RESUMEN
For the efficient delivery of a cell therapy a treatment must be provided rapidly, at clinical scale, contain a sufficient active cellular component (biomass), and adhere to a multitude of regulatory requirements. Cryopreservation permits many of these demands to be met more readily. Here we present the cryopreservation and recovery of large volume (2.5L) alginate encapsulated liver cell spheroids (AELS), suitable for use with a novel bioartificial liver device (HepatiCan™) for the treatment of those suffering from acute liver failure (ALF), in regulatory approved cryobags and a cryopreservation process optimised for large volumes. By first assessing the thermal profiles of large scale cryobags with a thermal mimic, the feasibility of cryopreserving a full patient dose simultaneously (3x cryobags containing 833ml biomass each) was investigated, allowing for small and subsequently large-scale testing of cellular functional recoveries. Work presented here demonstrates that optimised reproducible cooling and warming profiles could be achieved with these large volumes, leading to high biomass recoveries at full clinical scale. The recovered AELS also had high regeneration potential, achieving full pre-freeze viable cell densities within 3 days, indicating that the cell therapy could be delivered rapidly to patients with ALF. This study has presented the feasibility for rapid delivery of large volume cell therapies, whilst further research into improved speed of post-thaw recovery is warranted.
RESUMEN
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Asunto(s)
Hígado , Receptores Purinérgicos , Transducción de Señal , Humanos , Animales , Hígado/metabolismo , Receptores Purinérgicos/metabolismo , Macrófagos del Hígado/metabolismo , Células Estrelladas Hepáticas/metabolismo , Adenosina Trifosfato/metabolismo , Hepatopatías/metabolismo , Hepatopatías/patología , Hepatocitos/metabolismoRESUMEN
Growing clinical evidence shows that sulfonylurea therapy for patients with type 2 diabetic mellitus (T2DM) contributes to progressive worsening of their liver. The present study presents hepatotoxicity induced by gliclazide, a second-generation sulfonylurea, and alpha-lipoic acid (ALA) as a novel and promising drug for T2DM treatment. Normal human liver cells (HL-7702) were incubated with high-glucose DMEM in the presence or absence of gliclazide and ALA for 72 h, and cell viability and death were measured by flow cytometry. Next, Sprague-Dawley rats were subjected to 12 h of fasting, and fasting blood glucose was measured. The rats were randomized into four groups: HC (healthy control; n = 7), T2DM (diabetic rats without treatment; n = 9), GLC (diabetic rats with 15 mg/kg gliclazide treatment; n = 7) and GLC+ALA (diabetic rats with gliclazide and 60 mg/kg ALA treatment; n = 7). T2DM was induced by a bolus administration of 110 mg/kg nicotinamide and 55 mg/kg streptozotocin intraperitoneally. The experimental protocol lasted for 6 weeks after which the animals were sacrificed and pancreas, liver and blood samples were collected for biochemical, histological and molecular analyses. Compared to healthy control (HC) group, exposure of HL-7702 cells to high glucose induced significant cell death by 19 % (p < 0.001), which was exacerbated with gliclazide treatment by 29 % (p < 0.0001) but markedly reduced by 6 % to near HC value following ALA treatment. In vivo, GLC-treated rats had severe liver damage characterized by increased hepatocellular vacuolation, and significant expression of ED-1, iNOS and caspase-3 as well as markedly high levels of liver enzymes (aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase compared to T2DM rats. Interestingly, ALA administration prevented these pathological changes and protected the diabetic liver to levels comparable to HC rats. ALA showed hepatoprotective effect against gliclazide-induced hepatotoxicity by suppressing inflammation and apoptosis while activating antioxidant pathway in the diabetic liver. Abbreviations: ALA, Alpha-lipoic acid; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase; AMPK, Adenosine monophosphate-activated protein kinase; AST, Aspartate aminotransferase; ATP, Adenosine triphosphate; DMEM, Dulbecco's Modified Eagle Medium; EDTA, ethylenediaminetetraacetic acid; FBG, Fasting blood glucose; FBS, Fetal bovine serum; GLC, Gliclazide; GLUT4, Glucose transporter type 4; GSH, Glutathione; H&E, Hematoxylin/Eosin; HbA1c, Glycosylated haemoglobin A1c; HC, Healthy control; HG, Hyperglycemic group; HOMA-ß, Homeostasis model assessment of ß-cell function; IL-1ß, Interleukin-1ß; IL-6, Interleukin-6; iNOS, Inducible nitric oxide synthase; KATP, ATP-dependent potassium channels; MDA, Malondialdehyde; MPTP, Mitochondrial permeability transition pore; NO, Nitric oxide; P/S, Penicillin/streptomycin; PAS, Periodic acid-Schiff; RIA, Radioimmunoassay; ROS, Reactive oxygen species; SOD, Superoxide dismutase; T2DM, Type 2 diabetes mellitus; TBARS, Thiobarbituric acid reactive substances; TNF-α, Tumor necrosis factor-alpha.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Gliclazida , Ratas Sprague-Dawley , Ácido Tióctico , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Animales , Gliclazida/farmacología , Gliclazida/uso terapéutico , Humanos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/metabolismo , Ratas , Masculino , Glucosa/metabolismo , Glucosa/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Línea Celular , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéuticoRESUMEN
