Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Physiol ; 15: 1436441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161700

RESUMEN

Objective: The primary objective of this study was to assess the impact of high-intensity deep squat training integrated with various blood flow restriction (BFR) modalities on the activation of lower limb and core muscles. Methods: A randomized, self-controlled crossover experimental design was employed with 12 participants. The exercise protocol consisted of squat training at 75% of one-repetition maximum (1RM), performed in 3 sets of 8 repetitions with a 2-min inter-set rest period. This was conducted under four distinct BFR conditions: continuous low BFR (T1), intermittent medium BFR (T2), intermittent high BFR (T3), and a non-restricted control (C). Surface electromyography (EMG) was utilized to collect EMG signals from the target muscles during the BFR and squat training sessions. The root mean square (RMS) amplitude standard values were calculated for each squat set to quantify muscle activation levels, with these values expressed as a percentage of the maximum voluntary contraction (%MVC). Rating of Perceived Exertion was evaluated after each squat set, and leg circumference measurements were taken. Results: 1) During the first two sets of deep squats, the %MVC of the vastus lateralis and vastus medialis in all compression groups was significantly higher than that in the control group (p < 0.05). Furthermore, in the first set, the %MVC of the vastus lateralis in Group T3 was significantly higher than in Group T2 (p < 0.05). In the third set, the %MVC of the vastus medialis in Groups T1 and T3 was significantly lower than in the first two sets (p < 0.05). 2) Group T1 showed an increased activation of the biceps femoris and semitendinosus muscles in the second and third sets, with %MVC values significantly greater than in the first set (p < 0.05). Group T2 only showed an increase in biceps femoris activation in the third set (p < 0.05). Group T3 significantly increased the activation of the biceps femoris and semitendinosus muscles only in the first set (p < 0.05). 3) No significant differences were observed in the changes of rectus abdominis %MVC among the groups (p > 0.05). In the first set, Group T3's erector spinae %MVC was significantly higher than the control group's; in the second set, it was significantly higher than both Group T2 and the control group's (p < 0.05). 4) After training, a significant increase in thigh circumference was observed in all groups compared to before training (p < 0.05). 5) For RPE values, Group T2's post-squat values were significantly higher than the control group's after all three sets (p < 0.05). Group T1's RPE values were also significantly higher than the control group's after the third set (p < 0.05). Groups T1, T2, and C all had significantly higher RPE values in the second and third sets compared to the first set (p < 0.05). Conclusion: All BFR modalities significantly enhanced the activation level of the anterior thigh muscles, with the continuous low BFR mode demonstrating a more stable effect. No significant differences were found in the activation level of the rectus abdominis among the groups. However, the intermittent high BFR mode was the most effective in increasing the activation level of the erector spinae muscles. While BFR did not further augment leg circumference changes, it did elevate subjective fatigue levels. The RPE was lowest during squatting under the intermittent high BFR condition.

2.
Sensors (Basel) ; 24(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39000851

RESUMEN

This study investigates gender differences in core muscle morphology among elite alpine skiers using ultrasonography, highlighting significant disparities that could influence training and injury prevention strategies. METHODS: A cross-sectional design was employed, examining ultrasound imaging (USI) in 22 elite skiers (11 male, 11 female) to assess the thickness of the external oblique (EO), internal oblique (IO), transversus abdominis (TrAb), and rectus abdominis (RA) muscles. RESULTS: Significant differences were noted, with male skiers displaying greater muscle thickness, particularly in the right IO and RA and left IO, EO, TrAb, and RA. CONCLUSIONS: These findings suggest that male and female skiers may require different training approaches to optimize performance and reduce injury risks. This research contributes to a deeper understanding of the physical demands on elite skiers and underscores the need for gender-specific training regimens to enhance athletic outcomes and prevent injuries.


Asunto(s)
Esquí , Ultrasonografía , Humanos , Esquí/fisiología , Femenino , Masculino , Ultrasonografía/métodos , Estudios Transversales , Adulto , Adulto Joven , Factores Sexuales , Músculo Esquelético/fisiología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/anatomía & histología , Atletas , Músculos Abdominales/diagnóstico por imagen , Músculos Abdominales/fisiología , Músculos Abdominales/anatomía & histología
3.
Sensors (Basel) ; 23(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36772448

