Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339109

RESUMEN

The central ion Mg2+ is responsible for the differences between chlorophyll a and its free base in their reactivity toward metal ions and thus their resistance to oxidation. We present here the results of spectroscopic (electronic absorption and emission, circular dichroism, and electron paramagnetic resonance), spectroelectrochemical, and computational (based on density functional theory) investigations into the mechanism of pheophytin, a degradation that occurs in the presence of Cu ions and O2. The processes leading to the formation of the linear form of tetrapyrrole are very complex and involve the weakening of the methine bridge due to an electron withdrawal by Cu(II) and the activation of O2, which provides protection to the free ends of the opening macrocycle. These mechanistic insights are related to the naturally occurring damage to the photosynthetic apparatus of plants growing on metal-contaminated soils.


Asunto(s)
Cobre , Feofitinas , Especies Reactivas de Oxígeno/metabolismo , Cobre/química , Clorofila A , Oxidación-Reducción , Metales , Iones , Espectroscopía de Resonancia por Spin del Electrón , Oxígeno/metabolismo
2.
Photochem Photobiol Sci ; 21(4): 437-446, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35394642

RESUMEN

Phycocyanobilin, the primary pigment of both light perception and light-harvesting in cyanobacteria, is synthesized from biliverdin IXα (BV) through intermediate 181, 182-dihydrobiliverdin (181, 182-DHBV) by a phycocyanobilin:ferredoxin oxidoreductase (PcyA). In our previous study, we discovered two PcyA homologs (AmPcyAc and AmPcyAp) derived from Acaryochloris marina MBIC 11017 (A. marina) that exceptionally uses chlorophyll d as the primary photosynthetic pigment, absorbing longer wavelength far-red light than chlorophyll a, the photosynthetic pigment found in most cyanobacteria. Biochemical characterization of the two PcyA homologs identified functional diversification of these two enzymes: AmPcyAc provides 181, 182-DHBV, and PCB to the cyanobacteriochrome (CBCR) photoreceptors, whereas, AmPcyAp specifically provides PCB to the light-harvesting phycobilisome subunit. In this study, we focused on the residues necessary for 181, 182-DHBV supply to the CBCR photoreceptors by AmPcyAc. Based on the SyPcyA structure, we concentrated on the 30 residues that constitute the substrate-binding pocket. Among them, we discovered that Leu151 and Val225 in AmPcyAc were both substituted with isoleucine. During the enzymatic reaction, the SyPcyA variant molecule, possessing V225I and L151I replacements, accumulates the 181, 182-DHBV and supplies it to a CBCR molecule derived from A. marina. It is worth noting that the substitution of Val225 with isoleucine was specifically conserved among the Acaryochloris genus. Collectively, we propose that the specific evolution of PcyA among the Acaryochloris genus may correlate with the acquisition of Chl. d synthetic ability and growth in long-wavelength far-red light environments.


Asunto(s)
Isoleucina , Oxidorreductasas , Clorofila , Clorofila A , Ficobilinas/química , Ficocianina
3.
Plant Cell Physiol ; 62(2): 334-347, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33386854

RESUMEN

Linear tetrapyrrole compounds (bilins) are chromophores of the phytochrome and cyanobacteriochrome classes of photosensors and light-harvesting phycobiliproteins. Various spectroscopic techniques, such as resonance Raman, Fourier transform-infrared and nuclear magnetic resonance, have been used to elucidate the structures underlying their remarkable spectral diversity, in which the signals are experimentally assigned to specific structures using isotopically labeled bilin. However, current methods for isotopic labeling of bilins require specialized expertise, time-consuming procedures and/or expensive reagents. To address these shortcomings, we established a method for pressurized liquid extraction of phycocyanobilin (PCB) from the phycobiliprotein powder Lina Blue and also the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). PCB was efficiently cleaved in ethanol with three extractions (5 min each) under nitrogen at 125�C and 100 bars. A prewash at 75�C was effective for removing cellular pigments of Synechocystis without PCB cleavage. Liquid chromatography and mass spectrometry suggested that PCB was cleaved in the C3-E (majority) and C3-Z (partial) configurations. 15N- and 13C/15N-labeled PCBs were prepared from Synechocystis cells grown with NaH13CO3 and/or Na15NO3, the concentrations of which were optimized based on cell growth and pigmentation. Extracted PCB was reconstituted with a recombinant apoprotein of the cyanobacteriochrome-class photosensor RcaE. Yield of the photoactive holoprotein was improved by optimization of the expression conditions and cell disruption in the presence of Tween 20. Our method can be applied for the isotopic labeling of other PCB-binding proteins and for the commercial production of non-labeled PCB for food, cosmetic and medical applications.


