Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(35): 11036-11042, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39185718

RESUMEN

The phase-shifting structured light illumination technique is widely used in imaging but often relies on mechanical translation stages or spatial light modulators, leading to system instability, low displacement accuracy, and limited integration feasibility. In response to these challenges, we propose and demonstrate an approach for generating far-field phase-shifting structured light using a polarization multiplexing metasurface. By controlling the polarization states of incident and transmitted light, the metasurface creates a three-step displacement of structured light, eliminating the need to move samples or illumination sources. As a proof of concept, we experimentally demonstrate microscopic imaging using structured light illumination generated by metasurfaces, extracting high-frequency information from objects, and surpassing the diffraction limit. The proposed metasurface platform offers a promising approach for developing compact and robust phase-shifting imaging systems, with broad prospects in quantitative detection, machine vision, and beyond.

2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928420

RESUMEN

Self-powered wearable pressure sensors based on flexible electronics have emerged as a new trend due to the increasing demand for intelligent and portable devices. Improvements in pressure-sensing performance, including in the output voltage, sensitivity and response time, can greatly expand their related applications; however, this remains challenging. Here, we report on a highly sensitive piezoelectric sensor with novel light-boosting pressure-sensing performance, based on a composite membrane of copper phthalocyanine (CuPC) and graphene oxide (GO) (CuPC@GO). Under light illumination, the CuPC@GO piezoelectric sensor demonstrates a remarkable increase in output voltage (381.17 mV, 50 kPa) and sensitivity (116.80 mV/kPa, <5 kPa), which are approximately twice and three times of that the sensor without light illumination, respectively. Furthermore, light exposure significantly improves the response speed of the sensor with a response time of 38.04 µs and recovery time of 58.48 µs, while maintaining excellent mechanical stability even after 2000 cycles. Density functional theory calculations reveal that increased electron transfer from graphene to CuPC can occur when the CuPC is in the excited state, which indicates that the light illumination promotes the electron excitation of CuPC, and thus brings about the high polarization of the sensor. Importantly, these sensors exhibit universal spatial non-contact adjustability, highlighting their versatility and applicability in various settings.


Asunto(s)
Grafito , Indoles , Luz , Compuestos Organometálicos , Grafito/química , Indoles/química , Compuestos Organometálicos/química , Dispositivos Electrónicos Vestibles
3.
J Hazard Mater ; 476: 134932, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38936189

RESUMEN

Bismuth sulfide (Bi2S3) possesses unique properties that make it a promising material for effective hydrogen sulfide (H2S) detection at room temperature. However, when exposed to light, the oxygen anions (O2-(ads)) adsorbed on the surface of Bi2S3 can react with photoinduced holes, ultimately reducing the ability to respond to H2S. In this study, Bi2S3/Sb2S3 heterostructures were synthesized, producing photoinduced oxygen anions (O2-(hv)) under visible light conditions, resulting in enhanced H2S sensing capability. The Bi2S3/Sb2S3 heterostructure sensor exhibits a two-fold increase in sensing response to 500 ppb H2S under in door light conditions relative to its performance in darkness. Additionally, the sensing response of the Bi2S3/Sb2S3 sensor (Ra/Rg= 23.3) was approximately five times higher than pure Bi2S3. The improved sensing performance of the Bi2S3/Sb2S3 heterostructures is attributable to the synergistic influence of the heterostructure configuration and light modulation, which enhances the H2S sensing performance by facilitating rapid charge transfer and increasing active sites (O2-(hv)) when exposed to visible light.

4.
Electrophoresis ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738699

RESUMEN

The viability detection of microalgae with the electrokinetic (EK) technique shows vast applications in the biology and maritime industry. However, due to the slight variations in the EK properties between alive and dead microalgae cells, the accuracy and practicability of this technique is limited. In this paper, the light illumination pretreatment was conducted to modify the EK velocity of microalgae for enhancing the EK difference. The effects of the illumination time and light color on the EK velocities of Chlorella vulgaris and Isochrysis galbana were systematically measured, and the EK differences between alive and dead cells were calculated and compared. The results indicate that under light illumination, the photosynthesis of the alive cells leads to the amplification of the zeta potential, leading toward increase in the EK difference along with the illumination time. By using light with different color spectra to treat the microalgae, it was found that the EK difference changes with the light color according to the following order: white light > red light > blue light > green light. The difference in EK potential with exposure to white light treatment surpasses over 10-fold in comparison to those without such treatment. The light pretreatment technique, as illustrated in this study, offers an advantageous strategy to enhance the EK difference between living and dead cells, proving beneficial in the field of microalgae biotechnology.