RESUMEN

Dynamic muscular workload assessments of tractor operators are rarely studied or documented, which is critical to improving their performance efficiency and safety. A study was conducted to assess and model dynamic load on muscles, physiological variations, and discomfort of the tractor operators arriving from the repeated clutch and brake operations using wearable non-invasive ergonomic transducers and data-run techniques. Nineteen licensed tractor operators operated three different tractor types of varying power ranges at three operating speeds (4-5 km/h), and on two common operating surfaces (tarmacadam and farm roads). During these operations, ergonomic transducers were utilized to capture the load on foot muscles (gastrocnemius right [GR] and soleus right [SR] for brake operation and gastrocnemius left [GL], and soleus left [SL] for clutch operation) using electromyography (EMG). Forces exerted by the feet during brake and clutch operations were measured using a custom-developed foot transducer. During the process, heart rate (HR) and oxygen consumption rates (OCR) were also measured using HR monitor and K4b2 systems, and energy expenditure rate (EER) was determined using empirical equation. Post-tractor operation cycle, an overall discomfort rating (ODR) for that operation was manually recorded on a 10-point psychophysical scale. EMG-based maximum volumetric contraction (%MVC) measurements revealed higher strain on GR (%MVC = 43%), GL (%MVC = 38%), and SR (%MVC = 41%) muscles which in normal conditions should be below 30%. The clutch and brake actuation forces were recorded in the ranges of 90-312 N and 105-332 N, respectively and were significantly affected by the operating speed, tractor type, and operating surface (p < 0.05). EERs of the operators were measured in the moderate-heavy to heavy ranges (9-24 kJ/min) during the course of trials, suggesting the need to refine existing clutch and brake system designs. Average operator ODR responses indicated 7.8% operations in light, 48.5% in light-moderate, 25.2% in moderate, 10.7% in moderate-high, and 4.9% operations in high discomfort categories. When evaluated for the possibility of minimizing the number of transducers for physical workload assessment, EER showed moderate-high correlations with the EMG signals (rGR = 0.78, rGL = 0.75, rSR = 0.68, rSL = 0.66). Similarly, actuation forces had higher correlations with EMG signals for all the selected muscles (r = 0.70-0.87), suggesting the use of simpler transducers for effective operator workload assessment. As a means to minimize subjectivity in ODR responses, machine learning algorithms, including K-nearest neighbor (KNN), random forest classifier (RFC), and support vector machine (SVM), predicted the ODR using body mass index (BMI), HR, EER, and EMG at high accuracies of 87-97%, with RFC being the most accurate. Such high-throughput and data-run ergonomic evaluations can be instrumental in reconsidering workplace designs and better fits for end-users in terms of agricultural tractors and machinery systems.


Asunto(s)
Ergonomía , Carga de Trabajo , Músculo Esquelético/fisiología , Electromiografía , Agricultura , Aprendizaje Automático
4.
Cells ; 11(24)2022 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-36552769

RESUMEN

Intensive care unit (ICU)-acquired weakness is a frequent consequence of critical illness that impacts both the limb and respiratory muscles. The cause of ICU-acquired weakness is multifactorial, but both prolonged limb muscle inactivity and mechanical ventilation are risk factors for muscle wasting, which predisposes ICU patients to both short-term complications and long-term disabilities resulting from muscle weakness. Unfortunately, the current research does not provide a detailed understanding of the cellular etiology of ICU-acquired weakness, and no standard treatment exists. Therefore, improving knowledge of the mechanisms promoting muscle atrophy in critically ill patients is essential to developing therapeutic strategies to protect against ICU-induced skeletal muscle wasting. To advance our understanding of the mechanism(s) responsible for ICU-acquired weakness, we tested the hypothesis that ICU-induced muscle inactivity promotes a rapid decrease in anabolic signaling/protein synthesis and accelerates proteolysis in both limb and respiratory muscles. To investigate ICU-induced changes in skeletal muscle proteostasis, adult Sprague Dawley rats were anesthetized and mechanically ventilated for 12 h to simulate ICU care. Measurements of anabolic signaling, protein synthesis, and proteolytic activity in the limb muscles (plantaris and soleus) and respiratory muscles (parasternal and intercostal) revealed ICU-induced reductions in both anabolic signaling (i.e., AKT/mTOR pathway) and muscle protein synthesis. Moreover, simulated ICU care resulted in increased biomarkers of accelerated proteolysis in both limb and respiratory muscles. These novel findings reveal that disturbances in limb and respiratory muscle proteostasis occur rapidly during ICU-induced muscle inactivity, irrespective of the muscle function or muscle fiber type.


