotype in Purkinje cells of the cerebellum. Collectively, these results suggest homologous roles of the nucleolar protein PQBP3 in cellular senescence and neurodegeneration.


Asunto(s)
Senescencia Celular , Lamina Tipo B , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Ataxina-1/metabolismo , Ataxina-1/genética , Células HEK293 , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Células de Purkinje/metabolismo
10.
Neurogenetics ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103709

RESUMEN

Congenital Muscular Dystrophies (CMD) are phenotypically and genotypically heterogenous disorders with a prevalence of 0.68 to 2.5/100,000, contributing to significant morbidity and mortality. We aimed to study the phenotype-genotype spectrum of genetically confirmed cases of CMD. This was retrospective & descriptive study done at a quaternary care referral centre in south India. Genetically confirmed cases of CMDs seen between 2010 to 2020 were recruited. Detailed clinical history, including pedigree, MRI brain/muscle, next generation sequencing results of 61 CMD cases were collected. Collagen VI-related dystrophy (COL6-RD) (36%) was the most common subtype with variants frequently seen in COL6A1 gene. Other CMDs identified were LAMA2-RD (26%), alpha-dystroglycan-RD (19%), LMNA-RD (8%), CHKB-RD (7%) and SEPN1-RD (3%). Similar to previous cohorts, overall, missense variants were common in COL-6 RD. Variants in triple helical domain (THD) of COL6-RD were seen in 11/22 patients, 5 of whom were ambulatory contrary to previous literature citing severe disease with these variants. However, our follow-up period was shorter. In the LAMA2-RD, 2/16 patients were ambulatory & all 16 carried truncating variants. Among dystroglycanopathies, FKRP-RD was the commonest. Milder phenotype of FKRP- RD was observed with variant c.1343C > T, which was also a recurrent variant in our cohort. p.Arg249Trp variant in LMNA-CMD associated with early loss of ambulation was also identified in 1/5 of our patients who expired at age 2.8 years. The current retrospective series provides detailed clinical features and mutation patterns of genetically confirmed cases of CMD from a single center in India.

11.
Eur Heart J Case Rep ; 8(8): ytae412, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39176021

RESUMEN

Background: Lamin A/C gene (LMNA) mutations cause myocardial fibrosis manifesting as arrhythmogenic, non-compaction, or dilated cardiomyopathies. Fibro-fatty replacement largely involves the conduction system and conduction disease commonly occurs prior to contractile dysfunction. Case summary: Two young, unrelated Caucasian males, aged 34 and 25, were referred to our centre for treatment of advanced heart failure. Both patients had a family history of heart failure and sudden cardiac death among their first-degree relatives and were diagnosed with Lamin A/C mutations, but they had not been screened prior to disease onset. Although the initial phenotypes were dilated cardiomyopathy and left ventricular non-compaction cardiomyopathy, both patients' disease progressed rapidly to include ventricular arrhythmias, severe global left ventricular hypokinesis, and dependence on outpatient milrinone to complete activities of daily living. Both patients received heart transplantation within 2 years of initial disease onset. The surgical pathology of the explanted hearts revealed characteristic findings of fibro-fatty degeneration of the conduction system, and using light microscopy, they were found to have nuclear membrane thinning, bubbling, and convolution throughout all areas sampled. Discussion: Lamin A/C-related cardiomyopathy is associated with sudden cardiac death early in the disease course, warranting early consideration of implantable cardioverter defibrillator implantation, and rapid progression to end-stage cardiomyopathy refractory to standard medical therapies, necessitating early referral to an advanced heart failure centre. We report a newly observed and recorded finding of morphologic nuclear alterations in late-stage disease using high-power light microscopy. These alterations underscore the pathophysiology of Lamin A/C-related cardiomyopathy and provide a basis for future research into disease-specific therapies.

12.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125589

RESUMEN

Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.