Asunto(s)
Cianobacterias/metabolismo , Marcaje Isotópico/métodos , Ficobilinas/aislamiento & purificación , Ficocianina/aislamiento & purificación , Fitocromo/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Ficobilinas/química , Ficocianina/química , Synechocystis/metabolismo , Temperatura
4.
FEBS J ; 287(18): 4016-4031, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31995844

RESUMEN

Bilin pigments play important roles for both light perception and harvesting in cyanobacteria by binding to cyanobacteriochromes (CBCRs) and phycobilisomes (PBS), respectively. Among various cyanobacteria, Acaryochloris marina MBIC 11017 (A. marina 11017) exceptionally uses chlorophyll d as the main photosynthetic pigment absorbing longer wavelength light than the canonical pigment, chlorophyll a, indicating existence of a system to sense longer wavelength light than others. On the other hand, A. marina 11017 has the PBS apparatus to harvest short-wavelength orange light, similar to most cyanobacteria. Thus, A. marina 11017 might sense longer wavelength light and harvest shorter wavelength light by using bilin pigments. Phycocyanobilin (PCB) is the main bilin pigment of both systems. Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes PCB synthesis from biliverdin via the intermediate 181 ,182 -dihydrobiliverdin (181 ,182 -DHBV), resulting in the stepwise shortening of the absorbing wavelengths. In this study, we found that A. marina 11017 exceptionally encodes two PcyA homologs, AmPcyAc and AmPcyAp. AmPcyAc is encoded on the main chromosome with most photoreceptor genes, whereas AmPcyAp is encoded on a plasmid with PBS-related genes. High accumulation of 181 ,182 -DHBV for extended periods was observed during the reaction catalyzed by AmPcyAc, whereas 181 ,182 -DHBV was transiently accumulated for a short period during the reaction catalyzed by AmPcyAp. CBCRs could sense longer wavelength far-red light through 181 ,182 -DHBV incorporation, whereas PBS could only harvest orange light through PCB incorporation, suggesting functional diversification of PcyA as AmPcyAc and AmPcyAp to provide 181 ,182 -DHBV and PCB to the light perception and harvesting systems, respectively.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pigmentos Biliares/metabolismo , Cianobacterias/enzimología , Luz , Oxidorreductasas/metabolismo , Fotosíntesis/efectos de la radiación , Secuencia de Aminoácidos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Clorofila/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Oxidorreductasas/clasificación , Oxidorreductasas/genética , Fotosíntesis/genética , Filogenia , Homología de Secuencia de Aminoácido
5.
J Biol Chem ; 293(22): 8473-8483, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29632072

RESUMEN

Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleus sp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.


Asunto(s)
Adenilil Ciclasas/metabolismo , Cianobacterias/enzimología , AMP Cíclico/metabolismo , Flavinas/metabolismo , Regulación Enzimológica de la Expresión Génica , Luz , Adenilil Ciclasas/genética , Dominio Catalítico , Flavinas/química , Mutación , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Transducción de Señal
6.
J Biol Inorg Chem ; 22(5): 727-737, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28175984

RESUMEN

Linear tetrapyrrole is the core structure of light-sensitive native cofactors such as phycocyanobilin, phytochromobilin and bile pigments, which attracts increasing attention in biomimetic chemistry, photochemistry and coordination chemistry. To decipher the relationship between structures and functions, in this work, we firstly reported the synthesis, isolation and characterization of three bilindione isomers (ZZZ, syn, syn, syn 1, EZE, syn, syn, anti 2 and EZE, anti, syn, anti 3) bearing meso-pentafluorophenyl groups. The structures were confirmed by X-ray diffraction and 2-D NMR spectroscopes. More importantly, the interconversion between three isomers under heating and light irradiation was investigated, and isomer 3 was found to be transformed to 1 and 2 more easily, which is in line with the results of DFT calculation. This work provides important insights for understanding the relationship between structures and functions and would be important to further construct metal complexes based on linear tetrapyrrole ligands, which are complementary to well-studied the cyclic analogs such as porphyrin and corroles.


Asunto(s)
Biliverdina , Biliverdina/análogos & derivados , Biliverdina/síntesis química , Biliverdina/química , Ligandos , Estructura Molecular , Teoría Cuántica , Estereoisomerismo
7.
Front Microbiol ; 7: 588, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242674

RESUMEN

Cyanobacteriochromes (CBCRs) are distantly related to the red/far-red responsive phytochromes. Red/green-type CBCRs are widely distributed among various cyanobacteria. The red/green-type CBCRs covalently bind phycocyanobilin (PCB) and show red/green reversible photoconversion. Recent studies revealed that some red/green-type CBCRs from chlorophyll d-bearing cyanobacterium Acaryochloris marina covalently bind not only PCB but also biliverdin (BV). The BV-binding CBCRs show far-red/orange reversible photoconversion. Here, we identified another CBCR (AM1_C0023g2) from A. marina that also covalently binds not only PCB but also BV with high binding efficiencies, although BV chromophore is unstable in the presence of urea. Replacement of Ser334 with Gly resulted in significant improvement in the yield of the BV-binding holoprotein, thereby ensuring that the mutant protein is a fine platform for future development of optogenetic switches. We also succeeded in detecting near-infrared fluorescence from mammalian cells harboring PCB-binding AM1_C0023g2 whose fluorescence quantum yield is 3.0%. Here the PCB-binding holoprotein is shown as a platform for future development of fluorescent probes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...