Asunto(s)
Músculo Esquelético , Proteostasis , Ratas , Animales , Ratas Sprague-Dawley , Músculo Esquelético/metabolismo , Debilidad Muscular , Unidades de Cuidados Intensivos , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Enfermedad Crítica
5.
Gerontol Geriatr Med ; 8: 23337214221140225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506790

RESUMEN

Skin autofluorescence is a useful index to estimate the accumulation of advanced glycation end-products in human tissues. Elderly persons with higher skin autofluorescence have lower muscle mass, muscle strength and muscle power, however, little is known about the relationship between the skin autofluorescence level and each muscle activity. We measured the values of skin autofluorescence from five places on a lower limb, and the signals of surface electromyogram during isometric contractions from five muscles on that, simultaneously. The waveforms of surface electromyogram were analyzed by Daubechies-4 wavelet transformation. The value of skin autofluorescence was increased in the proximal part of the lower limb compared with the value of the distal part. The principal component of surface electromyogram activity in a time-frequency domain was lower in the proximal part compared with that of the distal part. There was a weak negative correlation between the value of skin autofluorescence on the gluteal region and the value of the mean wavelet coefficient of the surface electromyogram signals within the gluteus maximus muscle. The higher accumulation of advanced glycation end-products on the gluteal region might suggest the lower muscle activity in aging without disease and disability.

6.
Muscle Nerve ; 66(4): 453-461, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35859342

RESUMEN

INTRODUCTION/AIMS: Oculopharyngeal muscular dystrophy (OPMD) is a late-onset, progressive muscle disease. Quantitative muscle ultrasound (QMUS) assesses structural changes in muscles and is a sensitive biomarker in neuromuscular disorders. Our aim of this study was to determine whether QMUS can detect muscle pathology and can be used as longitudinal imaging biomarker in OPMD. METHODS: Genetically confirmed OPMD patients, recruited by their treating physicians or from the national neuromuscular database, were examined twice, 20 months apart, using QMUS of orofacial and limb muscles, and measurements of functional capacity and muscle strength. Absolute echo intensity (AEI) and muscle thickness of all muscles were analyzed and correlated with clinical data. RESULTS: The tongue, deltoid, iliopsoas, rectus femoris, and soleus muscles showed increased AEI at baseline compared with normal values in 43 OPMD patients, with the rectus femoris being most often affected (51%).The AEI and muscle thickness of 9 of 11 muscles correlated significantly with the motor function measure, 10-step stair test, swallowing capacity, dynamometry, Medical Research Council grade, tongue strength, and bite force (r = 0.302 to -0.711). Between baseline and follow-up, deterioration in AEI was found for the temporalis, tongue, and deltoid muscles, and decreased muscle thickness was detected for the temporalis, masseter, digastric, tongue, deltoid, iliopsoas, and soleus muscles (P < .05). No relation was found between the change in AEI and repeat length or disease duration. DISCUSSION: QMUS detected muscle pathology and disease progression in OPMD over 20 months. We conclude that QMUS should be considered as a biomarker in treatment trials.


Asunto(s)
Distrofia Muscular Oculofaríngea , Biomarcadores , Humanos , Fuerza Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Distrofia Muscular Oculofaríngea/diagnóstico por imagen , Ultrasonografía
7.
J Anat ; 241(3): 702-715, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35834300

RESUMEN

The Mechanostat Theory states that osteocytes sense both the intensity and directionality of the strains induced by mechanical usage and modulate the bone design accordingly. In long bones, this process may adapt anterior-posterior and lateral-medial strength to their mechanical environment showing regional specificity. Anuran species are ideal for analyzing the muscle-bone relationships related to the different mechanical stresses induced by their many locomotor modes and habitat uses. This work aimed to explore the relationships between indicators of the force of the most relevant muscles to locomotion and the mechanical properties of femur and tibia fibula in preserved samples of three anuran species with different habitat use (aquatic, arboreal) and locomotion modes (swimmer, jumper, walker/climber). For that purpose, we measured the anatomical cross-sectional area of each dissected muscle and correlated it with the moments of inertia and bone strength indices. Significant, species-specific covariations between muscle and bone parameters were observed. Pseudis platensis, the aquatic swimmer, showed the largest muscles, followed by Boana faber, the jumper and Phyllomedusa sauvagii, the walker/climber. As we expected, bigger muscles correlate with bone parameters in all the species. Nevertheless, smaller muscles also play an important role in bone design. In aquatic species, muscle interaction enhances mostly lateral bending strength throughout the femur and lateral and antero-posterior bending strength in the tibia fibula. In the jumper species, muscles affected the femur and tibia fibula mostly in anterior-posterior bending. In the walker/climber species, responses involving both antero-posterior and lateral bending strengths were observed in the femur and tibia fibula. These results show that bones will be more or less resistant to lateral and antero-posterior bending according to the different mechanical challenges of locomotion in aquatic vs. arboreal habitats. This study provides new evidence of the muscle-bone relationships in three frog species associated with their different locomotion and habitat uses, highlighting the crucial role of muscle in determining the architectural properties of bones.


