Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 277: 116751, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39128328

RESUMEN

SMARCA2 and SMARCA4 are the mutually exclusive catalytic subunits of the mammalian Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, and have recently been considered as attractive synthetic lethal targets for PROTAC-based cancer therapy. However, the potential off-tissue toxicity towards normal tissues remains a concern. Here, we optimize a GSH-inducible SMARCA2/4-based PROTAC precursor with selective antitumor activity towards lung cancer cells and negligible cytotoxicity towards normal cells in both in vitro and in vivo studies. The precursor is not bioactive or cytotoxic, but preferentially responds to endogenous GSH in GSH-rich lung cancer cells, releasing active PROTAC to degrade SMARCA2/4 via PROTAC-mediated proteasome pathway. Subsequent xenograft model study reveals that selective SMARCA2/4 degradation in lung tumors triggers DNA damage and apoptosis, which significantly inhibits lung cancer cell proliferation without obvious adverse events towards normal tissues. This study exemplifies the targeted degradation of SMARCA2/4 in lung cancer cells by the GSH-responsive PROTAC precursor, highlighting its potential as an encouraging cancer therapeutic strategy.


Asunto(s)
Antineoplásicos , Proliferación Celular , Glutatión , Neoplasias Pulmonares , Factores de Transcripción , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Glutatión/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Apoptosis/efectos de los fármacos , Ratones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , ADN Helicasas/metabolismo , ADN Helicasas/antagonistas & inhibidores , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo
2.
Int J Biol Macromol ; 279(Pt 1): 135099, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197631

RESUMEN

The research study aimed to maximize the important medical role of star anise extract (SAE) through its loading on a widely available natural polymer (chitosan, Cs). Thus, SAE loaded chitosan nanoparticles (CsNPs) was prepared. The finding illustrated the formation of spherical particles of SAE loaded CsNPs as proved by transmission electron microscope (TEM). In addition, the average particle size of CsNPs and SAE loaded CsNPs are 131.8 ± 24.63 and 318.5 ± 73.94 nm, respectively. Scanning electron microscope (SEM) showed the presence of many spherical particles deposited on the surface of CsNPs owing to the deposition of SAE on the surface and encapsulated into pores of CsNPs. It also showed the presence of elements such as sodium, potassium, copper, magnesium, zinc, calcium, and iron, as well as the elements that accompanied with CsNPs: carbon, oxygen, nitrogen, and phosphorus. The extract was rich in bioactive components, such as anethole, shikimic acid, and different flavonoids, contributing to its medicinal qualities. The bioactive molecules in SAE were assessed by chromatographic analysis. Using the agar well diffusion test, the antibacterial qualities of CsNPs and SAE loaded CsNPs were evaluated against pathogenic bacteria linked to lung illnesses. The most significant inhibition zones showed that the SAE loaded CsNPs had the most antibacterial activity. The anticancer activity using MTT assay was used in the biological assessments to determine the cytotoxicity against the NCl-H460 lung cancer cell line. The results showed that CsNPs loaded with SAE considerably decreased cell viability in a dose-dependent manner, with the most significant anticancer impact by SAE loaded CsNPs. Furthermore, in vivo tests on lung cancer therapy revealed that when compared to other treatment groups, the SAE loaded CsNPs group showed the greatest reduction in tumor biomarkers and inflammation, as seen by decreased levels of Plasma malondialdehyde (MDA), tumor protein 53 (p53), Tumor necrosis factor-alpha (TNF- alpha), and fibronectin. Results concluded that these thorough characterizations, biological assessments, and antibacterial tests have confirmed the effective integration of SAE into CsNPs. Further, SAE loaded CsNPs could be a suitable option for various biomedical applications in tackling lung cancer and the inactivation of bacterial infection.