5.
Sensors (Basel) ; 23(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139586

RESUMEN

Structured light illumination is widely applied for surface defect detection due to its advantages in terms of speed, precision, and non-contact capabilities. However, the high reflectivity of metal surfaces often results in the loss of point clouds, thus reducing the measurement accuracy. In this paper, we propose a novel quaternary categorization strategy to address the high-reflectivity issue. Firstly, we classify the pixels into four types according to the phase map characteristics. Secondly, we apply tailored optimization and reconstruction strategies to each type of pixel. Finally, we fuse point clouds from multi-type pixels to accomplish precise measurements of high-reflectivity surfaces. Experimental results show that our strategy effectively reduces the high-reflectivity error when measuring metal surfaces and exhibits stronger robustness against noise compared to the conventional method.

6.
Heliyon ; 9(6): e16506, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37484277

RESUMEN

Heterogeneous photocatalysis has been considered one of the most effective and efficient techniques to remove organic contaminants from wastewater. The present work was designed to examine the photocatalytic performance of metal (Cu and Ni) doped ZnO nanocomposites in methyl orange (MO) dye degradation under UV light illumination. The wurtzite hexagonal structure was observed for both undoped/doped ZnO and a crystalline size ranging between 8.84 ± 0.71 to 12.91 ± 0.84 nm by X-ray diffraction (XRD) analysis. The scanning electron microscope (SEM) and energy dispersive X-ray (EDX) revealed the irregular spherical shape with particle diameter (34.43 ± 6.03 to 26.43 ± 4.14 nm) and ensured the purity of the individual elemental composition respectively. The chemical bonds (O-H group) and binding energy (1021.8 eV) were identified by Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) results respectively. The bandgap energy was decreased from 3.44 to 3.16 eV when Ni dopant was added to the ZnO lattice. The comparative photocatalytic activity was observed in undoped and doped nanocomposites and found to be 76.31%, 81.95%, 89.30%, and 83.39% for ZnO, Cu/ZnO, Ni/ZnO, and Cu/Ni/ZnO photocatalysts, respectively, for a particular dose (0.210 g) and dye concentration (10 mg L-1) after 180 min illumination of UV light. The photocatalytic performance was increased up to 94.40% with the increase of pH (12.0) whereas reduced (35.12%) with an increase in initial dye concentration (40 mg L-1) using Ni/ZnO nanocomposite. The Ni/ZnO nanocomposite showed excellent reusability and was found 81% after four consecutive cycles. The best-fitted reaction kinetics was followed by pseudo-first-order and found reaction rate constant (0.0117 min-1) using Ni/ZnO nanocomposite. The enhanced photodegradation efficiency was observed due to decreases in bandgap energy and the crystalline size of the photocatalyst. Therefore, Ni/ZnO nanocomposite could be used as an emerging photocatalyst to degrade bio-persistent organic dye compounds from textile wastewater.

7.
Small ; 19(27): e2207820, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36974611

RESUMEN

High-entropy oxides (HEO) have recently concerned interest as the most promising electrocatalytic materials for oxygen evolution reactions (OER). In this work, a new strategy to the synthesis of HEO nanostructures on Ti3 C2 Tx MXene via rapid microwave heating and subsequent calcination at a low temperature is reported. Furthermore, the influence of HEO loading on Ti3 C2 Tx MXene is investigated toward OER performance with and without visible-light illumination in an alkaline medium. The obtained HEO/Ti3 C2 Tx -0.5 hybrid exhibited an outstanding photoelectrochemical OER ability with a low overpotential of 331 mV at 10 mA cm-2 and a small Tafel slope of 71 mV dec-1 , which exceeded that of a commercial IrO2 catalyst (340 mV at 10 mA cm-2 ). In particular, the fabricated water electrolyzer with the HEO/Ti3 C2 Tx -0.5 hybrid as anode required a less potential of 1.62 V at 10 mA cm-2 under visible-light illumination. Owing to the strong synergistic interaction between the HEO and Ti3 C2 Tx MXene, the HEO/Ti3 C2 Tx hybrid has a great electrochemical surface area, many metal active sites, high conductivity, and fast reaction kinetics, resulting in an excellent OER performance. This study offers an efficient strategy for synthesizing HEO-based materials with high OER performance to produce high-value hydrogen fuel.