Asunto(s)
Anuros , Huesos , Animales , Anuros/fisiología , Fémur/fisiología , Locomoción/fisiología , Músculos , Tibia/fisiología
8.
Cancers (Basel) ; 14(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35740560

RESUMEN

Overactivation of poly (ADPribose) polymerases (PARPs) is involved in cancer-induced cachexia. We hypothesized that the PARP inhibitor rucaparib may improve muscle mass and reduce damage in cancer cachexia mice. In mouse diaphragm and gastrocnemius (LP07 lung adenocarcinoma) treated with PARP inhibitor (rucaparib,150 mg/kg body weight/24 h for 20 days) and in non-tumor control animals, body, muscle, and tumor weights; tumor area; limb muscle strength; physical activity; muscle structural abnormalities, damage, and phenotype; PARP activity; and proteolytic and autophagy markers were quantified. In cancer cachexia mice compared to non-cachexia controls, body weight and body weight gain, muscle weight, limb strength, physical activity, and muscle fiber size significantly declined, while levels of PARP activity, plasma troponin I, muscle damage, and proteolytic and autophagy markers increased. Treatment with the PARP inhibitor rucaparib elicited a significant improvement in body weight gain, tumor size and weight, physical activity, muscle damage, troponin I, and proteolytic and autophagy levels. PARP pharmacological inhibition did not exert any significant improvements in muscle weight, fiber size, or limb muscle strength. Treatment with rucaparib, however, improved muscle damage and structural abnormalities and physical activity in cancer cachexia mice. These findings suggest that rucaparib exerts its beneficial effects on cancer cachexia performance through the restoration of muscle structure.

9.
J Neurophysiol ; 127(5): 1230-1239, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35353615

RESUMEN

Movements of the human biological system have adapted to the physical environment under the 1-g gravitational force on Earth. However, the effects of microgravity in space on the underlying functional neuromuscular control behaviors remain poorly understood. Here, we aimed to elucidate the effects of prolonged exposure to a microgravity environment on the functional coordination of multiple muscle activities. The activities of 16 lower limb muscles of 5 astronauts who stayed in space for at least 3 mo were recorded while they maintained multidirectional postural control during bipedal standing. The coordinated activation patterns of groups of muscles, i.e., muscle synergies, were estimated from the muscle activation datasets using a factorization algorithm. The experiments were repeated a total of five times for each astronaut, once before and four times after spaceflight. The compositions of muscle synergies were altered, with a constant number of synergies, after long-term exposure to microgravity, and the extent of the changes was correlated with the increased velocity of postural sway. Furthermore, the muscle synergies extracted 3 mo after the return were similar in their activation profile but not in their muscle composition compared with those extracted in the preflight condition. These results suggest that the modularity in the neuromuscular system became reorganized to adapt to the microgravity environment and then possibly reoptimized to the new sensorimotor environment after the astronauts were reexposed to a gravitational force. It is expected that muscle synergies can be used as physiological markers of the status of astronauts with gravity-dependent change.NEW & NOTEWORTHY The human neuromuscular system has adapted to the gravitational environment on Earth. Here, we demonstrated that prolonged exposure to a microgravity environment in space changes the functional coordination of multiple muscle activities regarding multidirectional standing postural control. Furthermore, the amount of change led to a greater regulatory balancing activity needed for postural control immediately after returning to Earth and differences in muscular coordination before space flight and 3 mo after the return to Earth.


Asunto(s)
Vuelo Espacial , Ingravidez , Astronautas , Humanos , Músculos , Equilibrio Postural/fisiología
10.
Sports Health ; 14(3): 317-327, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34085847

