Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 17: 1418606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165716

RESUMEN

Objective: Preclinical models of seizures and epilepsy in rodents contributed substantially to the discovery of currently available antiseizure medications. These were also broadly used for investigation of processes of epileptogenesis. Nevertheless, rodent models pose some limitations, thus, new models using alternative species are in high demand. The aim of this study was to describe a new model of seizures/epilepsy induced by the cholinomimetic agent, pilocarpine (PILO), in larval zebrafish. Methods: Local field potential (LFP) recordings were conducted to analyze electroencephalographic discharges and correlate it with larval behavior. Hematoxylin and eosin (H&E) staining, as well as TUNEL staining were performed to analyze morphology and apoptosis, respectively. Real-time quantitative polymerase chain reaction (qRT-PCR) was undertaken for gene expression analysis. Results: Acute exposure to PILO, in a concentration-dependent manner, induces electroencephalographic discharges in larval zebrafish, which behaviorally manifest as decreased locomotion and moving time, but enhanced movement velocity. The PILO-induced seizure-like activity is behaviorally distinct from this induced by the application of chemoconvulsant pentylenetetrazole (PTZ). Zebrafish larvae previously exposed to PILO (2 h), after a washing out period, exhibit spontaneous, unprovoked discharges and apoptotic changes in their brains. Significance: Here, we comprehensively investigated a new model of PILO-induced seizures/epilepsy in larval zebrafish. We propose that this model may be used to study epileptogenesis and for antiseizure drug screening purposes.

2.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128940

RESUMEN

The orbitofrontal cortex and amygdala collaborate in outcome-guided decision-making through reciprocal projections. While serotonin transporter knockout (SERT-/-) rodents show changes in outcome-guided decision-making, and in orbitofrontal cortex and amygdala neuronal activity, it remains unclear whether SERT genotype modulates orbitofrontal cortex-amygdala synchronization. We trained SERT-/- and SERT+/+ male rats to execute a task requiring to discriminate between two auditory stimuli, one predictive of a reward (CS+) and the other not (CS-), by responding through nose pokes in opposite-side ports. Overall, task acquisition was not influenced by genotype. Next, we simultaneously recorded local field potentials in the orbitofrontal cortex and amygdala of both hemispheres while the rats performed the task. Behaviorally, SERT-/- rats showed a nonsignificant trend for more accurate responses to the CS-. Electrophysiologically, orbitofrontal cortex-amygdala synchronization in the beta and gamma frequency bands during response selection was significantly reduced and associated with decreased hubness and clustering coefficient in both regions in SERT-/- rats compared to SERT+/+ rats. Conversely, theta synchronization at the time of behavioral response in the port associated with reward was similar in both genotypes. Together, our findings reveal the modulation by SERT genotype of the orbitofrontal cortex-amygdala functional connectivity during an auditory discrimination task.


Asunto(s)
Amígdala del Cerebelo , Discriminación en Psicología , Ritmo Gamma , Corteza Prefrontal , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Masculino , Corteza Prefrontal/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/deficiencia , Amígdala del Cerebelo/fisiología , Ritmo Gamma/fisiología , Ratas , Discriminación en Psicología/fisiología , Ritmo beta/fisiología , Vías Nerviosas/fisiología , Recompensa , Percepción Auditiva/fisiología , Estimulación Acústica , Ratas Transgénicas
3.
Artículo en Inglés | MEDLINE | ID: mdl-39126158

RESUMEN

AIM: Photopharmacology is a new technique for modulating biological phenomena through the photoconversion of substances in a specific target region at precise times. Caged compounds are thought to be compatible with photopharmacology as uncaged ligands are released and function in a light irradiation-dependent manner. Here, we investigated whether a microscale light-emitting diode (MicroLED) probe is applicable for the photoconversion of caged-glutamate (caged-Glu) in vivo. METHODS: A needle-shaped MicroLED probe was fabricated and inserted into the mouse hippocampal dentate gyrus (DG) with a cannula for drug injection and a recording electrode for measuring the local field potential (LFP). Artificial cerebrospinal fluid (ACSF) or caged-Glu was infused into the DG and illuminated with light from a MicroLED probe. RESULTS: In the caged-Glu-injected DG, the LFP changed in the 10-20 Hz frequency ranges after light illumination, whereas there was no change in the ACSF control condition. CONCLUSION: The MicroLED probe is applicable for photopharmacological experiments to modulate LFP with caged-Glu in vivo.