Type 2 diabetes mellitus (T2DM) stands as a prevalent global public health issue caused by deficiencies in the action of insulin and/or insulin production. In the liver, insulin plays an important role by inhibiting hepatic glucose production and stimulating glycogen storage, thereby contributing to blood glucose regulation. Kaempferitrin (KP) and kaempferol (KM), flavonoids found in Bauhinia forficata, exhibit insulin-mimetic properties, showing promise in managing T2DM. In this study, we aimed to assess the potential of these compounds in modulating the insulin signaling pathway and/or glucose metabolism. Cell viability assays confirmed the non-cytotoxic nature of both compounds toward HepG2 cells at the concentrations and times evaluated. Theoretical molecular docking studies revealed that KM had the best docking pose with the IR ß subunit when compared to the KP. Moreover, Langmuir monolayer evaluation indicated molecular incorporation for both KM and KP. Specifically, KM exhibited the capability to increase AKT phosphorylation, a key kinase in insulin signaling, regardless of insulin receptor (IR) activation. Notably, KM showed an additional synergistic effect with insulin in activating AKT. In conclusion, our findings suggest the potential of KM as a promising compound for stimulating AKT activation, thereby influencing energy metabolism in T2DM.
RESUMEN
Aflatoxin B1 (AFB1) is known to inhibit growth, and inflict hepatic damage by interfering with protein synthesis. Allicin, has been acknowledged as an efficacious antioxidant capable of shielding the liver from oxidative harm. This study aimed to examine the damage caused by AFB1 on bovine hepatic cells and the protective role of allicin against AFB1-induced cytotoxicity. In this study, cells were pretreated with allicin before the addition of AFB1 for co-cultivation. Our findings indicate that AFB1 compromises cellular integrity, suppresses the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, allicin attenuates oxidative damage to bovine hepatic cells caused by AFB1 by promoting the expression of the Nrf2 pathway and reducing cell apoptosis. In conclusion, the results of this study will help advance clinical research and applications, providing new options and directions for the prevention and treatment of liver diseases.
Asunto(s)
Aflatoxina B1 , Antioxidantes , Apoptosis , Disulfuros , Hepatocitos , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Ácidos Sulfínicos , Animales , Ácidos Sulfínicos/farmacología , Aflatoxina B1/toxicidad , Bovinos , Disulfuros/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , FemeninoRESUMEN
N-(1,3-Dimethyl butyl)-N'-phenyl-phenylenediamine-quinone (6PPD-Q) is a derivative of the widely used rubber tire antioxidant 6PPD, which was first found to be acutely toxic to coho salmon. Subsequent studies showed that 6PPD-Q had species-specific acute toxicity in fishes and potential hepatotoxicity in mice. In addition, 6PPD-Q has been reported in human urine, demonstrating the potential widespread exposure of humans to this chemical. However, whether 6PPD-Q poses a higher risk to humans than its parent compound, 6PPD, and could cause adverse effects in humans is still unclear. In this study, we utilized two human liver cell models (the human proto-hepatocyte model L02 and the human hepatocellular carcinoma cell line HepG2) to investigate the potentially differential effects of these two chemicals. Cell viability curve analysis showed that 6PPD-Q had lower IC50 values than 6PPD for both liver cell lines, suggesting higher toxicity of 6PPD-Q to human liver cells than 6PPD. In addition, L02 cells are more sensitive to 6PPD-Q exposure, which might be derived from its weaker metabolic transformation of 6PPD-Q, since significantly lower levels of phase I and phase II metabolites were detected in 6PPD-Q-exposed L02 cell culture medium. Furthermore, pathway analysis showed that 6PPD-Q exposure induced changes in phenylalanine, tyrosine, and tryptophan biosynthesis and tyrosine metabolism pathways in L02 cells, which might be the mechanism underlying its liver cell toxicity. Gene expression analysis revealed that exposure to 6PPD-Q induced excessive ROS production in L02 cells. Our results further supported the higher risk of 6PPD-Q than 6PPD and provided insights for understanding the effects of 6PPD-Q on human health.
