Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 20(12): e2307025, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37941475

RESUMEN

Severe nonradiative recombination and open-circuit voltage loss triggered by high-density interface defects greatly restrict the continuous improvement of Sn-based perovskite solar cells (Sn-PVSCs). Herein, a novel amphoteric semiconductor, O-pivaloylhydroxylammonium trifluoromethanesulfonate (PHAAT), is developed to manage interface defects and carrier dynamics of Sn-PVSCs. The amphiphilic ionic modulators containing multiple Lewis-base functional groups can synergistically passivate anionic and cationic defects while coordinating with uncoordinated Sn2+ to compensate for surface charge and alleviate the Sn2+ oxidation. Especially, the sulfonate anions raise the energy barrier of surface oxidation, relieve lattice distortion, and inhibit nonradiative recombination by passivating Sn-related and I-related deep-level defects. Furthermore, the strong coupling between PHAAT and Sn perovskite induces the transition of the surface electronic state from p-type to n-type, thus creating an extra back-surface field to accelerate electron extraction. Consequently, the PHAAT-treated device exhibits a champion efficiency of 13.94% with negligible hysteresis. The device without any encapsulation maintains 94.7% of its initial PCE after 2000 h of storage and 91.6% of its initial PCE after 1000 h of continuous illumination. This work provides a reliable strategy to passivate interface defects and construct p-n homojunction to realize efficient and stable Sn-based perovskite photovoltaic devices.

2.
Front Optoelectron ; 16(1): 47, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38155231

RESUMEN

Tin perovskites with exemplary optoelectronic properties offer potential application in lead-free perovskite solar cells. However, Sn vacancies and undercoordinated Sn ions on the tin perovskite surfaces can create deep-level traps, leading to non-radiative recombination and absorption of nucleophilic O2 molecules, impeding further device efficiency and stability. Here, in this study, a new additive of semicarbazide hydrochloride (SEM-HCl) with a N-C=O functional group was introduced into the perovskite precursor to fabricate high-quality films with a low concentration of deep-level trap densities. This, in turn, serves to prevent undesirable interaction between photogenerated carriers and adsorbed oxygen molecules in the device's operational environment, ultimately reducing the proliferation of superoxide entities. As the result, the SEM-HCl-derived devices show a peak efficiency of 10.9% with improved device stability. These unencapsulated devices maintain almost 100% of their initial efficiencies after working for 100 h under continuous AM1.5 illumination conditions.

3.
J Phys Condens Matter ; 35(43)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37467756

RESUMEN

Perovskite solar cells based on hybrid organic-inorganic lead halide materials have attracted immense interest in recent years due to their enhanced power conversion efficiency. However, the toxic lead element and unstable property of the material limit their applications. With first-principles calculations based on density functional theory, we studied a series of ten lead-free perovskite materials made of cesium, tin, and halogen elements, chlorine (Cl), bromine (Br), and iodine (I). We found that the relative concentrations of the halogen atoms determine the crystal structures and the relative stability of the halide perovskites. Chlorine tends to increase the structural stability, while iodine plays the role of reducing the band gaps of the mixed halide perovskites. Considering the stability and the requirement of suitable band gaps, we identify that, among the ten lead-free halide perovskites, CsSnCl2I, CsSnBr2I, CsSnClBrI, CsSnClI2, CsSnBrI2, and CsSnI3are the appropriate choices for solar cell applications.

4.
Nanomaterials (Basel) ; 13(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36770546

RESUMEN

In this twenty-first century, energy shortages have become a global issue as energy demand is growing at an astounding rate while the energy supply from fossil fuels is depleting. Thus, the urge to develop sustainable renewable energy to replace fossil fuels is significant to prevent energy shortages. Solar energy is the most promising, accessible, renewable, clean, and sustainable substitute for fossil fuels. Third-generation (3G) emerging solar cell technologies have been popular in the research field as there are many possibilities to be explored. Among the 3G solar cell technologies, perovskite solar cells (PSCs) are the most rapidly developing technology, making them suitable for generating electricity efficiently with low production costs. However, the toxicity of Pb in organic-inorganic metal halide PSCs has inherent shortcomings, which will lead to environmental contamination and public health problems. Therefore, developing a lead-free perovskite solar cell is necessary to ensure human health and a pollution-free environment. This review paper summarized numerous types of Sn-based perovskites with important achievements in experimental-based studies to date.