4.
J Neurophysiol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015071

RESUMEN

To support complex cognition, neuronal circuits must integrate information across multiple temporal scales, ranging from milliseconds to decades. Neuronal timescales describe the duration over which activity within a network persists, posing a putative explanatory mechanism for how information might be integrated over multiple temporal scales. Little is known about how timescales develop in human neural circuits or other model systems, limiting insight into how the functional dynamics necessary for cognition emerge. In our work, we show that neuronal timescales develop in a non-linear fashion in both human cortical organoids and dissociated rat hippocampus cultures. We use spectral parameterization of spiking activity to extract an estimate of neuronal timescale that is unbiased by co-evolving oscillations. Cortical organoid timescales begin to increase around month 6 post-differentiation. We complement these findings with an analysis of timescales in rodent hippocampal dissociated cultures over development and see that timescales decrease from in vitro days 13-23 before stabilizing. We speculate that cortical organoid development over the duration studied here reflects an earlier stage of a generalized developmental timeline in contrast to the rodent hippocampal cultures, potentially accounting for differences in timescale developmental trajectories. The fluctuation of timescales might be an important developmental feature that reflects the changing complexity and information capacity in developing neuronal circuits.

5.
Front Neurol ; 15: 1419835, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962474

RESUMEN

Objective: To analyze the local field potentials (LFPs) in patients with focal drug-resistant epilepsy (DRE) from the anterior nucleus of the thalamus (ANT) during inter-ictal state and seizure state. Method: ANT stereotactic EEG (SEEG) recordings were studied in four patients with focal temporal lobe epilepsy. SEEG data was classified as inter-ictal and ictal state and sub-categorized into electrographic (ESz), focal aware seizure (FAS), focal with impaired awareness (FIA), or focal to bilateral tonic-clonic seizure (FBTC). LFP was analyzed at 4 Hz, 8 Hz, 16 Hz, 32 Hz, high gamma (100 Hz), and ripples (200 Hz) using spectrogram analysis and a statistical comparison of normalized power spectral density (PSD) averaged during seizures versus pre-ictal baseline segments. Result: The LFP recordings were analyzed for 162 seizures (127 ESz, 23 FAS, 6 FIA, and 6 FBTC). Based on time-frequency data (spectrogram), a broad band of activity, occurring between 2 and 6 Hz and centered at 4 Hz, and thin-band activity occurring specifically at 8 Hz on the frequency spectrogram were observed during the inter-ictal state. Statistically significant changes in LFP-PSD were seen for FAS, FIA, and FBTC. We observed a significant gain in LFP at the lower frequency band during FAS at 4 Hz, FIA, and FBTC at 4, 8, and 16 Hz while also observing increases at higher frequencies during FBTC at 100 and 200 Hz and a decrease during FAS seizures at 32 Hz. In contrast, no significant change in LFP power was seen for electrographic seizures. Interpretation: Our observations from a limited dataset indicate that all clinical seizure types, but not electrographic seizures, caused a change in ANT-LFP based on the magnitude of the associated power spectral density (PSD). Future work will be needed to validate the use of ANT-LFP at these frequencies as accurate measurements of seizure occurrence and severity. This work represents a first step toward understanding ANT thalamic LFP patterns during focal seizures and developing adaptive DBS strategies.