RESUMEN
In recent years, nanoparticles have been broadly utilized in various drugs delivery formulations. Nanodelivery systems have shown promise in solving problems associated with the distribution of hydrophobic drugs and have promoted the accumulation of nanomedicines in the circulation or in organs. However, the injection dose of nanoparticles (NPs) is much greater than that needed by diseased tissues or organs. In other words, most of the NPs are localized off-target and do not reach the desired tissue or organs. With the rapid development of biodegradable and biosafety nanomaterials, the nanovectors represent assurance of safety. However, the off-target effects also induce concerns about the application of NPs, especially in the delivery of gene editing tools. Therefore, a complete understanding of the biological responses to NPs in the body will clearly guide the design of targeted delivery of NPs. The different properties of various nanodelivery systems may induce diverse interactions between carriers and organs. In this review, we describe the relationship between the liver, the most influenced organ of systemic administration of NPs, and targeted delivery nanoplatforms. Various transport vehicles have adopted multiple delivery strategies for the targeted delivery to the cells in the homeostasis liver and in diseased liver. Additionally, nanodelivery systems provide a novel strategy for treating incurable diseases. The appearance of a targeted delivery has profoundly improved the application of NPs to liver diseases.
Asunto(s)
Sistemas de Liberación de Medicamentos , Hepatopatías , Nanopartículas , Humanos , Hepatopatías/tratamiento farmacológico , Hepatopatías/metabolismo , Animales , Sistemas de Liberación de Medicamentos/métodos , Sistema de Administración de Fármacos con Nanopartículas/química , Hígado/metabolismo , Hígado/efectos de los fármacos , Portadores de Fármacos/química , Nanomedicina/métodosRESUMEN
In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.
Asunto(s)
Sistemas CRISPR-Cas , Citocromo P-450 CYP3A , Técnicas de Inactivación de Genes , Hepatocitos , Bovinos , Animales , Hepatocitos/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Técnicas de Inactivación de Genes/métodos , Línea CelularRESUMEN
Exposure to the organophosphate esters (OPEs), used as flame retardants and plasticizers, is associated with a variety of adverse health effects including an increase in the incidence of fatty liver diseases. The goal of this study was to investigate the effects of six OPEs, all detected in Canadian house dust, on the phenotype and function of HepG2 liver cells. We used high-content imaging to investigate the effects of these OPEs on cell survival, mitochondria, oxidative stress, lipid droplets, and lysosomes. Effects on the autophagy/lipophagy pathway were evaluated using confocal microscopy. The triaryl OPEs (isopropylated triphenylphosphate [IPPP], tris(methylphenyl) phosphate [TMPP], and triphenyl phosphate [TPHP]) were more cytotoxic than non-triaryl OPEs (tris(2-butoxyethyl) phosphate [TBOEP], tris(1-chloro-2-propyl) phosphate [TCIPP], and tris(1,3-dichloro-2-propyl) phosphate [TDCIPP]). Exposure to most OPEs increased total mitochondria, reduced reactive oxygen species, and increased total lipid droplet areas and lysosomal intensity. Potency ranking was done using the lowest benchmark concentration/administered equivalent dose method and toxicological prioritization index analyses to integrate all phenotypic endpoints. IPPP, TBOEP, and TPHP ranked as the most potent OPEs, whereas TMPP, TCIPP, and TDCIPP were relatively less bioactive. Confocal microscopic analysis demonstrated that IPPP reduced the colocalization of lipid droplets (PLIN2), lysosomes (LAMP1), and autophagosomes (p62), disrupting autophagy. In contrast, TBOEP rescued cells from bafilomycin A1-induced inhibition of autophagy and/or increased autophagic flux. Together, these data demonstrate that OPEs have adverse effects on HepG2 cells. Further, OPE-induced dysregulation of autophagy may contribute to the association between OPE exposure and adverse effects on liver lipid homeostasis.
