Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(19)2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39408765

RESUMEN

The study of drugs of natural origin that increase endurance and/or accelerate recovery is an integral part of sports medicine and physiology. In this paper, decaffeinated green tea extract (GTE) and two ammonium salts-chloride (ACL) and carbonate (ACR)-were tested individually and in combination with GTE as stimulants of physical performance in a forced swimming rat experimental model. The determined parameters can be divided into seven blocks: functional (swimming duration); biochemistry of blood plasma; biochemistry of erythrocytes; hematology; immunology; gene expression of slow- and fast-twitch muscles (m. soleus, SOL, and m. extensor digitorum longus, EDL, respectively); and morphometric indicators of slow- and fast-twitch muscles. Regarding the negative control (intact animals), the maximum number of changes in all blocks of indicators was recorded in the GTE + ACR group, whose animals showed the maximum functional result and minimum lactate values on the last day of the experiment. Next, in terms of the number of changes, were the groups ACR, ACL, GTE + ACL, GTE and NaCl (positive control). In general, the number of identified adaptive changes was proportional to the functional state of the animals of the corresponding groups, in terms of the duration of the swimming load in the last four days of the experiment. However, not only the total number but also the qualitative composition of the identified changes is of interest. The results of a comparative analysis suggest that, in the model of forced swimming we developed, GTE promotes restoration of the body and moderate mobilization of the immune system, while small doses of ammonium salts, especially ammonium carbonate, contribute to an increase in physical performance, which is associated with satisfactory restoration of skeletal muscles and the entire body. The combined use of GTE with ammonium salts does not give a clearly positive effect.


Asunto(s)
Extractos Vegetales , Natación , , Animales , Ratas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Té/química , Masculino , Compuestos de Amonio/farmacología , Rendimiento Físico Funcional , Ratas Wistar , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Carbonatos/farmacología
2.
Heliyon ; 8(12): e12449, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36590525

RESUMEN

C60 fullerene (C60) as a nanocarbon particle, compatible with biological structures, capable of penetrating through cell membranes and effectively scavenging free radicals, is widely used in biomedicine. A protective effect of C60 on the biomechanics of fast (m. gastrocnemius) and slow (m. soleus) muscle contraction in rats and the pro- and antioxidant balance of muscle tissue during the development of muscle fatigue was studied compared to the same effect of the known antioxidant N-acetylcysteine (NAC). C60 and NAC were administered intraperitoneally at doses of 1 and 150 mg kg-1, respectively, daily for 5 days and 1 h before the start of the experiment. The following quantitative markers of muscle fatigue were used: the force of muscle contraction, the level of accumulation of secondary products of lipid peroxidation (TBARS) and the oxygen metabolite H2O2, the activity of first-line antioxidant defense enzymes (superoxide dismutase (SOD) and catalase (CAT)), and the condition of the glutathione system (reduced glutathione (GSH) content and the activity of the glutathione peroxidase (GPx) enzyme). The analysis of the muscle contraction force dynamics in rats against the background of induced muscle fatigue showed, that the effect of C60, 1 h after drug administration, was (15-17)% more effective on fast muscles than on slow muscles. A further slight increase in the effect of C60 was revealed after 2 h of drug injection, (7-9)% in the case of m. gastrocnemius and (5-6)% in the case of m. soleus. An increase in the effect of using C60 occurred within 4 days (the difference between 4 and 5 days did not exceed (3-5)%) and exceeded the effect of NAC by (32-34)%. The analysis of biochemical parameters in rat muscle tissues showed that long-term application of C60 contributed to their decrease by (10-30)% and (5-20)% in fast and slow muscles, respectively, on the 5th day of the experiment. At the same time, the protective effect of C60 was higher compared to NAC by (28-44)%. The obtained results indicate the prospect of using C60 as a potential protective nano agent to improve the efficiency of skeletal muscle function by modifying the reactive oxygen species-dependent mechanisms that play an important role in the processes of muscle fatigue development.