8.
J Adv Res ; 44: 81-90, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725195

RESUMEN

Nanozyme was considered as one of the most promising substitutes for antibiotics, due to the selective catalysis for pathogens. In this work, a high-antibacterial activity SOD-like nanozyme based on hybrid Ag/CeO2 nanocomposite was facilely prepared by using an innovative approach of selective laser welding in liquid. This prepared nanozyme displayed a high antimicrobial effect against Staphylococcus aureus under visible light illumination, the sterilization rate as high as 82.4%, which was 2.93 and 2.99 times higher than those of pure Ag and pure CeO2, respectively. The enhanced antibacterial activity was attributed to the anchoring of Ag nanospheres on the surface of CeO2 nanosheets, which induced the reduction of CeO2 bandgap and boosted the visible light harvesting. Therefore, the charge carriers can be effectively stimulated to produce abundant reactive oxygen species on the Ag/CeO2 nanocomposite via a SOD-like route. This work demonstrated a facile strategy for the preparation of high-antibacterial activity nanozyme, giving it great potential for scalable application in the biomedical and pharmaceutical industry.


Asunto(s)
Rayos Láser , Nanocompuestos , Staphylococcus aureus , Superóxido Dismutasa , Antibacterianos/síntesis química , Antibacterianos/farmacología , Luz , Superóxido Dismutasa/farmacología , Nanocompuestos/química , Compuestos de Plata
9.
Methods Mol Biol ; 2623: 73-85, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36602680

RESUMEN

Several light-inducible hetero-dimerization tools have been developed to spatiotemporally control subcellular localization and activity of target proteins or their downstream signaling. In contrast to other genetic technologies, such as CRISPR-mediated genome editing, these optogenetic tools can locally control protein localization on the second timescale. In addition, these tools can be used to understand the sufficiency of target proteins' function and manipulate downstream events. In this chapter, I will present methods for locally activating cytoplasmic dynein at the mitotic cell cortex in human cells, with a focus on how to generate knock-in cell lines and set up a microscope system.


Asunto(s)
Dineínas , Optogenética , Humanos , Dineínas/genética , Dineínas/metabolismo , Optogenética/métodos , Luz , Edición Génica , Citoplasma/metabolismo
10.
Nanomaterials (Basel) ; 13(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36678012

RESUMEN

The development of digital technology has made our lives more advanced as a society familiar with the Internet of Things (IoT). Solar cells are among the most promising candidates for power supply in IoT sensors. Perovskite photovoltaics (PPVs), which have already attained 25% and 40% power conversion efficiencies for outdoor and indoor light, respectively, are the best candidates for self-powered IoT system integration. In this review, we discuss recent research progress on PPVs under indoor light conditions, with a focus on device engineering to achieve high-performance indoor PPVs (Id-PPVs), including bandgap optimization and defect management. Finally, we discuss the challenges of Id-PPVs development and its interpretation as a potential research direction in the field.

11.
Microbiol Immunol ; 67(4): 204-209, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36609846

RESUMEN

Bovine parainfluenza virus type 3 (BPIV3) is a promising vaccine vector against various respiratory virus infections, including the human PIV3, respiratory syncytial virus, and severe acute respiratory syndrome-coronavirus 2 infections. In this study, we combined the Magnet system and reverse genetic approach to generate photocontrollable BPIV3. An optically controllable Magnet gene was inserted into the H2 region of the BPIV3 large protein gene, which encodes an RNA-dependent RNA polymerase. The generated photocontrollable BPIV3 grew in specific regions of the cell sheet only when illuminated with blue light, suggesting that spatiotemporal control can aid in safe clinical applications of BPIV3.