6.
Brain Res ; 1842: 149118, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986828

RESUMEN

Abnormal patterns of brain connectivity characterize epilepsy. However, little is known about these patterns during the stages preceding a seizure induced by pentylenetetrazol (PTZ). To investigate brain connectivity in male Wistar rats during the preictal phase of PTZ-induced seizures (60 mg/kg), we recorded local field potentials in the primary motor (M1) cortex, the ventral anterior (VA) nucleus of the thalamus, the hippocampal CA1 area, and the dentate gyrus (DG) during the baseline period and after PTZ administration. While there were no changes in power density between the baseline and preictal periods, we observed an increase in directional functional connectivity in theta from the hippocampal formation to M1 and VA, as well as in middle gamma from DG to CA1 and from CA1 to M1, and also in slow gamma from M1 to CA1. These findings are supported by increased phase coherence between DG-M1 in theta and CA1-M1 in middle gamma, as well as enhanced phase-amplitude coupling of delta-middle gamma in M1 and delta-fast gamma in CA1. Interestingly, we also noted a slight decrease in phase synchrony between CA1 and VA in slow gamma. Together, these results demonstrate increased functional connectivity between brain regions during the PTZ-induced preictal period, with this increase being particularly driven by the hippocampal formation.

7.
Biomed Phys Eng Express ; 10(5)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38959873

RESUMEN

Objective. Recent innovative neurostimulators allow recording local field potentials (LFPs) while performing motor tasks monitored by wearable sensors. Inertial sensors can provide quantitative measures of motor impairment in people with subthalamic nucleus deep brain stimulation. To the best of our knowledge, there is no validated method to synchronize inertial sensors and neurostimulators without an additional device. This study aims to define a new synchronization method to analyze disease-related brain activity patterns during specific motor tasks and evaluate how LFPs are affected by stimulation and medication.Approach. Fourteen male subjects treated with subthalamic nucleus deep brain stimulation were recruited to perform motor tasks in four different medication and stimulation conditions. In each condition, a synchronization protocol was performed consisting of taps on the implanted neurostimulator, which produces artifacts in the LFPs that a nearby inertial sensor can simultaneously record.Main results. In 64% of the recruited subjects, induced artifacts were detected at least in one condition. Among those subjects, 83% of the recordings could be synchronized offline analyzing LFPs and wearables data. The remaining recordings were synchronized by video analysis.Significance. The proposed synchronization method does not require an external system (e.g., TENS electrodes) and can be easily integrated into clinical practice. The procedure is simple and can be carried out in a short time. A proper and simple synchronization will also be useful to analyze subthalamic neural activity in the presence of specific events (e.g., freezing of gait events) to identify predictive biomarkers.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Estimulación Encefálica Profunda/instrumentación , Masculino , Persona de Mediana Edad , Artefactos , Procesamiento de Señales Asistido por Computador , Adulto , Dispositivos Electrónicos Vestibles , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Encéfalo , Anciano
8.
Sci Rep ; 14(1): 16799, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039107

RESUMEN

The auditory steady state response (ASSR) arises when periodic sounds evoke stable responses in auditory networks that reflect the acoustic characteristics of the stimuli, such as the amplitude of the sound envelope. Larger for some stimulus rates than others, the ASSR in the human electroencephalogram (EEG) is notably maximal for sounds modulated in amplitude at 40 Hz. To investigate the local circuit underpinnings of the large ASSR to 40 Hz amplitude-modulated (AM) sounds, we acquired skull EEG and local field potential (LFP) recordings from primary auditory cortex (A1) in the rat during the presentation of 20, 30, 40, 50, and 80 Hz AM tones. 40 Hz AM tones elicited the largest ASSR from the EEG acquired above auditory cortex and the LFP acquired from each cortical layer in A1. The large ASSR in the EEG to 40 Hz AM tones was not due to larger instantaneous amplitude of the signals or to greater phase alignment of the LFP across the cortical layers. Instead, it resulted from decreased latency variability (or enhanced temporal consistency) of the 40 Hz response. Statistical models indicate the EEG signal was best predicted by LFPs in either the most superficial or deep cortical layers, suggesting deep layer coordinators of the ASSR. Overall, our results indicate that the recruitment of non-uniform but more temporally consistent responses across A1 layers underlie the larger ASSR to amplitude-modulated tones at 40 Hz.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Electroencefalografía , Potenciales Evocados Auditivos , Corteza Auditiva/fisiología , Electroencefalografía/métodos , Potenciales Evocados Auditivos/fisiología , Ratas , Animales , Masculino , Percepción Auditiva/fisiología , Humanos
9.
Comput Biol Med ; 180: 108934, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39079417