3.
Bull Exp Biol Med ; 169(4): 450-457, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32889570

RESUMEN

We studied the effect of histone deacetylase 1 (HDAC1) inhibition on titin content and expression of TTN gene in rat m. soleus after 3-day gravitational unloading. Male Wistar rats weighing 210±10 g were randomly divided into 3 groups: control, 3-day hindlimb suspension, and 3-day hindlimb suspension and injection of HDAC1 inhibitor CI-994 (1 mg/kg/day). In hindlimb-suspended rats, the muscle weight/animal body weight ratio was reduced by 13.8% (p<0.05) in comparison with the control, which attested to the development of atrophic changes in the soleus muscle. This was associated with a decrease in the content of NT-isoform of intact titin-1 by 28.6% (p˂0.05) and an increase in TTN gene expression by 1.81 times (p˂0.05) in the soleus muscle. Inhibition of HDAC1 by CI-994 during 3-day hindlimb suspension prevented the decrease in titin content and development of atrophy in rat soleus muscle. No significant differences in the TTN gene expression from the control were found. These results can be used when finding the ways of preventing or reducing the negative changes in the muscle caused by gravitational unloading.


Asunto(s)
Benzamidas/farmacología , Conectina/genética , Histona Desacetilasa 1/genética , Inhibidores de Histona Desacetilasas/farmacología , Atrofia Muscular/prevención & control , Fenilendiaminas/farmacología , Animales , Conectina/metabolismo , Regulación de la Expresión Génica , Miembro Posterior , Suspensión Trasera/efectos adversos , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/metabolismo , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Tamaño de los Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar , Transducción de Señal
4.
NMR Biomed ; 31(4): e3889, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29393546

RESUMEN

Measurements of exercise-induced metabolic changes, such as oxygen consumption, carbon dioxide exhalation or lactate concentration, are important indicators for assessing the current performance level of athletes in training science. With exercise-limiting metabolic processes occurring in loaded muscles, 31 P-MRS represents a particularly powerful modality to identify and analyze corresponding training-induced alterations. Against this background, the current study aimed to analyze metabolic adaptations after an exhaustive exercise in two calf muscles (m. soleus - SOL - and m. gastrocnemius medialis - GM) of sprinters and endurance athletes by using localized dynamic 31 P-MRS. In addition, the respiratory parameters VO2 and VCO2 , as well as blood lactate concentrations, were monitored simultaneously to assess the effects of local metabolic adjustments in the loaded muscles on global physiological parameters. Besides noting obvious differences between the SOL and the GM muscles, we were also able to identify distinct physiological strategies in dealing with the exhaustive exercise by recruiting two athlete groups with opposing metabolic profiles. Endurance athletes tended to use the aerobic pathway in the metabolism of glucose, whereas sprinters produced a significantly higher peak concentration of lactate. These global findings go along with locally measured differences, especially in the main performer GM, with sprinters revealing a higher degree of acidification at the end of exercise (pH 6.29 ± 0.20 vs. 6.57 ± 0.21). Endurance athletes were able to partially recover their PCr stores during the exhaustive exercise and seemed to distribute their metabolic activity more consistently over both investigated muscles. In contrast, sprinters mainly stressed Type II muscle fibers, which corresponds more to their training orientation preferring the glycolytic energy supply pathway. In conclusion, we were able to analyze the relation between specific local metabolic processes in loaded muscles and typical global adaptation parameters, conventionally used to monitor the training status of athletes, in two cohorts with different sports orientations.


Asunto(s)
Adaptación Fisiológica , Atletas , Ejercicio Físico/fisiología , Espectroscopía de Resonancia Magnética , Músculo Esquelético/fisiología , Fósforo/química , Resistencia Física/fisiología , Deportes , Adolescente , Adulto , Dióxido de Carbono/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Ácido Láctico/sangre , Masculino , Oxígeno/metabolismo , Fosfocreatina/metabolismo , Espirometría , Factores de Tiempo , Adulto Joven
5.
Bull Exp Biol Med ; 164(1): 6-9, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29119399

RESUMEN

We studied the role of calcium-regulating structures of slow- (m. soleus, SOL) and fast-twitch (m. extensor digitorum longus, EDL) skeletal muscles of rats during adaptation to exhausting physical activity and the possibility of modulating this adaptation with decaffeinated green tea extract. It was established that EDL adaptation is mainly aimed at Са2+ elimination from the sarcoplasm by Са-ATPase and its retention in the reticulum by calsequestrin. Administration of green tea extract increased endurance due to involvement of slow-twitch muscles whose adaptation is associated with enhanced expression of all the studied genes responsible for the regulation of Ca2+ balance.