Asunto(s)
COVID-19 , Virus Sincitial Respiratorio Humano , Animales , Bovinos , Humanos , Virus de la Parainfluenza 3 Humana/genética , Línea Celular , Replicación Viral , Virus de la Parainfluenza 3 Bovina/genética
12.
Adv Mater ; 35(12): e2211612, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36626850

RESUMEN

Light control of emergent quantum phenomena is a widely used external stimulus for quantum materials. Generally, perovskite strontium ruthenate SrRuO3 has an itinerant ferromagnetism with a low-spin state. However, the phase of intermediate-spin (IS) ferromagnetic metallic state has never been seen. Here, by means of UV-light irradiation, a photocarrier-doping-induced Mott-insulator-to-metal phase transition is shown in a few atomic layers of perovskite IS ferromagnetic SrRuO3- δ . This new metastable IS metallic phase can be reversibly regulated due to the convenient photocharge transfer from SrTiO3 substrates to SrRuO3- δ ultrathin films. These dynamical mean-field theory calculations further verify such photoinduced electronic phase transformation, owing to oxygen vacancies and orbital reconstruction. The optical manipulation of charge-transfer finesse is an alternative pathway toward discovering novel metastable phases in strongly correlated systems and facilitates potential light-controlled device applications in optoelectronics and spintronics.

13.
Environ Sci Pollut Res Int ; 30(10): 28173-28191, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36401003

RESUMEN

An investigation on the reduction of Cr (VI) pollutant from tannery effluents using TiO2, SB/TiO2, and c-SB/TiO2 nano photocatalysts was presented in this study. For the preparation of Biochar-based TiO2 photocatalyst (SB/TiO2), tannery sludge was utilized as a precursor. Hydrothermal pre-treatment was adopted to prepare chemically activated SB/TiO2 and SB/TiO2 nanocomposites. The morphology, crystal structure, optical properties, and elemental composition of the prepared catalysts were analyzed by XRD, FT-IR, SEM-EDX, BET analysis, ZPC, PL, TGA, and Raman spectroscopy. The band gap analysis of Photocatalyst was measured using a DRS instrument, and band gap energy of 3.39 eV was obtained for c-SB/TiO2 photocatalyst. The developed c-SB/TiO2 catalyst exhibits a larger specific surface area of 646.85 m2/g than TiO2 and SB/TiO2 (74.58 m2/g and 573.74 m2/g), respectively. The enhanced photocatalytic activity for the pollutant removal was achieved by the photocatalyst due to their wide band gap and effective charge separation. The kinetic rate constant was achieved in the pseudo-first-order model, which fits well for the reduction of Cr (VI). Furthermore, at the optimal conditions of 10 mg/L contaminant concentration, pH 2, and 0.5 g/L catalyst dosage, 98.56% reduction was observed after 180 min of reaction. The OH acts as a major removal pathway for Cr (VI) contaminants with more than 50% reduction in COD. This study proves that c-SB/TiO2 photocatalysts can remove toxic contaminants under UV light irradiation with good recycling performance up to 5 times.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Rayos Ultravioleta , Luz , Aguas del Alcantarillado , Espectroscopía Infrarroja por Transformada de Fourier , Nanocompuestos/química , Contaminantes Ambientales/química , Catálisis
14.
EBioMedicine ; 85: 104289, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36208989

RESUMEN

BACKGROUND: Light-based therapies are promising for treating diseases including cancer, hereditary conditions, and protein-related disorders. However, systems, methods, and devices that deliver light deep inside the body are limited. This study aimed to develop an endovascular therapy-based light illumination technology (ET-BLIT), capable of providing deep light irradiation within the body. METHODS: The ET-BLIT system consists of a catheter with a single lumen as a guidewire and diffuser, with a transparent section at the distal end for thermocouple head attachment. The optical light diffuser alters the emission direction laterally, according to the optical fibre's nose-shape angle. If necessary, after delivering the catheter to the target position in the vessel, the diffuser is inserted into the catheter and placed in the transparent section in the direction of the target lesion. FINDINGS: ET-BLIT was tested in an animal model. The 690-nm near-infrared (NIR) light penetrated the walls of blood vessels to reach the liver and kidneys without causing temperature increase, vessel damage, or blood component alterations. NIR light transmittance from the diffuser to the detector within the organ or vessel was approximately 30% and 65% for the renal and hepatic arteries, respectively. INTERPRETATION: ET-BLIT can be potentially used in clinical photo-based medicine, as a far-out technology. ET-BLIT uses a familiar method that can access the whole body, as the basic procedure is comparable to that of endovascular therapy in terms of sequence and technique. Therefore, the use of the ET-BLIT system is promising for many light-based therapies that are currently in the research phase. FUNDING: Supported by Programme for Developing Next-generation Researchers (Japan Science and Technology Agency); JSPS KAKENHI (18K15923, 21K07217); JST-CREST (JPMJCR19H2); JST-FOREST-Souhatsu (JPMJFR2017); The Uehara Memorial Foundation; Yasuda Memorial Medical Foundation; Mochida Memorial Foundation for Medical and Pharmaceutical Research; Takeda Science Foundation; The Japan Health Foundation; Takahashi Industrial and Economic Research Foundation; AICHI Health Promotion Foundation; and Princess Takamatsu Cancer Research Fund.