3.
Heliyon ; 10(7): e29332, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38623256

RESUMEN

As one of the most common malignant tumors in the world, lung cancer has limited benefits for patients despite its diverse treatment methods due to factors such as personalized medicine targeting histological type, immune checkpoint expression, and driver gene mutations. The high mortality rate of lung cancer is partly due to the immune-suppressive which limits the effectiveness of anti-cancer drugs and induces tumor cell resistance. The currently widely recognized TAM phenotypes include the anti-tumor M1 and pro-tumor M2 phenotypes. M2 macrophages promote the formation of an immune-suppressive microenvironment and hinder immune cell infiltration, thereby inhibiting activation of the anti-tumor immune system and aiding tumor cells in resisting treatment. Analyzing the relationship between different treatment methods and macrophages in the TME can help us better understand the impact of TAMs on lung cancer and confirm the feasibility of targeted TAM therapy. Targeting TAMs to reduce the M2/M1 ratio and reverse the immune-suppressive microenvironment can improve the clinical efficacy of conventional treatment methods and potentially open up more efficient combination treatment strategies, maximizing the benefit for lung cancer patients.

4.
Biochem Pharmacol ; 219: 115953, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036191

RESUMEN

The pharmacological interest in mitochondria is very relevant since these crucial organelles are involved in the pathogenesis of multiple diseases, such as cancer. In order to modulate cellular redox/oxidative balance and enhance mitochondrial function, numerous polyphenolic derivatives targeting mitochondria have been developed. Still, due to the drug resistance emergence in several cancer therapies, significant efforts are being made to develop drugs that combine the induction of mitochondrial metabolic reprogramming with the ability to generate reactive oxygen species, taking into consideration the varying metabolic profiles of different cell types. We previously developed a mitochondria-targeted antioxidant (AntiOxCIN6) by linking caffeic acid to lipophilic triphenylphosphonium cation through a 10-carbon aliphatic chain. The antioxidant activity of AntiOxCIN6 has been documented but how the mitochondriotropic compound impact energy metabolism of both normal and cancer cells remains unknown. We demonstrated that AntiOxCIN6 increased antioxidant defense system in HepG2 cells, although ROS clearance was ineffective. Consequently, AntiOxCIN6 significantly decreased mitochondrial function and morphology, culminating in a decreased capacity in complex I-driven ATP production without affecting cell viability. These alterations were accompanied by an increase in glycolytic fluxes. Additionally, we demonstrate that AntiOxCIN6 sensitized A549 adenocarcinoma cells for CIS-induced apoptotic cell death, while AntiOxCIN6 appears to cause metabolic changes or a redox pre-conditioning on lung MRC-5 fibroblasts, conferring protection against cisplatin. We propose that length and hydrophobicity of the C10-TPP+ alkyl linker play a significant role in inducing mitochondrial and cellular toxicity, while the presence of the antioxidant caffeic acid appears to be responsible for activating cytoprotective pathways.


Asunto(s)
Antioxidantes , Enfermedades Mitocondriales , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cisplatino/farmacología , Metabolismo Energético , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Mitocondriales/metabolismo , Pulmón/metabolismo
5.
Adv Mater ; 35(42): e2303718, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625141

RESUMEN

Developing a drug delivery platform that possesses universal drug loading capacity to meet various requirements of cancer treatment is a challenging yet interesting task. Herein, a self-assembled gelatin/silk fibroin composite (GSC) particle based drug delivery system is developed via microphase separation followed by desolvation process. Thanks to its preassembled microphase stage, this GSC system is suitable for varying types of drugs. The desolvation process fix drugs inside GSC rapidly and densify the GSC structure, thereby achieving efficient drug loading and providing comprehensive protection for loaded drugs. Actually, the size of this brand-new non-pore dependent drug delivery system can be easily adjusted from 100 nm to 20 µm to fit different scenarios. This work selects GSC with 3 µm diameter as the universal inhaled drug delivery platform, which shows an excellent transmucosal penetration and lung retention ability. Additionally, the MMP-9 sensitive degradation property of GSC enhances the targeted efficiency of drugs and reduces side effects. Intestinally, GSC can self-amplify the regulation of innate immunity to reverse the cancerous microenvironment into an antitumor niche, significantly improving the therapeutic effect of drugs. This study of GSC universal drug platform provides a new direction to develop the next-generation of drug delivery system for lung cancer.