Asunto(s)
Autofagia , Retardadores de Llama , Organofosfatos , Estrés Oxidativo , Plastificantes , Humanos , Retardadores de Llama/toxicidad , Plastificantes/toxicidad , Células Hep G2 , Organofosfatos/toxicidad , Autofagia/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Supervivencia Celular/efectos de los fármacos , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ésteres/toxicidadRESUMEN
Cimicifuga racemosa extracts (CREs) have gained well-established use for the treatment of menopausal symptoms such as hot flushes and excessive sweating, and weight gain. While the clinical effects of CREs have been well documented, the mechanisms underlying these effects are largely unknown. More recently, the metabolic effects of the CRE Ze 450 were demonstrated in cultured cells in vitro and in mouse models of obesity in vivo. At the molecular level, metabolic regulation, enhanced insulin sensitivity, and increased glucose uptake were linked to the activation of AMP-activated protein kinase (AMPK). Therefore, we tested the effects of Ze 450 on AMPK phosphorylation and thus activation in cells from different tissues, i.e., murine C2C12 myoblast cells, human HEPG2 liver cells, mouse HT22 neuronal cells, and in murine 3T3L1 adipocytes. Using a FRET-based HTRF-assay, we found that Ze 450 induced AMPK phosphorylation and the activation of this key enzyme of metabolic regulation in cells from various different tissues including C2C12 (muscle), HEPG2 (liver), HT22 (hippocampal), and 3T3-L1 (adipocyte) cells. In C2C12 muscle cells, enhanced AMPK activation was accompanied by reduced mitochondrial respiration and enhanced glucose uptake. Further, Ze 450 enhanced the resilience of the cells against oxidative death induced by ferroptosis inducers erastin or RSL3. Our findings suggest a general effect of Cimicifuga racemosa on AMPK activation in different tissues and across species. This may have a significant impact on expanded therapeutic applications of Ze 450, since AMPK activation and the related metabolic effects have been previously associated with anti-aging effects and the prevention of the metabolic syndrome.
RESUMEN
The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.
Asunto(s)
Citocromo P-450 CYP1A1 , Xenobióticos , Bovinos , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistemas CRISPR-Cas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/metabolismo , Línea CelularRESUMEN
BACKGROUND: Bisphenol A (BPA) is an exogenous endocrine disruptor mimicking hormones closely associated with health complications, such as cancer progression. BPA is also related to an increase in the prevalence of obesity-related diseases due to its obesogenic action. Bombesin-like receptor 3 (BRS3) is an important factor that should be considered in the adipogenic gene network, as depletion of this gene alters adiposity. METHODS: Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. RESULTS: The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment. CONCLUSION: The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.
Asunto(s)
Bombesina , Interleucina-6 , Fenoles , Humanos , Bombesina/farmacología , Medios de Cultivo Condicionados/farmacología , Interleucina-6/genética , Interleucina-6/farmacología , Compuestos de Bencidrilo/toxicidad , Inflamación/inducido químicamente , Inflamación/genética , Hígado/metabolismo , Proliferación Celular , ARN Mensajero/genética , ARN Mensajero/metabolismo , ADNRESUMEN
Chlorpyrifos (Diethoxy-sulfanylidene-(3,5,6-trichloropyridin-2-yl) oxy-λ5-phosphane, CPF) was extensively used organophosphorus pesticide, extensively deteriorating public problem with the enrichment in the water bodies. Eucalyptol (1,3,3-Trimethyl-2-oxabicyclo[2.2.2] octane, EUC), a colorless cyclic monoterpene oxide, has shown anti-inflammatory and anti-oxidation properties. To explore the effect of EUC on CPF-induced necroptosis in the grass carp liver cells (L8824 cells), we treated L8824 cells with 60 mM CPF and 5 µM EUC for 24 h. The results showed that CPF exposed lead to excessive accumulation of reactive oxygen species (ROS) and oxidative stress, activating the NF-κB and RIPK1 pathway, increasing the level of cell necroptosis. However, EUC treatment attenuated the toxic effects of CPF treatment on L8824 cells. In summary, the study demonstrated that CPF induced necroptosis and inflammation, and EUC treatment could decrease CPF-caused cell injury.
