RESUMEN
Purpose/objectives: Bridging radiation therapy (bRT) is increasingly being utilized prior to chimeric antigen receptor (CAR) T-cell therapy for large B-cell lymphoma (LBCL). It is unknown how the extent of cytoreduction during bRT impacts outcomes. Materials/methods: We retrospectively reviewed patients with LBCL treated with bRT followed by CAR T-cell therapy. Metabolic tumor volume (MTV), maximum standardized uptake value (SUVmax), SUVmean, and total lesion glycolysis (TLG) were extracted from F18-fluorodeoxyglucose positron emission tomography (PET) scans acquired prior to bRT and between completion of bRT and CAR T-cell infusion. Delta radiomics based on changes of these values were then calculated. The association between delta radiomics and oncologic outcomes [progression-free survival (PFS), freedom from distant progression (FFDP), and local control (LC)] were then examined. Results: Thirty-three sites across 23 patients with LBCL were irradiated. All metabolically active disease was treated in 10 patients. Following bRT, median overall decreases (including unirradiated sites) in MTV, SUVmax, SUVmean, and TLG were 22.2 cc (63.1%), 8.9 (36.8%), 3.4 (31.1%), and 297.9 cc (75.8%), respectively. Median decreases in MTV, SUVmax, SUVmean, and TLG in irradiated sites were 15.6 cc (91.1%), 17.0 (74.6%), 6.8 (55.3%), and 157.0 cc (94.6%), respectively. Median follow-up was 15.2 months. A decrease in SUVmax of at least 54% was associated with improved PFS (24-month PFS: 83.3% vs. 28.1%; p = 0.037) and FFDP (24-month FFDP: 100% vs. 62.4%; p < 0.001). A decrease in MTV of at least 90% was associated with improved FFDP (24-month FFDP: 100% vs. 62.4%; p < 0.001). LC was improved in sites with decreases in SUVmax of at least 71% (24-month LC: 100% vs. 72.7%; p < 0.001). Decreases of MTV by at least 90% (100% vs. 53.3%; p = 0.038) and TLG by at least 95% (100% vs. 56.3%; p = 0.067) were associated with an improved complete response rate. Conclusion: bRT led to substantial reductions in MTV, SUVmax, SUVmean, and TLG. The relative extent of these decreases correlated with improved outcomes after CAR T-cell infusion. Prospective cohorts should validate the value of interim PET following bRT for quantifying changes in disease burden and associated prognosis.
Asunto(s)
Fluorodesoxiglucosa F18 , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Tomografía de Emisión de Positrones , Humanos , Masculino , Femenino , Persona de Mediana Edad , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/diagnóstico por imagen , Linfoma de Células B Grandes Difuso/inmunología , Inmunoterapia Adoptiva/métodos , Estudios Retrospectivos , Anciano , Tomografía de Emisión de Positrones/métodos , Pronóstico , Adulto , Resultado del Tratamiento , RadiómicaRESUMEN
Historically, salvage chemoimmunotherapy with consolidative autologous hematopoietic stem cell transplantation (ASCT) was the only potentially curative therapeutic option for patients with relapsed/refractory large B-cell lymphoma (LBCL). Treatment options were few and outcomes poor for patients whose lymphoma failed to respond to salvage chemotherapy/ASCT and for patients not eligible for ASCT. The approval of chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory LBCL revolutionized the treatment landscape with unprecedented response rates and durability of responses. As a result, earlier intervention with CAR T-cell therapy has been explored, and the enthusiasm for CAR T-cell therapy has overshadowed ASCT. In this article, we will review the data available for ASCT and CAR T-cell therapy in relapsed LBCL and will examine the role for ASCT in relapsed/refractory LBCL in the era of CAR T-cell therapy.