RESUMEN

BACKGROUND: Understanding the pathophysiological dynamics that underline Interictal Epileptiform Events (IEEs) such as epileptic spikes, spike-and-waves or High-Frequency Oscillations (HFOs) is of major importance in the context of neocortical refractory epilepsy, as it paves the way for the development of novel therapies. Typically, these events are detected in Local Field Potential (LFP) recordings obtained through depth electrodes during pre-surgical investigations. Although essential, the underlying pathophysiological mechanisms for the generation of these epileptic neuromarkers remain unclear. The aim of this paper is to propose a novel neurophysiologically relevant reconstruction of the neocortical microcircuitry in the context of epilepsy. This reconstruction intends to facilitate the analysis of a comprehensive set of parameters encompassing physiological, morphological, and biophysical aspects that directly impact the generation and recording of different IEEs. METHOD: a novel microscale computational model of an epileptic neocortical column was introduced. This model incorporates the intricate multilayered structure of the cortex and allows for the simulation of realistic interictal epileptic signals. The proposed model was validated through comparisons with real IEEs recorded using intracranial stereo-electroencephalography (SEEG) signals from both humans and animals. Using the model, the user can recreate epileptiform patterns observed in different species (human, rodent, and mouse) and study the intracellular activity associated with these patterns. RESULTS: Our model allowed us to unravel the relationship between glutamatergic and GABAergic synaptic transmission of the epileptic neural network and the type of generated IEE. Moreover, sensitivity analyses allowed for the exploration of the pathophysiological parameters responsible for the transitions between these events. Finally, the presented modeling framework also provides an Electrode Tissue Model (ETI) that adds realism to the simulated signals and offers the possibility of studying their sensitivity to the electrode characteristics. CONCLUSION: The model (NeoCoMM) presented in this work can be of great use in different applications since it offers an in silico framework for sensitivity analysis and hypothesis testing. It can also be used as a starting point for more complex studies.

10.
Brain Stimul ; 17(4): 769-779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38906529

RESUMEN

BACKGROUND: Enhancing slow waves, the electrophysiological (EEG) manifestation of non-rapid eye movement (NREM) sleep, could potentially benefit patients with Parkinson's disease (PD) by improving sleep quality and slowing disease progression. Phase-targeted auditory stimulation (PTAS) is an approach to enhance slow waves, which are detected in real-time in the surface EEG signal. OBJECTIVE: We aimed to test whether the local-field potential of the subthalamic nucleus (STN-LFP) can be used to detect frontal slow waves and assess the electrophysiological changes related to PTAS. METHODS: We recruited patients diagnosed with PD and undergoing Percept™ PC neurostimulator (Medtronic) implantation for deep brain stimulation of STN (STN-DBS) in a two-step surgery. Patients underwent three full-night recordings, including one between-surgeries recording and two during rehabilitation, one with DBS+ (on) and one with DBS- (off). Surface EEG and STN-LFP signals from Percept PC were recorded simultaneously, and PTAS was applied during sleep in all three recording sessions. RESULTS: Our results show that during NREM sleep, slow waves of the cortex and STN are time-locked. PTAS application resulted in power and coherence changes, which can be detected in STN-LFP. CONCLUSION: Our findings suggest the feasibility of implementing PTAS using solely STN-LFP signal for slow wave detection, thus without a need for an external EEG device alongside the implanted neurostimulator. Moreover, we propose options for more efficient STN-LFP signal preprocessing, including different referencing and filtering to enhance the reliability of cortical slow wave detection in STN-LFP recordings.