Asunto(s)
Procedimientos Endovasculares , Iluminación , Animales , Fototerapia/métodos , Modelos Animales de Enfermedad , Tecnología
15.
Antioxidants (Basel) ; 11(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35883759

RESUMEN

The clinical potential of Ginkgo biloba extract (GBE) in the prevention and/or treatment of retinal degenerative diseases has been widely explored; however, the underlying molecular mechanism is poorly understood. Photoreceptor degeneration is the hallmark of retinal degenerative diseases and leads to vision impairment or loss. In this study, the effect of GBE against white light (WL) illumination-induced photoreceptor degeneration was investigated, as well as its underlying mechanism. To evaluate the in vitro activity of GBE, analysis of cell viability, cell apoptosis, oxidative stress, NOX (NADH oxidase) activity and mitochondrial membrane potential (MMP), as well as Western blotting and transcriptome sequencing and analysis, were conducted. To evaluate the in vivo activity of GBE, HE staining, electroretinography (ERG), Terminal-deoxynucleoitidyl transferase (TdT)-mediated nick end labeling (TUNEL) assay and immunofluorescence analysis were conducted. Our study showed that GBE treatment significantly attenuated WL illumination-induced oxidative damage in photoreceptor 661W cells-a finding that was also verified in C57BL/6J mice. Further molecular study revealed that WL illumination downregulated caveolin-1 (CAV-1) expression, interrupted CAV-1-NOX2 interaction, re-located NOX2 from the cell membrane to the cytoplasm and induced the formation of redoxosomes, which led to cell death. However, these cytotoxic events were significantly alleviated by GBE treatment. Interestingly, CAV-1 overexpression showed a consistent protective effect with GBE, while CAV-1 silencing impacted the protective effect of GBE against WL illumination-induced oxidative damage in in vitro and in vivo models. Thus, GBE was identified to prevent photoreceptor cell death due to CAV-1-dependent redoxosome activation, oxidative stress and mitochondrial dysfunction resulting from WL illumination. Overall, our study reveals the protective effect of GBE on photoreceptors against WL illumination-induced oxidative damage in in vitro and in vivo models, which effect is mediated through the modulation of CAV-1-redoxosome signaling. Our findings contribute to better understanding the therapeutic effect of GBE in preventing photoreceptor degeneration in retinal degenerative diseases, and GBE may become a novel therapeutic agent that is effective in reducing the morbidity of these diseases.

16.
Environ Sci Pollut Res Int ; 29(56): 84471-84486, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35788474

RESUMEN

Heterojunction structures have attracted considerable attention for enhancing electron migration across interfaces. In this report, ZnBi2O4-ZnS(12%) heterojunction photocatalysts was found to be capable of degrading over 94% of indigo carmine in a 15 mg/L solution within 90 min of visible light irradiation at a catalytic dose of 1.0 g/L and pH 4. Furthermore, more than 82% of the total organic carbon (TOC) was removed, confirming the almost complete mineralization of the indigo carmine by ZnBi2O4-ZnS(12%). Moreover, the photocatalyst exhibited high stability and retained its photocatalytic activity up to the 5th cycle of operation without photocorrosion. The dramatic enhancement in the visible-light photocatalytic performance of the ZnBi2O4-ZnS heterojunctions over pristine ZnBi2O4 and ZnS was due to the formation of a superior heterojunction between the n-type semiconductor, ZnS, and the p-type semiconductor, ZnBi2O4. This heterojunction facilitated the separation and transfer of the photoinduced electron at the interfaces of the two semiconductors. Furthermore, the ZnBi2O4-ZnS(12%) exhibited an inhibition zone of 15 mm against fecal Escherichia coli (ATCC 8739), with a minimum inhibitory concentration (MIC) of 150 µg/mL. These results demonstrated that the novel ZnBi2O4-ZnS p-n-type heterojunction is a promising visible-light active photo-catalyst for the degradation of organic pollutants and inhibition of fecal E. coli.