Asunto(s)
Carpas , Cloropirifos , Plaguicidas , Animales , Cloropirifos/toxicidad , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Eucaliptol/metabolismo , Eucaliptol/farmacología , Plaguicidas/farmacología , Carpas/metabolismo , Necroptosis , Compuestos Organofosforados/metabolismo , Estrés Oxidativo , Hígado/metabolismoRESUMEN
Microplastics (MPs) are ubiquitous in environmental compartments and consumer products. Although liver is frequently reported to be a target organ of MP accumulation in mammals, few studies have focused on MP hepatoxicity in humans. In this study, we used normal human liver cells, THLE-2, to assess the acute and chronic toxicity of polystyrene (PS) MPs with sizes of 0.1 and 1 µm. The results showed that after 48 h of exposure, both kinds of PS MPs could enter THLE-2 cells and cause no obviously acute cytotoxicity at <20 µg/mL. In contrast, metabolomic analysis revealed that 90 days of PS MPs exposure at environmentally relevant dose (0.2 µg/mL) could significantly alter the metabolic profiles of the cells, especially the nanosized MPs. KEGG pathway analysis showed that the ATP-binding cassette (ABC) transporter pathway was the most significantly changed pathway. Cell functional tests confirmed that chronic PS MP treatment could inhibit the activity of the ABC efflux transporter and further increase the cytotoxicity of arsenic, indicating that the PS MPs had a chemosensitizing effect. These findings underline the chronic risk of MPs to human liver.
Asunto(s)
Poliestirenos , Contaminantes Químicos del Agua , Animales , Humanos , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Microplásticos/toxicidad , Microplásticos/metabolismo , Plásticos/toxicidad , Transportadoras de Casetes de Unión a ATP , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Mamíferos/metabolismoRESUMEN
BACKGROUND: Oxidative stress is a key mechanism underlying arsenicinduced liver injury, the Kelch-like epichlorohydrin-related protein 1 (Keap1)/nuclear factor E2 related factor 2 (Nrf2) pathway is the main regulatory pathway involved in antioxidant protein and phase II detoxification enzyme expression. The aim of the present study was to investigate the role and mechanism of baicalein in the alleviation of arsenic-induced oxidative stress in normal human liver cells. METHODS: Normal human liver cells (MIHA cells) were treated with NaAsO2 (0, 5, 10, 20 µM) to observe the effect of different doses of NaAsO2 on MIHA cells. In addition, the cells were treated with DMSO (0.1%), NaAsO2 (20 µM), or a combination of NaAsO2 (20 µM) and Baicalein (25, 50 or 100 µM) for 24 h to observe the antagonistic effect of Baicalein on NaAsO2. Cell viability was determined using a Cell Counting Kit- 8 (CCK-8 kit). The intervention doses of baicalein in subsequent experiments were determined to be 25, 50 and 100µM. The intracellular content of reactive oxygen species (ROS) was assessed using a 2',7'-dichlorodihydrofluorescein diacetate (DCFHDA) probe kit. The malonaldehyde (MDA), Cu-Zn superoxide dismutase (Cu-Zn SOD) and glutathione peroxidase (GSH-Px) activities were determined by a test kit. The expression levels of key genes and proteins were determined by real-time fluorescence quantitative polymerase chain reaction (qPCR) and Western blotting. RESULTS: Baicalein upregulated the protein expression levels of phosphorylated Nrf2 (p-Nrf2) and nuclear Nrf2, inhibited the downregulation of Nrf2 target genes induced by arsenic, and decreased the production of ROS and MDA. These results demonstrate that baicalein promotes Nrf2 nuclear translocation by upregulating p-Nrf2 and inhibiting the downregulation of Nrf2 target genes in arsenic-treated MIHA cells, thereby enhancing the antioxidant capacity of cells and reducing oxidative stress. CONCLUSION: Baicalein alleviated arsenic-induced oxidative stress through activation of the Keap1/Nrf2 signalling pathway in normal human liver cells.