Asunto(s)
Lamina Tipo A , Lipodistrofia , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/terapia , Animales , Laminopatías/genética , Laminopatías/metabolismo , Progeria/genética , Progeria/metabolismo , Progeria/patología , Mutación , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/terapia , Metabolismo de los Lípidos/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Resistencia a la Insulina/genética , Edición Génica
13.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39204134

RESUMEN

Variants (pathogenic) of the LMNA gene are a common cause of familial dilated cardiomyopathy (DCM), which is characterised by early-onset atrioventricular (AV) block, atrial fibrillation and ventricular tachyarrhythmias (VTs), and progressive heart failure. The unstable internal nuclear lamina observed in LMNA-related DCM is a consequence of the disassembly of lamins A and C. This suggests that LMNA variants produce truncated or alternative forms of protein that alter the nuclear structure and the signalling pathway related to cardiac muscle diseases. To date, the pathogenic mechanisms and phenotypes of LMNA-related DCM have been studied using different platforms, such as patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and transgenic mice. In this review, point variants in the LMNA gene that cause autosomal dominantly inherited forms of LMNA-related DCM are summarised. In addition, potential therapeutic targets based on preclinical studies of LMNA variants using transgenic mice and human iPSC-CMs are discussed. They include mitochondria deficiency, variants in nuclear deformation, chromatin remodelling, altered platelet-derived growth factor and ERK1/2-related pathways, and abnormal calcium handling.

14.
J Cell Sci ; 137(16)2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092499

RESUMEN

Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is crucial for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient (Lmna-/-) MEFs, and all LaA constructs prevented increased nuclear envelope ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit emerin to the nuclear membrane in Lmna-/- MEFs. Our finding that tags impede some LaA functions but not others might explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.


Asunto(s)
Núcleo Celular , Lamina Tipo A , Membrana Nuclear , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Animales , Ratones , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
15.
Planta ; 260(3): 62, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066892

RESUMEN

The Arabidopsis CROWDED NUCLEI (CRWN) family proteins form a lamina-like meshwork beneath the nuclear envelope with multiple functions, including maintenance of nuclear morphology, genome organization, DNA damage repair and transcriptional regulation. CRWNs can form homodimers/heterodimers through protein‒protein interactions; however, the exact molecular mechanism of CRWN dimer formation and the diverse functions of different CRWN domains are not clear. In this report, we show that the N-terminal coiled-coil domain of CRWN1 facilitates its homodimerization and heterodimerization with the coiled-coil domains of CRWN2-CRWN4. We further demonstrated that the N-terminus but not the C-terminus of CRWN1 is sufficient to rescue the defect in nuclear morphology of the crwn1 crwn2 mutant to the WT phenotype. Moreover, both the N- and C-terminal fragments of CRWN1 are necessary for its normal function in the regulation of plant development. Collectively, our data shed light on the mechanism of plant lamina network formation and the functions of different domains in plant lamin-like proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Núcleo Celular , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , Dominios Proteicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Multimerización de Proteína , Regulación de la Expresión Génica de las Plantas , Mutación
16.
Thromb Res ; 241: 109100, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032390

RESUMEN

INTRODUCTION: Hutchinson-Gilford Progeria Syndrome (HGPS) is an ultra-rare premature aging genetic disorder caused by a point mutation in the lamin A gene, LMNA. Children with HGPS display short lifespans and typically die due to myocardial infarction or ischemic stroke, both acute cardiovascular events that are tightly linked to arterial thrombosis. Despite this fact, the effect of the classic HGPS LMNA gene mutation on arterial thrombosis remains unknown. METHODS: Heterozygous LmnaG609G knock-in (LmnaG609G/+) mice, yielding an equivalent classic mutation observed in HGPS patients (c.1824C>T; pG608G mutation in the human LMNA gene) and corresponding wild-type (WT) control littermates underwent photochemically laser-induced carotid injury to trigger thrombosis. Coagulation and fibrinolytic factors were measured. Furthermore, platelet activation and reactivity were investigated. RESULTS: LmnaG609G/+ mice displayed accelerated arterial thrombus formation, as underlined by shortened time to occlusion compared to WT littermates. Levels of factors involved in the coagulation and fibrinolytic system were comparable between groups, while LmnaG609G/+ animals showed higher plasma levels of thrombin-antithrombin complex and lower levels of antithrombin. Bone marrow analysis showed larger megakaryocytes in progeric mice. Lastly, enhanced platelet activation upon adenosine diphosphate, collagen-related peptide, and thrombin stimulation was observed in LmnaG609G/+ animals compared to the WT group, indicating a higher platelet reactivity in progeric animals. CONCLUSIONS: LMNA mutation in HGPS mice accelerates arterial thrombus formation, which is mediated, at least in part, by enhanced platelet reactivity, which consequently augments thrombin generation. Given the wide spectrum of antiplatelet agents available clinically, further investigation is warranted to consider the most suitable antiplatelet regimen for children with HGPS to mitigate disease mortality and morbidity.