Asunto(s)
Escherichia coli , Carmin de Índigo , Luz , Antibacterianos/farmacología
17.
Biomed Eng Lett ; 12(2): 135-145, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35529341

RESUMEN

Venous thromboembolism (VTE) is a condition in which blood clots form within the deep veins of the leg or pelvis to cause deep vein thrombosis. The optimal treatment of VTE is determined by thrombus properties such as the age, size, and chemical composition of the blood clots. The thrombus properties can be readily evaluated by using photoacoustic computed tomography (PACT), a hybrid imaging modality that combines the rich contrast of optical imaging and deep penetration of ultrasound imaging. With inherent sensitivity to endogenous chromophores such as hemoglobin, multispectral PACT can provide composition information and oxygenation level in the clots. However, conventional PACT of clots relies on external light illumination, which provides limited penetration depth due to strong optical scattering of intervening tissue. In our study, this depth limitation is overcome by using intravascular light delivery with a thin optical fiber. To demonstrate in vitro blood clot characterization, clots with different acuteness and oxygenation levels were placed underneath ten-centimeter-thick chicken breast tissue and imaged using multiple wavelengths. Acoustic frequency analysis was performed on the received PA channel signals, and oxygenation level was estimated using multispectral linear spectral unmixing. The results show that, with intravascular light delivery, clot oxygenation level can be accurately measured, and the clot age can thus be estimated. In addition, we found that retracted and unretracted clots had different acoustic frequency spectrum. While unretracted clots had stronger high frequency components, retracted clots had much higher low frequency components due to densely packed red blood cells. The PACT characterization of the clots was consistent with the histology results and mechanical tests.

18.
Russ Chem Bull ; 71(2): 292-297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35474970

RESUMEN

Effects of irradiation with visible light on the process of self-assembly in an aqueous l-cysteine-silver solution (CSS) and hydrogels based on were investigated using a set of physico-chemical methods. It was found that the exposure to light of CSS and hydrogels based on l-cysteine and silver acetate colors them firstly into yellow and subsequently to brown, which is due to the plasmon resonance of free electrons at the surface of resulting silver nanoparticles (AgNPs). A mechanism involving participation of AgNPs was proposed for the self-assembly in CSS and hydrogel.

19.
Int J Med Robot ; 18(4): e2396, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35318786

RESUMEN

BACKGROUND: In a single-port robotic system where the 3D endoscope possesses two bending segments, only point light sources can be integrated at the tip due to space limitations. However, point light sources usually provide non-uniform illumination, causing the endoscopic images to appear bright in the centre and dark near the corners. METHODS: Based on the inverse square law for illuminance, an initial luminance weighting is first proposed to increase the image luminance uniformity. Then, a saturation-based model is proposed to finalise the luminance weighting to avoid overexposure and colour discrepancy, while the single-scale retinex (SSR) scheme is employed for noise control. RESULTS: Via qualitative and quantitative comparisons, the proposed method performs effectively in enhancing the luminance and uniformity of endoscopic images, in terms of both visual perception and objective assessment. CONCLUSIONS: The proposed method can effectively reduce the image degradation caused by point light sources.


Asunto(s)
Endoscopía , Aumento de la Imagen , Humanos , Aumento de la Imagen/métodos , Iluminación , Visión Ocular
20.
ACS Appl Mater Interfaces ; 13(45): 54152-54161, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34734688

RESUMEN

Tin disulfide (SnS2) has been extensively researched as a promising sensing material due to its large electronegativity, suitable band gap, earth abundance, and nontoxicity. However, the poor conductivity and slow response/recovery speed at room temperature greatly hinder its application in high-performance practical gas sensors. Herein, to promote the study of SnS2-based gas sensors, a hierarchical SnS2/TiO2 heterostructure was synthesized and used as a sensing material to detect NO2 with the help of light illumination. Through the synergistic effect of the SnS2/TiO2 heterostructure and 525 nm light activation, the NO2 sensor based on the SnS2/TiO2 heterostructure exhibited a high response factor of 526% toward 1 ppm NO2 and a short response/recovery time of 43/102 s at room temperature due to the enhanced charge transfer and increased adsorption sites, which was superior to the vast majority of other NO2 sensors. An obvious decrease in the surface-adsorbed oxygen content based on the X-ray photoelectron spectroscopy measurement further confirmed that light illumination was helpful to clear the surface of SnS2/TiO2 and thus increased active sites for NO2 sensing. In addition, a flexible SnS2/TiO2 sensor was also fabricated to confirm its potential application in portable and wearable devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...