Asunto(s)
Calcio/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Extractos Vegetales/farmacología , Activación Transcripcional/efectos de los fármacos , Animales , Camellia sinensis/química , Evaluación Preclínica de Medicamentos , Masculino , Redes y Vías Metabólicas , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Condicionamiento Físico Animal , Ratas Wistar , Transcriptoma
6.
Anat Rec (Hoboken) ; 300(6): 1123-1136, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27997073

RESUMEN

There exist several studies using morphological analyses of skeletal muscles to obtain a better understanding of muscle structure. The structural information obtained are primarily determined from single muscle components using individual animals of discrete ages. Further, little is known about changing dimensions of the aponeurosis, which is an important load-transferring interface in muscle mechanics. Thus, the aim of the present study was to determine how the muscle, tendon, and particularly the aponeurosis geometry of the rabbit shank musculature (M. soleus, M. extensor digitorum longus, and M. plantaris) change during growth. In doing so, morphological studies on muscles of eighty-nine female rabbits aged between 18 and 108 days were conducted. We found an almost linear increase over time in all of the geometrical parameters observed. The aponeurosis of the muscles exhibited lower growth rates in width than in length. The distal and proximal aponeurosis areas were nearly identical. The ratio of aponeurosis area to the physiological cross-sectional area was 2.54, 2.54, and 1.88 for M. soleus, M. extensor digitorum longus, and M. plantaris, respectively. M. extensor digitorum longus and M. soleus exhibited a nearly similar tendon-muscle fascicle length ratio during growth, increasing from 2.86 to 5.30 and 3.48 to 6.16, respectively. Interestingly, the tendon-muscle fascicle length ratio of the M. plantaris started initially with a much higher value (∼8) and increased to ∼18. Taken together, these results provide insight into the structure of the muscle-tendon complex and thus, a general understanding of muscle growth. Anat Rec, 300:1123-1136, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Aponeurosis/crecimiento & desarrollo , Extremidad Inferior/crecimiento & desarrollo , Músculo Esquelético/crecimiento & desarrollo , Conejos/crecimiento & desarrollo , Tendones/crecimiento & desarrollo , Animales , Biometría , Femenino
7.
J Nutr Sci ; 1: e10, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-25191539

RESUMEN

Eucommia leaves (Eucommia ulmoides Oliver) contain chlorogenic acid (a caffeic acid derivative) and geniposidic acid and asperuloside (ASP), iridoid glucosides used in beverages. We used a metabolic syndrome rat model, produced by feeding a 35 % high-fat diet (HFD), to examine potential anti-obesity and anti-metabolic syndrome effects and mechanisms of chronic administration of ASP. These effects were compared with Eucommia leaf extract (ELE), the positive control, which exhibits anti-obesity effects. A total of six rats were studied for 3 months in five groups. ASP suppressed body weight, visceral fat weight, food intake and circulating levels of glucose, insulin and lipids, and increased the plasma adiponectin level in rats on a HFD. These effects are similar to those of ELE, except for the influence on the plasma glucose level. RT-PCR studies showed that ASP (like ELE with known anti-obesity effects) diminished isocitrate dehydrogenase 3α, NADH dehydrogenase flavoprotein 1 (Comp I) mRNA and fatty acid synthase levels (white adipose tissue), increased carnitine palmitoyltransferase 1α and acyl-CoA dehydrogenase, very-long-chain mRNA levels (liver), and increased Glut4, citrate synthase, isocitrate dehydrogenase 3α, succinyl CoA synthase, peroxisomal 3-ketoacyl-CoA thiolase, dihydrolipoamide succinyl transferase and succinate dehydrogenase mRNA levels (skeletal muscle) under HFD conditions. Interestingly, ASP administration resulted in significantly increased mRNA levels of uncoupling protein 1 (UCP1) in the brown adipose tissue of HFD-fed rats; ELE did not affect the expression of UCP1. The increased expression of UCP1 may be negated by many ingredients other than ASP in the ELE. These findings suggest that chronic administration of ASP stimulates anti-obesity and anti-metabolic syndrome activity in HFD-fed rats across several organs, similar to ELE administration; thus, ASP may be an important ingredient of ELE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...