RESUMEN

BACKGROUND: The leg press is one of the most typical exercises for strengthening the lower limbs. The objectives of this study were to compare 5 inclined leg press exercise conditions, varying the feet width stance (100% or 150% hip width), the feet rotation (0° or 45° external rotation) on the footplate and using 2 different movement velocities (MVs; maximum intended, and 2:2 seconds steady-paced velocities) to determine their effect on muscle activation as well as on the kinematic parameters between trained men and trained women. HYPOTHESES: There will be no significant differences in muscle activation with regard to the feet position. The higher the MV, the greater the muscle activation. STUDY DESIGN: A cross-sectional cohort study. LEVEL OF EVIDENCE: Level 3. METHODS: A repeated-measures between-group design was performed to examine muscle activation and kinematic parameters for the different conditions between gender groups. The level of significance was set at alpha = 0.05 for all statistical analyses. RESULTS: Muscle activation presented no differences between conditions regarding feet width stance or feet rotation. Furthermore, muscle activation was greater during positive phases than negative phases of the exercise for all conditions and was also greater under maximum intended velocity conditions compared with steady-paced conditions. Otherwise, the muscle activation pattern presented slight differences by gender. In men, the greatest muscle activation was for the vastus medialis, followed by the vastus lateralis (VL), rectus femoris (RF), and gluteus medialis (GMED), while in women, the greatest muscle activation was for the vastus medialis, followed by the RF, VL, and GMED. Finally, greater mean propulsive velocity, maximum velocity, maximum power, and footplate displacement values were reported for men than for women under all the conditions. CONCLUSION: The inclined leg press exercise produces the highest muscle activation in the vastus medialis, regardless of the velocity, feet stance, or gender. CLINICAL RELEVANCE: Given that there are no differences in muscle activation regarding the feet stance, a participant's preferred feet stance should be encouraged during the inclined leg press exercise. Furthermore, the MV would preferably depend on the session objective (a training or a rehabilitation program), being aware that there is greater muscle activation at higher speeds. The inclined leg press exercise could be performed as a closed kinetic chain exercise when the main objective is to activate the vastus medialis.


Asunto(s)
Pierna , Músculo Esquelético , Fenómenos Biomecánicos , Estudios Transversales , Electromiografía , Femenino , Humanos , Pierna/fisiología , Masculino , Músculo Esquelético/fisiología
11.
Cells ; 10(9)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34572085

RESUMEN

We hypothesized that the phenolic compound resveratrol mitigates muscle protein degradation and loss and improves muscle fiber cross-sectional area (CSA) in gastrocnemius of mice exposed to unloading (7dI). In gastrocnemius of mice (female C57BL/6J, 10 weeks) exposed to a seven-day period of hindlimb immobilization with/without resveratrol treatment, markers of muscle proteolysis (tyrosine release, systemic troponin-I), atrophy signaling pathways, and muscle phenotypic features and function were analyzed. In gastrocnemius of unloaded mice treated with resveratrol, body and muscle weight and function were attenuated, whereas muscle proteolysis (tyrosine release), proteolytic and apoptotic markers, atrophy signaling pathways, and myofiber CSA significantly improved. Resveratrol treatment of mice exposed to a seven-day period of unloading prevented body and muscle weight and limb strength loss, while an improvement in muscle proteolysis, proteolytic markers, atrophy signaling pathways, apoptosis, and muscle fiber CSA was observed in the gastrocnemius muscle. These findings may have potential therapeutic implications in the management of disuse muscle atrophy in clinical settings.


Asunto(s)
Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Proteolisis/efectos de los fármacos , Resveratrol/farmacología , Animales , Apoptosis/efectos de los fármacos , Femenino , Suspensión Trasera , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/patología , Fenotipo , Transducción de Señal/efectos de los fármacos
12.
Neuroscience ; 476: 45-59, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34500017

RESUMEN

Paired associative stimulation (PAS) is a non-invasive method to modulate the excitability of the primary motor cortex (M1). PAS involves the combination of peripheral nerve stimulation and transcranial magnetic stimulation (TMS) over the primary motor cortex. However, for lower-limb muscles, PAS has only been applied to the few muscles innervated by peripheral nerves that can easily be stimulated. This study used transcutaneous spinal cord stimulation (tSCS) to the posterior root, stimulating the sensory nerves of multiple lower-limb muscles, and aimed to investigate the effect of PAS consisting of tSCS and TMS on corticospinal excitability. Twelve non-disabled men received 120 paired stimuli on two separate days in (1) an individual-ISI condition, using inter-stimulus intervals (ISIs) of paired stimuli individually calculated to send two signals to M1 with individually-adjusted ISI, and (2) a constant-ISI condition, using a constant ISI of 100 ms. Before and after PAS, corticospinal excitability was assessed in the lower-limb muscles. Facilitation of corticospinal excitability in the lower-leg and hamstring muscles was observed up to 30 min after PAS only in the individual-ISI condition (p < 0.05), although there was no significant difference between the individual-ISI and constant-ISI conditions. Additionally, our results revealed a difference in PAS-induced facilitation among lower-limb muscles, suggesting a spatial gradient of PAS-induced facilitation of corticospinal excitability, such that knee flexor muscles have a higher potential for plastic change than knee extensor muscles. These findings will foster a better understanding of the neural mechanisms underlying PAS-induced neuroplasticity, leading to better neurorehabilitation and motor learning strategies.