Asunto(s)
Antioxidantes , Arsénico , Flavanonas , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Epiclorhidrina/metabolismo , Epiclorhidrina/farmacología , Estrés Oxidativo , HígadoRESUMEN
CBL0137, a promising small molecular anti-cancer drug candidate, has been found to effectively induce apoptosis via activating p53 and suppressing nuclear factor-kappa B (NF-κB). However, it is still not clear whether CBL0137 can induce necroptosis in liver cancer; and if so, what is the underlying molecular mechanism. Here we found that CBL0137 could significantly induce left-handed double helix structure Z-DNA formation in HepG2 cells as shown by Z-DNA specific antibody assay, which was further confirmed by observing the expression of Z-DNA binding protein 1 (ZBP1) and adenosine deaminase acting on RNA 1 (ADAR1). Interestingly, we found that caspase inhibition significantly promoted CBL0137-induced necroptosis, which was further supported with the increase of the late apoptosis and necrosis assessed by the flow cytometry. Furthermore, we found that CBL0137 can also induce the expression of the three necroptosis-related proteins: receptor interacting serine/threonine kinase 1 (RIPK1), receptor interacting serine/threonine kinase 3 (RIPK3), and mixed lineage kinase domain-like (MLKL). Taken together, it was assumed that CBL0137-indued necroptosis in liver cells was due to induction of Z-DNA and ZBP1, which activated RIPK1/RIPK3/MLKL pathway. This represents the first report on the induction of the Z-DNA-mediated necroptosis by CBL0137 in the liver cancer cells, which should provide new perspectives for CBL0137 treatment of liver cancer.
Asunto(s)
Antineoplásicos , Carbazoles , ADN de Forma Z , Neoplasias Hepáticas , Humanos , Proteínas Portadoras/metabolismo , Necroptosis , Proteínas Quinasas/metabolismo , Apoptosis , Antineoplásicos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/metabolismo , SerinaRESUMEN
Acute Liver Failure (ALF) is a life-threatening illness characterized by the rapid onset of abnormal liver biochemistries, coagulopathy, and the development of hepatic encephalopathy. Extracorporeal bioengineered liver (BEL) grafts could offer a bridge therapy to transplant or recovery. The present study describes the manufacture of clinical scale BELs created from decellularized porcine-derived liver extracellular matrix seeded entirely with human cells: human umbilical vein endothelial cells (HUVECs) and primary human liver cells (PHLCs). Decellularized scaffolds seeded entirely with human cells were shown to adhere to stringent sterility and safety guidelines and demonstrated increased functionality when compared to grafts seeded with primary porcine liver cells (PPLCs). BELs with PHLCs were able to clear more ammonia than PPLCs and demonstrated lower perfusion pressures during patency testing. Additionally, to determine the full therapeutic potential of BELs seeded with PHLCs, longer culture periods were assessed to address the logistical constraints associated with manufacturing and transporting a product to a patient. The fully humanized BELs were able to retain their function after cold storage simulating a product transport period. Therefore, this study demonstrates the manufacture of bioengineered liver grafts and their potential in the clinical setting as a treatment for ALF.
RESUMEN
Rumen-protected choline (RPC) supplementation in the periparturient period has in some instances prevented and alleviated fatty liver disease in dairy cows. Mechanistically, however, it is unclear how choline prevents the accumulation of lipid droplets (LD) in liver cells. In this study, primary liver cells isolated from liver tissue obtained via puncture biopsy from 3 nonpregnant mid-lactation multiparous Holstein cows (â¼160 d postpartum) were used. Analyses of LD via oil red O staining, protein abundance via Western blotting, and phospholipid content and composition measured by thin-layer chromatography and HPLC/mass spectrometry were performed in liver cells cultured in choline-deficient medium containing 150 µmol/L linoleic acid for 24 h. In a subsequent experiment, lipophagy was assessed in liver cells cultured with 30, 60, or 90 µmol/L choline-chloride. All data were analyzed statistically using SPSS 20.0 via t-tests or one-way ANOVA. Compared with liver cells cultured in Dulbecco's Modified Eagle Medium alone, choline deficiency increased the average diameter of LD (1.59 vs. 2.10 µm), decreased the proportion of small LD (<2 µm) from 75.3% to 56.6%, and increased the proportion of large LD (>4 µm) from 5.6% to 15.0%. In addition, the speed of LD fusion was enhanced by the absence of choline. Among phospholipid species, the phosphatidylcholine (PC) content of liver cells decreased by 34.5%. Seventeen species of PC (PC [18:2_22:6], PC [15:0_16:1], PC [14:0_20:4], and so on) and 6 species of lysophosphatidylcholine (LPC; LPC [15:0/0:0]), PC (22:2/0:0), LPC (20:2/0:0), and so on] were decreased, while PC (14:1_16:1) and LPC (0:0/20:1) were increased. Choline deficiency increased the triglyceride (TAG) content (0.57 vs. 0.39 µmol/mg) in liver cells and increased the protein abundance of sterol regulatory element binding protein 1, sterol regulatory element binding protein cleavage activation protein, and fatty acid synthase by 23.5%, 17%, and 36.1%, respectively. Upon re-supplementation with choline, the phenotype of LD (TAG content, size, proportion, and phospholipid profile) was reversed, and the ratio of autophagy marker LC3II/LC3I protein was significantly upregulated in a dose-dependent manner. Overall, at least in vitro in mid-lactation cows, these data demonstrated that PC synthesis is necessary for normal LD formation, and both rely on choline availability. According to the limitation of the source of liver cells used, further work should be conducted to ascertain that these effects are applicable to liver cells from postpartum cows, the physiological stage where the use of RPC has been implemented for the prevention and treatment of fatty liver.