RESUMEN
BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy has improved the historically poor outcomes for relapsed and refractory (R/R) large B-cell non-Hodgkin's lymphoma (LBCL). However, nearly 60% of patients will either fail to respond or relapse after CAR T-cell therapy. Currently, PET/CT scans are used to assess response. Cell-free circulating tumor DNA (ctDNA) is released by tumor cells into the peripheral blood and can be measured for minimal residual disease (MRD) assessment. METHODS: In this retrospective, IRB approved pilot study, archived lymphoma tissue and ctDNA from peripheral blood samples on day 0, 14, 28, 56, 90, 180, and 365 after CAR T-cell infusion from 10 patients with R/R NHL were collected for next-generation sequencing (NGS) of clonal variable-diversity-joining (VDJ) rearrangements (Adaptive biotechnologies [Seattle, WA]). Response was assessed by PET/CT on days 90 and 365 and graded according to the Lugano 2014 criteria. The primary endpoint was to determine the feasibility of detecting ctDNA to monitor disease response after anti-CD19 CAR T-cell therapy. The secondary endpoint was to compare the sensitivity/specificity of MRD assessment from ctDNA to PET/CT imaging. RESULTS: Nine out of 10 patients with a trackable sequence [median age 69 (range: 56-76); 55.6% male; median LDH 224], were included in this study. Each received tisagenlecleucel (tisa-cel) CAR T-cell therapy after median 2 prior treatments (range: 2-4). 7/9 patients had R/R diffuse large B-cell lymphoma (DLBCL), and 2/9 had transformed follicular lymphoma. At a median follow up of 12.7 months (range: 1.5-30 months), 4 patients were alive. By day 90, 3 patients (33.3%) achieved a radiographic complete response (CR) whilst 6 patients (66.6%) had progressive disease (PD). Detectable MRD on day 14 or day 28 had 83% sensitivity and 100% specificity for radiographic progression at any time before 1 year. For patients with PD, the median (interquartile range) MRD at day 0, 14, and 28 were 17.31 (1.01, 96.84), 9.12 (0.30, 18.8), and 23.77 (8.01, 137.53) copies per milliliter (mL), respectively. For patients with detectable MRD at day 28, mOS and mPFS were 6.7 and 1.3 months, respectively. CONCLUSION: Monitoring MRD was a sensitive and specific method to detect poor response to tisa-cel. Additional studies evaluating MRD more frequently and with different products are warranted.
Asunto(s)
Inmunoterapia Adoptiva , Humanos , Masculino , Inmunoterapia Adoptiva/métodos , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Linfoma de Células B/terapia , Linfoma de Células B/inmunología , Antígenos CD19/inmunología , Neoplasia Residual , Proyectos Piloto , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodosRESUMEN
We conducted a retrospective analysis of GRP94 immunohistochemical (IHC) staining, an ER stress protein, on large B-cell lymphoma (LBCL) cells, intracellular p53, and 15 factors involved in the metabolism of the CHOP regimen: AKR1C3 (HO metabolism), CYP3A4 (CHOP metabolism), and HO efflux pumps (MDR1 and MRP1). The study subjects were 42 patients with LBCL at our hospital. The IHC staining used antibodies against the 17 factors. The odds ratios by logistic regression analysis used a dichotomous variable of CR and non-CR/relapse were statistically significant for MDR1, MRP1, and AKR1C3. The overall survival (OS) after R-CHOP was compared by the log-rank test. The four groups showed that Very good (5-year OS, 100%) consisted of four patients who showed negative IHC staining for both GRP94 and CYP3A4. Very poor (1-year OS, 0%) consisted of three patients who showed positive results in IHC for both GRP94 and CYP3A4. The remaining 35 patients comprised two subgroups: Good (5-year OS 60-80%): 15 patients who showed negative staining for both MDR1 and AKR1C3 and Poor (5-year OS, 10-20%): 20 patients who showed positive staining for either MDR, AKR1C3, MRP1, or p53. The Histological Prognostic Index (HPI) (the four groups: Very poor, Poor, Good, and Very good) is a breakthrough method for stratifying patients based on the factors involved in the development of treatment resistance.