Asunto(s)
Fibroínas , Neoplasias Pulmonares , Humanos , Fibroínas/química , Gelatina/química , Metaloproteinasa 9 de la Matriz , Neoplasias Pulmonares/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Microambiente Tumoral
6.
ACS Appl Mater Interfaces ; 15(26): 31273-31284, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37354089

RESUMEN

Kirsten rat sarcoma (KRAS) is the most commonly mutated oncogene in lung cancers. Gene therapy is emerging as a promising cancer treatment modality; however, the systemic administration of gene therapy has been limited by inefficient delivery to the lungs and systemic toxicity. Herein, we report a noninvasive aerosol inhalation nanoparticle (NP) system, termed "siKRAS@GCLPP NPs," to treat KRAS-mutant non-small-cell lung cancer (NSCLC). The self-assembled siKRAS@GCLPP NPs are capable of maintaining structural integrity during nebulization, with preferential distribution within the tumor-bearing lung. Inhalable siKRAS@GCLPP NPs show not only significant tumor-targeting capability but also enhanced antitumor activity in an orthotopic mouse model of human KRAS-mutant NSCLC. The nebulized delivery of siKRAS@GCLPP NPs demonstrates potent knockdown of mutated KRAS in tumor-bearing lungs without causing any observable adverse effects, exhibiting a better biosafety profile than the systemic delivery approach. The results present a promising inhaled gene therapy approach for the treatment of KRAS-mutant NSCLC and other respiratory diseases.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , ARN Interferente Pequeño/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Nanopartículas/química , Mutación , Línea Celular Tumoral
7.
Colloids Surf B Biointerfaces ; 228: 113386, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290202

RESUMEN

Rationally designed ∼ 100 nm sized curcumin (CRC) loaded exfoliated layered double hydroxide nanoparticles (X-LDH/CRC-NPs) have been tested for its suitability as nanomedicine in non-small cell lung cancer (NSCLC) cell lines (A549 and NCI-H460) resulting enhanced apoptosis. Preclinical evaluation on A549 tumor bearing nude mouse model confirmed that such a well-designed X-LDH/CRC NPs would be highly advantageous for treating lung cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Curcumina , Neoplasias Pulmonares , Nanopartículas , Animales , Ratones , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Curcumina/farmacología , Curcumina/uso terapéutico , Nanomedicina/métodos , Hidróxidos , Línea Celular Tumoral
8.
J Colloid Interface Sci ; 648: 287-298, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37301153

RESUMEN

Gene delivery for non-small-cell lung cancer treatment has been a challenge due to low nucleic acid binding ability, cell-wall barrier, and high cytotoxicity. Cationic polymers, such as the traditional "golden standard" polyethyleneimine (PEI) 25 kDa have emerged as a promising carrier for non-coding RNA delivery. However, the high cytotoxicity associated with its high molecular weight has limited its application in gene delivery. To address this limitation, herein, we designed a novel delivery system using fluorine-modified polyethyleneimine (PEI) 1.8 kDa for microRNA-942-5p-sponges non-coding RNA delivery. Compared to PEI 25 kDa, this novel gene delivery system demonstrated an approximately six-fold enhancement in endocytosis capability and maintain a higher cell viability. In vivo studies also showed good biosafety and anti-tumor effects, attribute to the positive charge of PEI and the hydrophobic and oleophobic properties of the fluorine-modified group. This study provides an effective gene delivery system for non-small-cell lung cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Transfección , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Polietileneimina/química , Flúor , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Técnicas de Transferencia de Gen , MicroARNs/genética , ARN no Traducido
10.
Front Oncol ; 12: 904742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837090

RESUMEN

Lung cancer is one of the most common cancer types in the world. Despite existing treatment strategies, overall patient survival remains low and new targeted therapies are required. Acidification of the tumor microenvironment drives the growth and metastasis of many cancers. Acid sensors such as acid-sensing ion channels (ASICs) may become promising targets for lung cancer therapy. Previously, we showed that inhibition of the ASIC1 channels by a recombinant analogue of mambalgin-2 from Dendroaspis polylepis controls oncogenic processes in leukemia, glioma, and melanoma cells. Here, we studied the effects and molecular targets of mambalgin-2 in lung adenocarcinoma A549 and Lewis cells, lung transformed WI-38 fibroblasts, and lung normal HLF fibroblasts. We found that mambalgin-2 inhibits the growth and migration of A549, metastatic Lewis P29 cells, and WI-38 cells, but not of normal fibroblasts. A549, Lewis, and WI-38 cells expressed different ASIC and ENaC subunits, while normal fibroblasts did not at all. Mambalgin-2 induced G2/M cell cycle arrest and apoptosis in lung adenocarcinoma cells. In line, acidification-evoked inward currents were observed only in A549 and WI-38 cells. Gene knockdown showed that the anti-proliferative and anti-migratory activity of mambalgin-2 is dependent on the expression of ASIC1a, α-ENaC, and γ-ENaC. Using affinity extraction and immunoprecipitation, mambalgin-2 targeting of ASIC1a/α-ENaC/γ-ENaC heteromeric channels in A549 cells was shown. Electrophysiology studies in Xenopus oocytes revealed that mambalgin-2 inhibits the ASIC1a/α-ENaC/γ-ENaC channels with higher efficacy than the ASIC1a channels, pointing on the heteromeric channels as a primary target of the toxin in cancer cells. Finally, bioinformatics analysis showed that the increased expression of ASIC1 and γ-ENaC correlates with a worse survival prognosis for patients with lung adenocarcinoma. Thus, the ASIC1a/α-ENaC/γ-ENaC heterotrimer can be considered a marker of cell oncogenicity and its targeting is promising for the design of new selective cancer therapeutics.