Asunto(s)
Corteza Motora , Estimulación de la Médula Espinal , Estimulación Eléctrica , Electromiografía , Potenciales Evocados Motores , Humanos , Masculino , Músculo Esquelético , Plasticidad Neuronal , Estimulación Magnética Transcraneal
13.
J Cell Physiol ; 236(4): 3083-3098, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32989805

RESUMEN

Sarcopenia is a major comorbidity in chronic obstructive pulmonary (COPD). Whether deficient muscle repair mechanisms and regeneration exist in the vastus lateralis (VL) of sarcopenic COPD remains debatable. In the VL of control subjects and severe COPD patients with/without sarcopenia, satellite cells (SCs) were identified (immunofluorescence, specific antibodies, anti-Pax-7, and anti-Myf-5): activated (Pax-7+/Myf-5+), quiescent/regenerative potential (Pax-7+/Myf-5-), and total SCs, nuclear activation (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling [TUNEL]), and muscle fiber type (morphometry and slow- and fast-twitch, and hybrid fibers), muscle damage (hematoxylin-eosin staining), muscle regeneration markers (Pax-7, Myf-5, myogenin, and MyoD), and myostatin levels were identified. Compared to controls, in VL of sarcopenic COPD patients, myostatin content, activated SCs, hybrid fiber proportions, TUNEL-positive cells, internal nuclei, and muscle damage significantly increased, while quadriceps muscle strength, numbers of Pax-7+/Myf-5- and slow- and fast-twitch, and hybrid myofiber areas decreased. In the VL of sarcopenic and nonsarcopenic patients, TUNEL-positive cells were greater, whereas muscle regeneration marker expression was lower than in controls. In VL of severe COPD patients regardless of the sarcopenia level, the muscle regeneration process is triggered as identified by SC activation and increased internal nuclei. Nonetheless, a lower regenerative potential along with significant alterations in muscle phenotype and damage, and increased myostatin were prominently seen in sarcopenic COPD.


Asunto(s)
Músculo Esquelético/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Regeneración , Sarcopenia/complicaciones , Sarcopenia/fisiopatología , Células Satélite del Músculo Esquelético/patología , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Estado Nutricional , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/genética , Sarcopenia/genética
14.
Gerontol Geriatr Med ; 6: 2333721420979800, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33354589

RESUMEN

This study examined the characteristics of lower limb muscle activity in elderly persons after ergometric pedaling exercise for 1 month. To determine the effect of the exercise, surface electromyography (SEMG) of lower limb muscles was subjected to Daubechies-4 wavelet transformation, and mean wavelet coefficients were compared with the pre-exercise coefficients and the post-exercise coefficients in each wavelet level. The characteristics of muscle activity after pedaling exercise were also compared between the elderly subjects and young subjects. For the elderly subjects, the mean wavelet coefficients were significantly decreased in the tibialis anterior and the gastrocnemius medialis at wavelet levels of 3, 4, and 5 (125-62.5, 62.5-31.25, and 31.25-15.625 Hz, respectively), by pedaling exercise. However, the mean power of wavelet levels of 2 and 3 (250-125 and 125-62.5 Hz) within the rectus femoris and the biceps femoris were significantly increased in the young subjects. The effect of pedaling exercise is different from the effects of heavy-resistance training. It was suggested that the muscle coordination, motor unit (MU) firing frequency, and firing fiber type of lower limb muscles are changed with the different characteristics between elderly and young persons by pedaling exercise for 1 month.

15.
J Bodyw Mov Ther ; 24(4): 432-441, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33218545

RESUMEN

BACKGROUND: Surface electromyography (sEMG) can provide information on muscle activation patterns during gait. OBJECTIVES: To characterize electromyographic activity during gait in shallow water and during deep-water running compare to on land and to review and analyse underwater surface-electromyographic (sEMG) procedures. SEARCH METHODS: Eight databases (MEDLINE, EMBASE, WEB OF SCIENCE, SPORT Discus, CINAHL, SCOPUS, SCIELO, and LILACS) were searched from their inception to the December of 2019. SELECTION CRITERIA: The selected studies had to be related to electromyographic analysis of gait in an aquatic environment. DATA COLLECTION AND ANALYSIS: The studies that met the inclusion criteria were reviewed by two independent reviewers and divided into four groups. RESULTS: Ten studies met the inclusion criteria. Lower muscle activation was found with treadmill water walking compared to treadmill land walking. With deep-water running, the leg muscles (tibialis anterior and gastrocnemius lateralis) have lower muscle activation when compared to on land running, but the trunk and thigh muscles have higher activation. CONCLUSION: If gait is performed on an aquatic treadmill, the muscles assessed had lower muscle activation when compared to land. During deep-water running activities, lower activation of the distal leg muscles and a higher activation thigh muscles were found when compared to on land. Studies did not follow standard processes in sEMG procedures.