Asunto(s)
Plaquetas , Progeria , Trombosis , Animales , Progeria/genética , Progeria/sangre , Progeria/complicaciones , Ratones , Trombosis/sangre , Trombosis/genética , Plaquetas/metabolismo , Activación Plaquetaria , Lamina Tipo A/genética , Modelos Animales de Enfermedad , Masculino , Humanos
17.
Dev Biol ; 515: 139-150, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39038593

RESUMEN

Stem cell loss in aging and disease is associated with nuclear deformation. Yet, how nuclear shape influences stem cell homeostasis is poorly understood. We investigated this connection using Drosophila germline stem cells, as survival of these stem cells is compromised by dysfunction of the nuclear lamina, the extensive protein network that lines the inner nuclear membrane and gives shape to the nucleus. To induce nuclear distortion in germline stem cells, we used the GAL4-UAS system to increase expression of the permanently farnesylated nuclear lamina protein, Kugelkern, a rate limiting factor for nuclear growth. We show that elevated Kugelkern levels cause severe nuclear distortion in germline stem cells, including extensive thickening and lobulation of the nuclear envelope and nuclear lamina, as well as alteration of internal nuclear compartments. Despite these changes, germline stem cell number, proliferation, and female fertility are preserved, even as females age. Collectively, these data demonstrate that disruption of nuclear architecture does not cause a failure of germline stem cell survival or homeostasis, revealing that nuclear deformation does not invariably promote stem cell loss.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Células Germinativas , Homeostasis , Lámina Nuclear , Células Madre , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Células Germinativas/metabolismo , Drosophila melanogaster/metabolismo , Células Madre/metabolismo , Lámina Nuclear/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Drosophila/metabolismo , Membrana Nuclear/metabolismo
18.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119793, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038612

RESUMEN

Here, we report that Caveolin-2 (Cav-2) is a cell cycle regulator in the mitotic clonal expansion (MCE) for adipogenesis. For the G2/M phase transition and re-entry into the G1 phase, dephosphorylated Cav-2 by protein tyrosine phosphatase 1B (PTP1B) controlled epigenetic activation of Ccnb1, Cdk1, and p21 in a lamin A/C-dependent manner, thereby ensuring the survival of preadipocytes. Cav-2, associated with lamin A/C, recruited the repressed promoters of Ccnb1 and Cdk1 for activation, and disengaged the active promoter of p21 from lamin A/C for inactivation through histone H3 modifications at the nuclear periphery. Cav-2 deficiency abrogated the histone H3 modifications and impeded the transactivation of Ccnb1, Cdk1, and p21, leading to a delay in mitotic entry, retardation of re-entry into G1 phase, and the apoptotic cell death of preadipocytes. Re-expression of Cav-2 restored the G2/M phase transition and G1 phase re-entry, preadipocyte survival, and adipogenesis in Cav-2-deficient preadipocytes. Our study uncovers a novel mechanism by which cell cycle transition and apoptotic cell death are controlled for adipocyte hyperplasia.