Asunto(s)
Enfermedades de los Bovinos , Deficiencia de Colina , Femenino , Bovinos , Animales , Deficiencia de Colina/metabolismo , Deficiencia de Colina/veterinaria , Gotas Lipídicas/metabolismo , Colina/farmacología , Colina/metabolismo , Lactancia/fisiología , Hígado/metabolismo , Fosfolípidos/análisis , Suplementos Dietéticos/análisis , Dieta/veterinaria , Rumen/metabolismo , Leche/química , Enfermedades de los Bovinos/metabolismoRESUMEN
The untreated human immunodeficiency virus (HIV), a lentivirus species that attacks immune cells (CD4+ T cells), causes acquired immunodeficiency syndrome (AIDS). HIV-positive people manage HIV/AIDS by using antiretroviral therapy (ART). The ART treatment regimen contains two nucleoside reverse transcriptase inhibitors (NRTIs) and one non-nucleoside reverse transcriptase inhibitor/integrase strand transfer inhibitor. Tenofovir, an NRTI approved for managing HIV infection, is associated with hepatic steatosis and lactic acidosis, which are linked to mitochondrial toxicity and oxidative stress. Due to side-effects associated with ART, people living with HIV often use medicinal plants or a combination of medicinal plants with ART to promote adherence and diminish the side-effects and cytotoxicity. The Moringa oleifera (MO) tree from the family of Moringaceae is among the medicinal trees studied in managing HIV/AIDS in sub-Saharan Africa. The MO tree extracts have been reported to have inhibitory activity primarily against HIV due to their bioactive compounds. However, there is a scarcity of knowledge about the use of the MO tree amongst HIV/AIDS patients receiving ART in South Africa and its effect on patient compliance and outcomes. Thus, this review aims to outline the impact of MO aqueous leaf extract on oxidative stress and antioxidant responses in human HepG2 liver cells after exposure to antiretrovirals such as tenofovir. The review will contribute to a comprehensive understanding of the potential protective effect of MO aqueous leaf extract on tenofovir-induced cytotoxicity.
RESUMEN
Inflammasome activation plays a crucial role in the progression to more severe stages of non-alcoholic fatty liver disease (NAFLD), representing a promising therapeutic target. MCC950 is a small molecule acting as a potent and specific inhibitor of the canonical and non-canonical activation of the NLRP3 inflammasome, but its short plasmatic half-life limits its use. Herein, we report, for the first time, the encapsulation of MCC950 in poly(ethylene glycol) (PEG) liposomes (LPs) that are specifically functionalized with an antibody against Frizzled 1 (FZD1), a g-coupled protein involved in the WNT pathway and overexpressed on inflammasome-activated macrophages. MCC950, encapsulated into PEG-LP formulations conjugated with an anti-FZD1 antibody, inhibits the NLRP3 inflammasome activation at concentrations 10 times lower than that of the free drug in THP-1 cells. Luminescent carbon dots (CDs) were also co-encapsulated with MCC950 in LPs to obtain optically traceable nanoformulations that have proved the enhanced ability of the targeted LPs to be internalized into THP-1 cells with respect to their nontargeted counterparts. Our results suggest that MCC950 encapsulation into targeted LPs represents a valuable strategy to achieve reformulation of the NLRP3 inhibitor, able to significantly curtail the threshold of MCC950 doses for inhibiting inflammasome activation, thus offering a new therapeutic approach.