Asunto(s)
Estimulación Acústica , Estimulación Encefálica Profunda , Electroencefalografía , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiopatología , Núcleo Subtalámico/fisiología , Masculino , Estimulación Encefálica Profunda/métodos , Persona de Mediana Edad , Femenino , Estimulación Acústica/métodos , Anciano
11.
Clin Neurophysiol ; 165: 36-43, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38943791

RESUMEN

OBJECTIVE: We aimed to establish specific biomarkers of Parkinson's disease (PD) by comparing activity of more affected (MA) and less affected (LA) subthalamic nucleus (STN) of patients with prominent clinical asymmetry. METHODS: We recorded single unit activity and local field potentials (LFP) of the STN during deep brain stimulation surgeries. Neuronal firing patterns and discharge rate, as well as oscillatory features of both single cells and LFP, were analyzed. RESULTS: We observed notable differences in proportions of irregular-burst and pause-burst, but not tonic neurons, between the hemispheres. Oscillations of pause-burst neurons correlated significantly with the bradykinesia and rigidity scores of the corresponding hemibody. LFP derived from MA STN featured greater power in 12-15 Hz. CONCLUSIONS: Our results provide evidence that the increased proportion of units with prolonged pauses may be associated with PD. We also speculate that some of them may gain rhythmicity in the alpha-beta range in relation to hypokinetic symptoms, long-term disease, or both. SIGNIFICANCE: Our findings highlight the relation between specific oscillatory features of the STN, predominance of subthalamic pause-burst units and PD pathophysiology.


Asunto(s)
Ritmo beta , Estimulación Encefálica Profunda , Neuronas , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico , Núcleo Subtalámico/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Ritmo beta/fisiología , Anciano , Neuronas/fisiología , Ritmo alfa/fisiología
12.
Neuroimage ; 297: 120699, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38944172

RESUMEN

After more than 30 years of extensive investigation, impressive progress has been made in identifying the neural correlates of consciousness (NCC). However, the functional role of spatiotemporally distinct consciousness-related neural activity in conscious perception is debated. An influential framework proposed that consciousness-related neural activities could be dissociated into two distinct processes: phenomenal and access consciousness. However, though hotly debated, its authenticity has not been examined in a single paradigm with more informative intracranial recordings. In the present study, we employed a visual awareness task and recorded the local field potential (LFP) of patients with electrodes implanted in cortical and subcortical regions. Overall, we found that the latency of visual awareness-related activity exhibited a bimodal distribution, and the recording sites with short and long latencies were largely separated in location, except in the lateral prefrontal cortex (lPFC). The mixture of short and long latencies in the lPFC indicates that it plays a critical role in linking phenomenal and access consciousness. However, the division between the two is not as simple as the central sulcus, as proposed previously. Moreover, in 4 patients with electrodes implanted in the bilateral prefrontal cortex, early awareness-related activity was confined to the contralateral side, while late awareness-related activity appeared on both sides. Finally, Granger causality analysis showed that awareness-related information flowed from the early sites to the late sites. These results provide the first LFP evidence of neural correlates of phenomenal and access consciousness, which sheds light on the spatiotemporal dynamics of NCC in the human brain.