5.
ACS Appl Mater Interfaces ; 14(41): 46801-46808, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36215120

RESUMEN

Tin perovskites have received great concern in solar cell research owing to their favorable optoelectronic performance and environmental friendliness. However, due to their poor crystallization and easy oxidation, the performance improvement for tin-based perovskite solar cells (TPSCs) is rather challenging. Herein, reductive 3-hydroxytyramine hydrochloride (DACl) with NH2·HCl and phenol groups as co-additives with SnF2 is added into the precursor to modulate perovskite crystallization and inhibit Sn2+ oxidation for high-performance TPSCs. The Lewis base group of NH2 HCl in DACl could bind to perovskite lattices to modulate the crystallization with suppressed defects in the bulk and grain boundary, whereas reductive phenol groups effectively constrain the Sn2+ oxidation. Moreover, the undissociated DACl decreases the supersaturated concentration of tin perovskite solution and creates a pre-nucleation site for rapid nucleation to further regulate crystallization. Consequently, the DACl-derived TPSCs achieve a high power-conversion efficiency (PCE) that reaches up to 11%. More impressively, the device remains at 84% of the initial PCE after full-sun illumination in N2 over 600 h without being encapsulated. This DACl-based synergistic modulation of a lead-free perovskite demonstrates a feasible approach using one molecule with different functional groups to manipulate crystallization, Sn2+ oxidation, and defect reparation of tin perovskite films, providing a critical guideline for constructing high-quality perovskites by multifunctional additives with high photovoltaic performance.

6.
Nano Lett ; 22(17): 7112-7118, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35998901

RESUMEN

Chemically processed methylammonium tin-triiodide (CH3NH3SnI3) films include Sn in different oxidation states, leading to poor stability and low power conversion efficiency of the resulting solar cells (PSCs). The development of absorbers with Sn [2+] only has been identified as one of the critical steps to develop all Sn-based devices. Here, we report on coevaporation of CH3NH3I and SnI2 to obtain absorbers with Sn being only in the preferred oxidation state [+2] as confirmed by X-ray photoelectron spectroscopy. The Sn [4+]-free absorbers exhibit smooth highly crystalline surfaces and photoluminescence measurements corroborating their excellent optoelectronic properties. The films show very good stability under heat and light. Photoluminescence quantum yields up to 4 × 10-3 translate in a quasi Fermi-level splittings exceeding 850 meV under one sun equivalent conditions showing high promise in developing lead-free, high efficiency, and stable PSCs.

7.
Nanomaterials (Basel) ; 11(8)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34443897

RESUMEN

Next-generation renewable energy sources and perovskite solar cells have revolutionised photovoltaics research and the photovoltaic industry. However, the presence of toxic lead in perovskite solar cells hampers their commercialisation. Lead-free tin-based perovskite solar cells are a potential alternative solution to this problem; however, numerous technological issues must be addressed before the efficiency and stability of tin-based perovskite solar cells can match those of lead-based perovskite solar cells. This report summarizes the development of lead-free tin-based perovskite solar cells from their conception to the most recent improvements. Further, the methods by which the issue of the oxidation of tin perovskites has been resolved, thereby enhancing the device performance and stability, are discussed in chronological order. In addition, the potential of lead-free tin-based perovskite solar cells in energy storage systems, that is, when they are integrated with batteries, is examined. Finally, we propose a research direction for tin-based perovskite solar cells in the context of battery applications.

8.
Adv Mater ; 33(36): e2102055, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34296476

RESUMEN

As the most promising lead-free one, tin-halides based perovskite solar cells still suffer from the severe bulk-defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin-perovskite absorber films by substituting FAI with FPEABr in FASnI3 . The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin-perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well-known oxidation from Sn2+ to Sn4+ , as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high-quality tin-perovskite absorber film by constructing effective 2D/3D microstructures.

9.
Adv Mater ; 30(12): e1707001, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29405438

RESUMEN

New light is shed on the previously known perovskite material, Cs2 Au2 I6 , as a potential active material for high-efficiency thin-film Pb-free photovoltaic cells. First-principles calculations demonstrate that Cs2 Au2 I6 has an optimal band gap that is close to the Shockley-Queisser value. The band gap size is governed by intermediate band formation. Charge disproportionation on Au makes Cs2 Au2 I6 a double-perovskite material, although it is stoichiometrically a single perovskite. In contrast to most previously discussed double perovskites, Cs2 Au2 I6 has a direct-band-gap feature, and optical simulation predicts that a very thin layer of active material is sufficient to achieve a high photoconversion efficiency using a polycrystalline film layer. The already confirmed synthesizability of this material, coupled with the state-of-the-art multiscale simulations connecting from the material to the device, strongly suggests that Cs2 Au2 I6 will serve as the active material in highly efficient, nontoxic, and thin-film perovskite solar cells in the very near future.

10.
Nanoscale Res Lett ; 12(1): 367, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28535603

RESUMEN

Lead-free solution-processed solid-state photovoltaic devices based on formamidinium tin triiodide (FASnI3) and cesium tin triiodide (CsSnI3) perovskite semiconductor as the light harvester are reported. In this letter, we used solvent engineering and anti-solvent dripping method to fabricate perovskite films. SnCl2 was used as an inhibitor of Sn4+ in FASnI3 precursor solution. We obtained the best films under the function of toluene or chlorobenzene in anti-solvent dripping method and monitored the oxidation of FASnI3 films in air. We chose SnF2 as an additive of CsSnI3 precursor solution to prevent the oxidation of the Sn2+, improving the stability of CsSnI3. The experimental results we obtained can pave the way for lead-free tin-based perovskite solar cells (PSCs).

11.
Adv Mater ; 28(42): 9333-9340, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27571446

RESUMEN

Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI3 ) perovskite solar cells (PVSCs) are demonstrated. Our FASnI3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...