11.
Cancers (Basel) ; 14(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35053430

RESUMEN

Causing a high mortality rate worldwide, lung cancer remains an incurable malignancy resistant to conventional therapy. Despite the discovery of specific molecular targets and new treatment strategies, there remains a pressing need to develop more efficient therapy to further improve the management of this disease. Cancer stem cells (CSCs) are considered the root of sustained tumor growth. This consensus corroborates the CSC model asserting that a distinct subpopulation of malignant cells within a tumor drives and maintains tumor progression with high heterogeneity. Besides being highly tumorigenic, CSCs are highly refractory to standard drugs; therefore, cancer treatment should be focused on eliminating these cells. Herein, we present the current knowledge of the existence of CSCs, CSC-associated mechanisms of chemoresistance, the ability of CSCs to evade immune surveillance, and potential CSC inhibitors in lung cancer, to provide a wider insight to drive a more efficient elimination of this pro-oncogenic and treatment-resistant cell fraction.

12.
Nanomedicine (Lond) ; 17(23): 1779-1798, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36636930

RESUMEN

Lung cancer is the second leading cause of cancer-related mortality globally, and non-small-cell lung cancer accounts for most lung cancer cases. Nanotechnology-based drug-delivery systems have exhibited immense potential in lung cancer therapy due to their fascinating physicochemical characteristics, in vivo stability, bioavailability, prolonged and targeted delivery, gastrointestinal absorption and therapeutic efficiency of their numerous chemotherapeutic agents. However, traditional chemotherapeutics have systemic toxicity issues; therefore, dietary polyphenols might potentially replace them in lung cancer treatment. Polyphenol-based targeted nanotherapeutics have demonstrated interaction with a multitude of protein targets and cellular signaling pathways that affect major cellular processes. This review summarizes the various molecular mechanisms and targeted therapeutic potentials of nanoengineered dietary polyphenols in the effective management of lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Polifenoles/uso terapéutico , Polifenoles/química , Pulmón , Carcinoma/tratamiento farmacológico
13.
Pharmaceutics ; 15(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36678740

RESUMEN

Nanoprobes provide advantages for real-time monitoring of tumor markers and tumorigenesis during cancer progression and development. Epidermal growth factor receptor (EGFR) is a key protein that plays crucial roles for tumorigenesis and cancer therapy of lung cancers. Here, we show a carbon-based nanoprobe, nanodiamond (ND), which can be applied for targeting EGFR and monitoring tumorigenesis of human lung cancer cells in vitro and in vivo. The optimal fluorescent intensities of ND particles were observed in the human lung cancer cells and nude mice under in vivo imaging system. The fluorescence signal of ND particles can be real-time detected in the xenografted human lung tumor formation of nude mice. Moreover, the ND-conjugated specific EGFR antibody cetuximab (Cet) can track the location and distribution of EGFR proteins of lung cancer cells in vitro and in vivo. ND-Cet treatment increased cellular uptake ability of nanocomposites in the EGFR-expressed cells but not in the EGFR-negative lung cancer cells. Interestingly, single ND-Cet complex can be directly observed on the protein G bead by immunoprecipitation and confocal microscopy. Besides, the EGFR proteins were transported to lysosomes for degradation. Together, this study demonstrates that ND-conjugated Cet can apply for targeting EGFR and monitoring tumorigenesis during lung cancer progression and therapy.