Asunto(s)
Concienciación , Estado de Conciencia , Humanos , Estado de Conciencia/fisiología , Masculino , Femenino , Adulto , Concienciación/fisiología , Percepción Visual/fisiología , Electrocorticografía , Encéfalo/fisiología , Adulto Joven , Electrodos Implantados , Corteza Prefrontal/fisiología
13.
Horm Behav ; 164: 105587, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905819

RESUMEN

Estrogen plays a crucial role in regulating various brain functions, including cognitive, emotional, and social behaviors. Menopausal women face a decline in estrogen levels, which has been linked to several physical and mental health issues. However, the impact of estrogen on the olfactory bulb-nucleus accumbens (OB-NAc) circuit, which is essential for regulating emotions and cognitive behaviors, remains poorly understood. To test the hypothesis that estrogen deficiency affects signal processing, we recorded local field potentials (LFPs) using intracranial electrodes implanted in four-week-old ovariectomized (OVX) mice during an open-field test (OFT). The results showed a decrease in locomotor activity and increase in anxiety-like behaviors in OVX mice. Furthermore, we found a decrease in high-gamma power in the OB. We analyzed coherence and inter-region phase-amplitude coupling (ir-PAC) to explore the connectivity between the OB and NAc. We observed a decrease in low-gamma and high-gamma coherence in OVX mice. Additionally, we found that the direction of connectivity from the NAc to the OB was disrupted in OVX mice. In summary, our study provides evidence that estrogen deficiency is linked to synchronized neural connectivity changes in the OB-NAc circuit. These findings have implications for our understanding of the roles played by the OB-NAc neural circuit and estrogen in the regulation of general exploratory behavior and anxiety-like behavior.


Asunto(s)
Estrógenos , Núcleo Accumbens , Bulbo Olfatorio , Ovariectomía , Animales , Femenino , Bulbo Olfatorio/fisiología , Núcleo Accumbens/fisiología , Núcleo Accumbens/metabolismo , Ratones , Estrógenos/deficiencia , Ratones Endogámicos C57BL , Ansiedad/fisiopatología , Vías Nerviosas/fisiología
14.
medRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38883720

RESUMEN

Background: Neuropsychiatric symptoms are common and disabling in Parkinson's disease (PD), with troublesome anxiety occurring in one-third of patients. Management of anxiety in PD is challenging, hampered by insufficient insight into underlying mechanisms, lack of objective anxiety measurements, and largely ineffective treatments.In this study, we assessed the intracranial neurophysiological correlates of anxiety in PD patients treated with deep brain stimulation (DBS) in the laboratory and at home. We hypothesized that low-frequency (theta-alpha) activity would be associated with anxiety. Methods: We recorded local field potentials (LFP) from the subthalamic nucleus (STN) or the globus pallidus pars interna (GPi) DBS implants in three PD cohorts: 1) patients with recordings (STN) performed in hospital at rest via perioperatively externalized leads, without active stimulation, both ON or OFF dopaminergic medication; 2) patients with recordings (STN or GPi) performed at home while resting, via a chronically implanted commercially available sensing-enabled neurostimulator (Medtronic Percept™ device), ON dopaminergic medication, with stimulation both ON or OFF; 3) patients with recordings performed at home while engaging in a behavioral task via STN and GPi leads and electrocorticography paddles (ECoG) over premotor cortex connected to an investigational sensing-enabled neurostimulator, ON dopaminergic medication, with stimulation both ON or OFF.Trait anxiety was measured with validated clinical scales in all participants, and state anxiety was measured with momentary assessment scales at multiple time points in the two at-home cohorts. Power in theta (4-8 Hz) and alpha (8-12 Hz) ranges were extracted from the LFP recordings, and their relation with anxiety ratings was assessed using linear mixed-effects models. Results: In total, 33 PD patients (59 hemispheres) were included. Across three independent cohorts, with stimulation OFF, basal ganglia theta power was positively related to trait anxiety (all p<0.05). Also in a naturalistic setting, with individuals at home at rest with stimulation and medication ON, basal ganglia theta power was positively related to trait anxiety (p<0.05). This relationship held regardless of the hemisphere and DBS target. There was no correlation between trait anxiety and premotor cortical theta-alpha power. There was no within-patient association between basal ganglia theta-alpha power and state anxiety. Conclusion: We showed that basal ganglia theta activity indexes trait anxiety in PD. Our data suggest that theta could be a possible physiomarker of neuropsychiatric symptoms and specifically of anxiety in PD, potentially suitable for guiding advanced DBS treatment tailored to the individual patient's needs, including non-motor symptoms.