Asunto(s)
Adipocitos , Adipogénesis , Proteína Quinasa CDC2 , Caveolina 2 , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Mitosis , Adipogénesis/genética , Animales , Mitosis/genética , Adipocitos/metabolismo , Adipocitos/citología , Ratones , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Caveolina 2/genética , Caveolina 2/metabolismo , Supervivencia Celular/genética , Ciclina B1/metabolismo , Ciclina B1/genética , Células 3T3-L1 , Apoptosis/genética
19.
J Neuromuscul Dis ; 11(5): 969-979, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39058449

RESUMEN

Introduction: Nuclear envelopathies occur due to structural and/or functional defects in various nuclear envelope proteins such as lamin A/C and lamin related proteins. This study is the first report on the phenotype-genotype patterns of nuclear envelopathy-related muscular dystrophies from India. Methods: In this retrospective study, we have described patients with genetically confirmed muscular dystrophy associated with nuclear envelopathy. Data on clinical, laboratory findings and muscle MRI were collected. Results: Sixteen patients were included with median age at onset of 3 years (range: 1 month - 17 years). Three genes were involved: LMNA (11, 68.75%), EMD (4, 25%) and SYNE1 (1, 6.25%). The 11 patients with LMNA variants were Congenital muscular dystrophy (MDCL)=4, Limb Girdle Muscular Dystrophy (LGMD1B)=4 and Emery-Dreifuss Muscular Dystrophy (EDMD2)=3. On muscle biopsy, one patient from each laminopathy phenotype (n = 3) revealed focal perivascular inflammatory infiltrate. Other notable features were ophthalmoparesis in one and facial weakness in one. None had cardiac involvement. Patients with EDMD1 had both upper (UL) and lower limb (LL) proximo-distal weakness. Cardiac rhythm disturbances such as sick sinus syndrome and atrial arrhythmias were noted in two patients with EDMD1. Only one patient with variant c.654_658dup (EMD) lost ambulation in the 3rd decade, 18 years after disease onset. Two had finger contractures with EMD and SYNE1 variants respectively. All patients with LMNA and SYNE1 variants were ambulant at the time of evaluation. Mean duration of illness (years) was 11.6±13 (MDCL), 3.2±1.0 (EDMD2), 10.4±12.8 (LGMD1B), 11.8±8.4 (EDMD1) and 3 (EDMD4). One patient had a novel SYNE1 mutation (c.22472dupA, exon 123) and presented with UL phenotype and prominent finger and wrist contractures. Conclusion: The salient features included ophthalmoparesis and facial weakness in LMNA, prominent finger contractures in EMD and SYNE1 and upper limb phenotype with the novel pathogenic variant in SYNE1.


Asunto(s)
Lamina Tipo A , Humanos , Adolescente , Masculino , Niño , Femenino , Estudios Retrospectivos , Preescolar , India , Lactante , Lamina Tipo A/genética , Heterogeneidad Genética , Fenotipo , Distrofias Musculares/genética , Distrofia Muscular de Emery-Dreifuss/genética , Proteínas Nucleares/genética , Músculo Esquelético/patología , Músculo Esquelético/diagnóstico por imagen , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Citoesqueleto
20.
Brain ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989900

RESUMEN

Annexin A11 mutations are a rare cause of amyotrophic lateral sclerosis (ALS), wherein replicated protein variants P36R, G38R, D40G and D40Y are located in a small-alpha helix within the long, disordered N-terminus. To elucidate disease mechanisms, we characterised the phenotypes induced by a genetic loss of function (LoF) and by misexpression of G38R and D40G in vivo. Loss of Annexin A11 results in a low-penetrant behavioural phenotype and aberrant axonal morphology in zebrafish homozygous knockout larvae, which is rescued by human WT Annexin A11. Both Annexin A11 knockout/down and ALS variants trigger nuclear dysfunction characterised by Lamin B2 mis-localisation. The Lamin B2 signature also presented in anterior horn, spinal cord neurons from post-mortem ALS+/-FTD patient tissue possessing G38R and D40G protein variants. These findings suggest mutant Annexin A11 acts as a dominant negative, revealing a potential early nucleopathy highlighting nuclear envelope abnormalities preceding behavioural abnormality in animal models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...