14.
Adv Drug Deliv Rev ; 179: 114038, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34742826

RESUMEN

An overview of the application of natural and synthetic, non-viral vectors for oligonucleotide delivery into the lung is presented in this review, with a special focus on lung cancer. Due to the specificity of the respiratory tract, its structure and natural barriers, the administration of drugs (especially those based on nucleic acids) is a particular challenge. Among widely tested non-viral drug and oligonucleotides carriers, synthetic polymers seem to be most promising. Unique properties of these nanoparticles allow for essentially unlimited possibilities regarding their design and modification. This gives hope that optimal nanoparticles with ideal nucleic acid carrier properties for lung cancer therapy will eventually emanate.


Asunto(s)
Pulmón/fisiología , ARN Interferente Pequeño/administración & dosificación , Administración por Inhalación , Asma/tratamiento farmacológico , Portadores de Fármacos/química , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Macrófagos Alveolares/metabolismo , Moco/metabolismo , Polímeros/química , Surfactantes Pulmonares/metabolismo , ARN Interferente Pequeño/uso terapéutico
15.
Biomed Pharmacother ; 141: 111606, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34153849

RESUMEN

INTRODUCTION: The development of multidrug resistance (MDR) is a major cause for the failure of chemotherapy, which requires the aid of nanomedicine. METHODS: Here in our study, a Cu2+ based metal-organic framework (COF) was firstly developed and employed as a carrier for the delivery of glucose oxidase (GOx) and doxorubicin (Dox) (COF/GOx/Dox) for the therapy of MDR lung cancers. RESULTS: Our results showed that the GOx can catalyze glucose and produce H2O2. In the mean time, the Cu2+ can react with GSH and then transform into Cu+, which resulted in GSH depletion. Afterwards, the produced Cu+ and H2O2 trigger Fenton reaction to generate ROS to damage the redox equilibrium of cancer cells. Both effects contributed to the reverse of MDR in A549/Dox cells and finally resulted in significantly enhanced in vitro/in vivo anticancer performance. DISCUSSION: The combination of glutathione depletion/reactive oxygen species elevation might be a promising strategy to enhance the efficacy of chemotherapy and reverse MDR in cancers.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Cobre/administración & dosificación , Glucosa Oxidasa/administración & dosificación , Glutatión/metabolismo , Estructuras Metalorgánicas/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Animales , Cobre/química , Relación Dosis-Respuesta a Droga , Doxorrubicina/administración & dosificación , Doxorrubicina/síntesis química , Glucosa Oxidasa/síntesis química , Glutatión/antagonistas & inhibidores , Humanos , Masculino , Estructuras Metalorgánicas/síntesis química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oxidación-Reducción/efectos de los fármacos , Conejos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
16.
Onco Targets Ther ; 14: 1895-1909, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33758510

RESUMEN

Single-cell sequencing (SCS) which has an unprecedentedly high resolution is an advanced technique for cancer research. Lung cancer still has a high mortality and morbidity. For further understanding the lung cancer, SCS is also been applied to lung cancer research to investigate its heterogeneity, metastasis, drug resistance, tumor microenvironment and many other issues. In this review, we summarized lung cancer research using SCS and their research achievements.

17.
Cell Oncol (Dordr) ; 44(1): 1-18, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33125630

RESUMEN

BACKGROUND: Metformin, a first-line therapeutic for type 2 diabetes, has been studied for its potential use in cancer treatment following a number of epidemiological studies that have demonstrated reduced cancer incidence and mortality rates among patients treated with the drug. As yet, however, there remains significant uncertainty about the molecular mechanisms by which metformin exerts its anti-cancer effects. Herein, we summarize the evidence surrounding the anti-lung cancer effects of metformin. CONCLUSIONS: Specifically, we explore protein targets of metformin, including AMPK, PP2A, IRF-1/YAP and HGF and we outline the proposed mechanisms of action for metformin in lung cancer, with particular attention given to apoptosis and autophagy. We also closely examine the synergistic activity of metformin with existing cancer treatment regimens, such as TKI's, platinum-based agents and immune therapeutics. In addition to considering preclinical and clinical studies, we also dissect and contextualize the limitations and inconsistencies of the current literature, especially those of epidemiological studies. Finally, we offer a potential trajectory for future research in this rapidly evolving area of basic and clinical oncology.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Metformina/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metformina/farmacología , Proteínas de Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Cancers (Basel) ; 12(11)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202573