15.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38725292

RESUMEN

The local field potential (LFP) is an extracellular electrical signal associated with neural ensemble input and dendritic signaling. Previous studies have linked gamma band oscillations of the LFP in cortical circuits to sensory stimuli encoding, attention, memory, and perception. Inconsistent results regarding gamma tuning for visual features were reported, but it remains unclear whether these discrepancies are due to variations in electrode properties. Specifically, the surface area and impedance of the electrode are important characteristics in LFP recording. To comprehensively address these issues, we conducted an electrophysiological study in the V1 region of lightly anesthetized mice using two types of electrodes: one with higher impedance (1 MΩ) and a sharp tip (10 µm), while the other had lower impedance (100 KΩ) but a thicker tip (200 µm). Our findings demonstrate that gamma oscillations acquired by sharp-tip electrodes were significantly stronger than those obtained from thick-tip electrodes. Regarding size tuning, most gamma power exhibited surround suppression at larger gratings when recorded from sharp-tip electrodes. However, the majority showed enhanced gamma power at larger gratings when recorded from thick-tip electrodes. Therefore, our study suggests that microelectrode parameters play a significant role in accurately recording gamma oscillations and responsive tuning to sensory stimuli.


Asunto(s)
Ritmo Gamma , Ratones Endogámicos C57BL , Estimulación Luminosa , Corteza Visual Primaria , Animales , Ritmo Gamma/fisiología , Ratones , Estimulación Luminosa/métodos , Corteza Visual Primaria/fisiología , Masculino , Microelectrodos , Corteza Visual/fisiología , Electrodos
16.
Hippocampus ; 34(8): 380-392, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38785391

RESUMEN

The consolidation of memory is thought to ultimately depend on the synthesis of new proteins, since translational inhibitors such as anisomycin and cycloheximide adversely affect the permanence of long-term memory. However, when applied directly in brain, these agents also profoundly suppress neural activity to an extent that is directly correlated to the degree of protein synthesis inhibition caused. Given that neural activity itself is likely to help mediate consolidation, this finding is a serious criticism of the strict de novo protein hypothesis of memory. Here, we test the neurophysiological effects of another translational inhibitor, emetine. Unilateral intra-hippocampal infusion of emetine suppressed ongoing local field and multiunit activity at ipsilateral sites as compared to the contralateral hippocampus in a fashion that was positively correlated to the degree of protein synthesis inhibition as confirmed by autoradiography. This suppression of activity was also specific to the circumscribed brain region in which protein synthesis inhibition took place. These experiments provide further evidence that ongoing protein synthesis is necessary and fundamental for neural function and suggest that the disruption of memory observed in behavioral experiments using translational inhibitors may be due, in large part, to neural suppression.


Asunto(s)
Emetina , Hipocampo , Inhibidores de la Síntesis de la Proteína , Emetina/farmacología , Animales , Inhibidores de la Síntesis de la Proteína/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Ratas , Neuronas/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Ratas Sprague-Dawley
17.
Biol Pharm Bull ; 47(5): 1021-1027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38797694