Asunto(s)
Carrera , Agua , Electromiografía , Marcha , Humanos , Pierna , Músculo Esquelético , Caminata
16.
J Cyst Fibros ; 19(6): 981-995, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32534958

RESUMEN

Accurate testing of muscle function is essential in individuals with cystic fibrosis (CF). A literature search was conducted in MEDLINE, CENTRAL, CINAHL, PEDro, ScienceDirect and Web of Science according to PRISMA and COSMIN guidelines from inception to September 2019 to investigate the clinimetric properties of muscle tests in individuals with CF. The search identified 37 studies (1310 individuals) and 34 different muscle tests. Maximal inspiratory pressure, inspiratory work capacity and quadriceps strength measured by computerised dynamometry were identified as reliable tests of muscle function. The one-minute sit-to-stand test was found to have high reliability but its validity to measure quadriceps strength is unknown. The clinimetric properties of other routinely used tests have not been reported in people with CF. Very different measurement procedures were identified. Inspiratory muscle and quadriceps testing can be considered as reliable but high-quality studies evaluating tests of other muscles function (e.g. muscle endurance) are lacking.


Asunto(s)
Fibrosis Quística/fisiopatología , Músculos Respiratorios/fisiopatología , Evaluación de la Discapacidad , Humanos
17.
J Physiol ; 598(17): 3613-3629, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32472698

RESUMEN

KEY POINTS: Exercise intolerance is common in chronic obstructive pulmonary disease (COPD) patients. In patients with COPD, we compared an interval exercise (IE) protocol (alternating 30 s at 100% peak work rate (WRpeak ) with 30 s at 50% WRpeak ) with moderate-intensity constant-load exercise (CLE) at 75% WRpeak , which yielded the same work rate. Exercise endurance time and total work output were almost twice as high for IE than CLE. At exercise isotime (when work completed was the same between IE and CLE), IE was associated with less dynamic hyperinflation, lower blood lactate concentration, and greater respiratory and locomotor muscle oxygenation, but there were no differences in ventilation or cardiac output. However, at the limit of tolerance for each modality, dynamic hyperinflation was not different between IE and CLE, while blood lactate remained lower and muscle oxygenation higher with IE. Taken together, these findings suggest that dynamic hyperinflation and not muscle-based factors dictate the limits of tolerance in these COPD patients. ABSTRACT: The relative importance of ventilatory, circulatory and peripheral muscle factors in determining tolerance to exercise in patients with chronic obstructive pulmonary disease (COPD) is not known. In 12 COPD patients (forced expiratory volume in one second: 58 ± 17%pred.) we measured ventilation, cardiac output, dynamic hyperinflation, local muscle oxygenation, blood lactate and time to exhaustion during (a) interval exercise (IE) consisting of 30 s at 100% peak work rate alternating with 30 s at 50%, and (b) constant-load exercise (CLE) at 75% peak work rate, designed to produce the same average work rate. Exercise time was substantially longer during IE than CLE (19.5 ± 4.8 versus 11.4 ± 2.1 min, p = 0.0001). Total work output was therefore greater during IE than CLE (81.3 ± 27.7 versus 48.9 ± 23.8 kJ, p = 0.0001). Dynamic hyperinflation (assessed by changes from baseline in inspiratory capacity, ΔIC) was less during IE than CLE at CLE exhaustion time (isotime, p = 0.009), but was similar at exhaustion (ΔICCLE : -0.38 ± 0.10 versus ΔICIE : -0.33 ± 0.12 l, p = 0.102). In contrast, at isotime, minute ventilation, cardiac output and systemic oxygen delivery did not differ between protocols (P > 0.05). At exhaustion in both protocols, the vastus lateralis and intercostal muscle oxygen saturation were higher in IE than CLE (p = 0.014 and p = 0.0002, respectively) and blood lactate concentrations were lower (4.9 ± 2.4 mmol l-1 versus 6.4 ± 2.2 mmol l-1 , p = 0.039). These results suggest that (1) exercise tolerance with COPD is limited by dynamic hyperinflation; and (2) cyclically lower (50%) effort intervals in IE help to preserve muscle oxygenation and reduce metabolic acidosis compared with CLE at the same average work rate; but these factors do not appear to determine time to exhaustion.