RESUMEN
BACKGROUND: Bridging therapy (BT) with systemic therapy (ST), radiation therapy (RT), or combined-modality therapy (CMT) is increasingly being utilized prior to chimeric antigen receptor (CAR) T-cell therapy for large B-cell lymphoma (LBCL). We report the long-term outcomes of the patients who received commercial CAR T-cell therapy with or without BT. METHODS: The patients with LBCL who underwent infusion of a commercial CD19 CAR T product were eligible. The radiation was stratified as comprehensive or focal. The efficacy outcomes and toxicity were analyzed. RESULTS: In total, 156 patients were included and, of them, 52.5% of the patients received BT. The median progression-free survival (PFS) was 0.65 years in the BT cohort compared to 1.45 years in the non-BT cohort. The median overall survival (OS) was 3.16 years in the BT cohort and was not reached in the non-BT cohort. The patients who received comprehensive radiation (versus focal) had significantly improved PFS and OS, achieving a 1-year PFS of 100% vs. 9.1% and 1-year OS of 100% vs. 45.5%. There was no difference in the severe toxicity between any of the nonbridging or BT cohorts. CONCLUSIONS: BT did not appear to compromise outcomes with respect to response rates, disease control, survival, and toxicity. The patients with limited disease treated with RT had favorable outcomes.
RESUMEN
INTRODUCTION: CD19-directed chimeric antigen receptor (CAR) T-cell therapy is a highly effective therapy for patients with relapsed/refractory large B-cell lymphoma (LBCL) and three CD19 CAR T-cell products (axicabtagene ciloleucel, tisagenlecleucel and lisocabtagene maraleucel) are currently approved for this indication. Despite the clinical benefit of CD19 directed CAR T-cell therapy, this treatment is associated with significant morbidity from treatment-emergent toxicities. AREAS COVERED: This Review discusses the safety considerations of axicabtagene ciloleucel in patients with LBCL. This includes discussion of the frequently observed immune-mediated toxicities of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Additionally, we review CAR T-cell therapy related cytopenias, infection, organ dysfunction and the more recently described hemophagocytic lymphohistiocytosis. EXPERT OPINION: A thorough understanding of the toxicities associated with CD19-directed CAR T-cell therapy will facilitate the optimal selection of patients for this therapy. Furthermore, knowledge of preventative measures of CAR T-cell related complications, and early recognition and appropriate intervention will lead to the safe administration of these therapies, and ultimately improved outcomes for our patients.
Asunto(s)
Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Resultado del Tratamiento , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/terapia , Antígenos CD19/efectos adversosRESUMEN
Introduction: Pediatric DLBCL is considered a homogenous group and has superior outcomes compared to adults. This study investigated the clinical pathology and immunohistochemical distinction between adult and pediatric large B-cell lymphoma. Methods: A cross-sectional study of 314 NHLs with the morphology of diffuse pattern, large B-cell, and CD20 expression was investigated. Results: Of 314 cases, there were 6 cases of pleomorphic MCL (all in adults), 19 cases of Burkitt lymphoma (all in children), and 289 cases of DLBCL. Pediatric DLBCL had many striking differences: More frequency in extra-nodal sites; a higher proportion of centroblastic morphology; a predominance of GCB-type; a high proliferation rate; an infrequency of Bcl2 protein expression, and a lack of double-expresser lymphoma. Conclusions: Our study demonstrated the significant biological differences between adult and pediatric DLBCL.
Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Adulto , Niño , Estudios Transversales , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , PronósticoRESUMEN
BACKGROUND: Several commercial and academic autologous chimeric antigen receptor T-cell (CAR-T) products targeting CD19 have been approved in Europe for relapsed/refractory B-cell acute lymphoblastic leukemia, high-grade B-cell lymphoma and mantle cell lymphoma. Products for other diseases such as multiple myeloma and follicular lymphoma are likely to be approved by the European Medicines Agency in the near future. DESIGN: The European Society for Blood and Marrow Transplantation (EBMT)-Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association collaborated to draft best practice recommendations based on the current literature to support health care professionals in delivering consistent, high-quality care in this rapidly moving field. RESULTS: Thirty-six CAR-T experts (medical, nursing, pharmacy/laboratory) assembled to draft recommendations to cover all aspects of CAR-T patient care and supply chain management, from patient selection to long-term follow-up, post-authorisation safety surveillance and regulatory issues. CONCLUSIONS: We provide practical, clinically relevant recommendations on the use of these high-cost, logistically complex therapies for haematologists/oncologists, nurses and other stakeholders including pharmacists and health sector administrators involved in the delivery of CAR-T in the clinic.