RESUMEN

Learning and memory are affected by novel enriched environment, a condition where animals play and interact with a variety of toys and conspecifics. Exposure of animals to the novel enriched environments improves memory by altering neural plasticity during natural sleep, a process called memory consolidation. The hippocampus, a pivotal brain region for learning and memory, generates high-frequency oscillations called ripples during sleep, which is required for memory consolidation. Naturally occurring sleep shares characteristics in common with general anesthesia in terms of extracellular oscillations, guaranteeing anesthetized animals suitable to examine neural activity in a sleep-like state. However, it is poorly understood whether the preexposure of animals to the novel enriched environment modulates neural activity in the hippocampus under subsequent anesthesia. To ask this question, we allowed mice to freely explore the novel enriched environment or their standard environment, anesthetized them, and recorded local field potentials in the hippocampal CA1 area. We then compared the characteristics of hippocampal ripples between the two groups and found that the amplitude of ripples and the number of successive ripples were larger in the novel enriched environment group than in the standard environment group, suggesting that the afferent synaptic input from the CA3 area to the CA1 area was higher when the animals underwent the novel enriched environment. These results underscore the importance of prior experience that surpasses subsequent physical states from the neurophysiological point of view.


Asunto(s)
Hipocampo , Uretano , Animales , Uretano/farmacología , Masculino , Hipocampo/fisiología , Ratones , Ambiente , Ratones Endogámicos C57BL , Sueño/fisiología , Región CA1 Hipocampal/fisiología , Anestésicos Intravenosos/administración & dosificación , Consolidación de la Memoria/fisiología
18.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743818

RESUMEN

Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms, and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.

19.
Sci Rep ; 14(1): 12261, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806534

RESUMEN

We accurately reconstruct the Local Field Potential time series obtained from anesthetized and awake rats, both before and during CO 2 euthanasia. We apply the Eigensystem Realization Algorithm to identify an underlying linear dynamical system capable of generating the observed data. Time series exhibiting more intricate dynamics typically lead to systems of higher dimensions, offering a means to assess the complexity of the brain throughout various phases of the experiment. Our results indicate that anesthetized brains possess complexity levels similar to awake brains before CO 2 administration. This resemblance undergoes significant changes following euthanization, as signals from the awake brain display a more resilient complexity profile, implying a state of heightened neuronal activity or a last fight response during the euthanasia process. In contrast, anesthetized brains seem to enter a more subdued state early on. Our data-driven techniques can likely be applied to a broader range of electrophysiological recording modalities.


Asunto(s)
Algoritmos , Encéfalo , Animales , Encéfalo/fisiología , Ratas , Vigilia/fisiología , Eutanasia , Masculino , Eutanasia Animal/métodos , Dióxido de Carbono
20.
Curr Biol ; 34(12): 2570-2579.e5, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38772363

RESUMEN

In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12). We sought to explain the emergence of the cortical delta by assessing developmental changes in the activity of the parafacial zone (PZ), a medullary structure thought to regulate quiet sleep in adults. We recorded from the PZ in P10 and P12 rats and predicted an age-related increase in neural activity during increasing periods of delta-rich cortical activity. Instead, during quiet sleep, we discovered sleep-dependent rhythmic spiking activity-with intervening periods of total silence-phase locked to a local delta rhythm. Moreover, PZ and cortical delta were coherent at P12 but not at P10. PZ delta was also phase locked to respiration, suggesting sleep-dependent modulation of PZ activity by respiratory pacemakers in the ventral medulla. Disconnecting the main olfactory bulbs from the cortex did not diminish cortical delta, indicating that the influence of respiration on delta at this age is not mediated indirectly through nasal breathing. Finally, we observed an increase in parvalbumin-expressing terminals in the PZ across these ages, supporting a role for local GABAergic inhibition in the PZ's rhythmicity. The unexpected discovery of delta-rhythmic neural activity in the medulla-when cortical delta is also emerging-provides a new perspective on the brainstem's role in regulating sleep and promoting long-range functional connectivity in early development.


Asunto(s)
Corteza Cerebral , Ritmo Delta , Bulbo Raquídeo , Sueño , Animales , Sueño/fisiología , Ratas , Ritmo Delta/fisiología , Bulbo Raquídeo/fisiología , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo , Masculino , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...