RESUMEN

Despite tremendous efforts to improve the treatment of lung cancer, prognosis still remains poor; hence, the search for efficacious therapeutic option remains a prime concern in lung cancer research. Cell cycle regulation including mitosis has emerged as an important target for cancer management. Novel pharmacological agents blocking the activities of regulatory molecules that control the functional aspects of mitosis such as Aurora kinases are now being investigated. The Aurora kinases, Aurora-A (AURKA), and Aurora B (AURKB) are overexpressed in many tumor entities such as lung cancer that correlate with poor survival, whereby their inhibition, in most cases, enhances the efficacy of chemo-and radiotherapies, indicating their implication in cancer therapy. The current knowledge on Aurora kinase inhibitors has increasingly shown high potential in ensuing targeted therapies in lung malignancies. In this review, we will briefly describe the biology of Aurora kinases, highlight their oncogenic roles in the pre-clinical and clinical studies in lung cancer and, finally, address the challenges and potentials of Aurora kinases to improve the therapy of this malignancy.

19.
Int J Mol Sci ; 21(16)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784481

RESUMEN

The evolutionarily-conserved Notch signaling pathway plays critical roles in cell communication, function and homeostasis equilibrium. The pathway serves as a cell-to-cell juxtaposed molecular transducer and is crucial in a number of cell processes including cell fate specification, asymmetric cell division and lateral inhibition. Notch also plays critical roles in organismal development, homeostasis, and regeneration, including somitogenesis, left-right asymmetry, neurogenesis, tissue repair, self-renewal and stemness, and its dysregulation has causative roles in a number of congenital and acquired pathologies, including cancer. In the lung, Notch activity is necessary for cell fate specification and expansion, and its aberrant activity is markedly linked to various defects in club cell formation, alveologenesis, and non-small cell lung cancer (NSCLC) development. In this review, we focus on the role this intercellular signaling device plays during lung development and on its functional relevance in proximo-distal cell fate specification, branching morphogenesis, and alveolar cell determination and maturation, then revise its involvement in NSCLC formation, progression and treatment refractoriness, particularly in the context of various mutational statuses associated with NSCLC, and, lastly, conclude by providing a succinct outlook of the therapeutic perspectives of Notch targeting in NSCLC therapy, including an overview on prospective synthetic lethality approaches.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Carcinoma de Pulmón de Células no Pequeñas/terapia , Humanos , Pulmón/embriología , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/terapia , Modelos Biológicos
20.
Chem Pharm Bull (Tokyo) ; 68(7): 589-602, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32611996

RESUMEN

Inhaled lung cancer therapy is promising because of direct and noninvasive drug delivery to the lungs with low potential for severe systemic toxicity. Thus chemotherapeutic drugs have been administered clinically by nebulization of solution or suspension formulations, which demonstrated their limited pulmonary absorption and relatively mild systemic toxicity. In all these clinical trials, however, there was no obviously superior anticancer efficacy in lung cancer patients even at the maximum doses of drugs limited by pulmonary toxicity. Therefore methods that deliver both higher anticancer efficacy and lower pulmonary toxicity are strongly desired. In addition to the worldwide availability of pressured metered dose inhalers (pMDIs) and dry powder inhalers (DPIs) to treat local respiratory diseases, recent innovations in medicines and technologies are encouraging next steps toward effective inhaled lung cancer therapy with new therapeutic or drug delivery concepts. These include the discovery of target cells/molecules and drug candidates for novel cancer therapy, the development of high-performance inhalation devices for effective pulmonary drug delivery, and the establishment of manufacturing technologies for functional nanoparticles/microparticles. This review highlights the present situation and future progress of inhaled drugs for lung cancer therapy, including an overview of available inhalation devices, pharmacokinetics, and outcomes in clinical trials so far and some novel formulation strategies based on drug delivery systems to achieve enhanced anticancer efficacy and attenuated pulmonary toxicity.


Asunto(s)
Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/tratamiento farmacológico , Administración por Inhalación , Animales , Antineoplásicos/administración & dosificación , Composición de Medicamentos , Humanos , Neoplasias Pulmonares/patología , Nebulizadores y Vaporizadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...