Asunto(s)
Tolerancia al Ejercicio , Enfermedad Pulmonar Obstructiva Crónica , Ejercicio Físico , Prueba de Esfuerzo , Volumen Espiratorio Forzado , Humanos , Pruebas de Función Respiratoria
18.
NMR Biomed ; 33(5): e4276, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32101354

RESUMEN

Dystrophic muscles show a high variability of fibre sizes and altered sarcolemmal integrity, which are typically assessed by histology. Time-dependent diffusion MRI is sensitive to tissue microstructure and its investigation through age-related changes in dystrophic and healthy muscles may help the understanding of the onset and progression of Duchenne muscular dystrophy (DMD). We investigated the capability of time-dependent diffusion MRI to quantify age and disease-related changes in hind-limb muscle microstructure between dystrophic (mdx) and wild-type (WT) mice of three age groups (7.5, 22 and 44 weeks). Diffusion time-dependent apparent diffusion coefficients (ADCs) of the gastrocnemius and tibialis anterior muscles were determined versus age and diffusion-gradient orientation at six diffusion times (Δ; range: 25-350 ms). Mean muscle ADCs were compared between groups and ages, and correlated with T2 , using Student's t test, one-way analysis of variance and Pearson correlation, respectively. Muscle fibre sizes and sarcolemmal integrity were evaluated by histology and compared with diffusion measurements. Hind-limb muscle ADC showed characteristic restricted diffusion behaviour in both mdx and WT animals with decreasing ADC values at longer Δ. Significant differences in ADC were observed at long Δ values (≥ 250 ms; p < 0.05, comparison between groups; p < 0.01, comparison between ages) with ADC increased by 5-15% in dystrophic muscles, indicative of reduced diffusion restriction. No significant correlation was found between T2 and ADC. Additionally, muscle fibre size distributions showed higher variability and lower mean fibre size in mdx than WT animals (p < 0.001). The extensive Evans Blue Dye uptake shown in dystrophic muscles revealed substantial sarcolemmal damage, suggesting diffusion measurements as more consistent with altered permeability rather than changes in muscle fibre sizes. This study shows the potential of diffusion MRI to non-invasively discriminate between dystrophic and healthy muscles with enhanced sensitivity when using long Δ.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/patología , Envejecimiento/patología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Factores de Tiempo
19.
Development ; 146(20)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575609

RESUMEN

We provide the first detailed ontogenetic analysis of human limb muscles using whole-mount immunostaining. We compare our observations with the few earlier studies that have focused on the development of these muscles, and with data available on limb evolution, variations and pathologies. Our study confirms the transient presence of several atavistic muscles - present in our ancestors but normally absent from the adult human - during normal embryonic human development, and reveals the existence of others not previously described in human embryos. These atavistic muscles are found both as rare variations in the adult population and as anomalies in human congenital malformations, reinforcing the idea that such variations/anomalies can be related to delayed or arrested development. We further show that there is a striking difference in the developmental order of muscle appearance in the upper versus lower limbs, reinforcing the idea that the similarity between various distal upper versus lower limb muscles of tetrapod adults may be derived.


Asunto(s)
Evolución Biológica , Extremidades/embriología , Músculo Esquelético/embriología , Animales , Miembro Anterior/embriología , Humanos , Extremidad Inferior/embriología , Filogenia
20.
Neurophysiol Clin ; 49(4): 283-293, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31375380

RESUMEN

OBJECTIVES: The excitability of some neural circuits involved in walking and affected in individuals with chronic stroke can be modulated during and/or immediately after anodal transcranial direct current stimulation (a-tDCS). This study was designed to investigate the effects of a-tDCS during and immediately after application on leg muscle activity during gait, and on spatiotemporal and kinematic gait parameters in patients with chronic stroke. METHODS: This study was randomized, sham-controlled and double-blinded with a cross-over design and included 24 individuals with chronic stroke. Each participant underwent one 30-minute session each of effective a-tDCS at 2mA and sham tDCS. In both sessions, the anode was placed over the leg motor cortex of the affected hemisphere and the cathode over the contralateral orbit. Six gait trials were performed before, during and immediately after each effective/sham tDCS session. Electromyographic activity of leg muscles, as well as spatiotemporal (e.g. gait speed) and kinematic (e.g. peak knee flexion and ankle dorsiflexion in the swing phase of gait) gait parameters were recorded. Genotyping for the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism was undertaken since this gene may influence motor skill learning and the effects of tDCS. RESULTS: No significant effects of a-tDCS on gait parameters were found either for the total group or for the Val66Met (N=10) and Val66Val (N=14) subgroups. CONCLUSION: A single session of a-tDCS delivered to the leg motor cortex did not immediately improve gait parameters in individuals with chronic stroke, regardless of their BDNF genotype.


Asunto(s)
Marcha/fisiología , Corteza Motora/fisiopatología , Accidente Cerebrovascular/fisiopatología , Estimulación Transcraneal de Corriente Directa , Adulto , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Estudios Cruzados , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rehabilitación de Accidente Cerebrovascular , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...