Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.796
Filtrar
1.
Semin Cell Dev Biol ; 164: 1-12, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823219

RESUMEN

Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.


Asunto(s)
Elementos Transponibles de ADN , ARN Interferente Pequeño , Elementos Transponibles de ADN/genética , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Evolución Molecular , ARN de Interacción con Piwi
2.
BMC Infect Dis ; 24(1): 768, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090537

RESUMEN

BACKGROUND: Data on the dynamics and persistence of humoral immunity against SARS-CoV-2 after primary vaccination with two-dose inactivated vaccine (CoronaVac) are limited. This study evaluated the sequential effects of prior infection, heterologous boosting with mRNA-1273 (Moderna), and the occurrence of Omicron vaccine-breakthrough infection (VBI) thereafter. METHODS: We evaluated anti-spike IgG (Abbott) and neutralising (cPASS/GenScript) antibody (nAb) titers up to one year after mRNA-1273 boost in two-dose-CoronaVac-primed Indonesian healthcare workers (August 2021-August 2022). We used linear mixed modeling to estimate the rate of change in antibody levels, and logistic regression to examine associations between antibody levels and VBI. RESULTS: Of 138 participants, 52 (37.7%) had a prior infection and 78 (56.5%) received an mRNA-1273 booster. After two-dose CoronaVac, antibody titers had significantly declined within 180 days, irrespective of prior infection. After mRNA-1273 booster, anti-spike IgG (1.47% decline/day) and Omicron B.1.1.529/BA.2 nAbs declined between day 28-90, and IgG titers plateaued between day 90-360. During the BA.1/BA.2 wave (February-March 2022), 34.6% (27/78) of individuals experienced a VBI (median 181 days after mRNA-1273), although none developed severe illness. VBI was associated with low pre-VBI anti-spike IgG and B.1.1.529/BA.2 nAbs, which were restored post-VBI. CONCLUSIONS: mRNA-1273 booster after two-dose CoronaVac did not prevent BA.1/BA.2 VBI. Periodic vaccine boosters may be warranted against emerging SARS-CoV-2 variants.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infección Irruptiva , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Infección Irruptiva/epidemiología , Infección Irruptiva/inmunología , Infección Irruptiva/prevención & control , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/epidemiología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Personal de Salud , Inmunoglobulina G/sangre , Indonesia/epidemiología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación
3.
Heliyon ; 10(14): e34031, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100467

RESUMEN

Bladder cancer (BC), a highly prevalent malignancy of the urinary system, necessitates further investigation into its progression mechanisms. N6-methyladenosine (m6A) RNA methylation, a prevalent modification in cellular RNA, has been implicated in the tumorigenesis and metastasis of various cancers. In this study, the upregulation of FTO in human BC samples and its association with poor prognosis were demonstrated using immunohistochemistry (IHC) on tissue sections collected from BC patients. The functional role of FTO in promoting the proliferation and metastasis abilities of BC cells was determined using a combination of in vitro and in vivo assays. In vitro, we conducted cell proliferation assays, such as the Cell Counting Kit-8 (CCK-8) assay, and metastasis assays, including the wound healing assay and transwell invasion assay. In vivo, we employed xenograft models to assess tumor growth and metastasis. Furthermore, our investigation into potential FTO targets in BC cells revealed that FTO modifies PTPN6 mRNA, leading to increased stability and expression of PTPN6, thereby enhancing proliferation and metastasis abilities. In conclusion, our findings indicate that FTO serves as an oncogenic factor in BC, suggesting its potential utility as a diagnostic or prognostic biomarker for bladder cancer.

4.
Diabetol Int ; 15(3): 389-399, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39101162

RESUMEN

Background: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Exosomes are promising biomarkers for disease diagnosis and uromodulin is a kidney-specific protein. So, this study was designed to investigate the change in the gene expression of urinary exosomal uromodulin mRNA and urinary uromodulin level and determine the diagnostic potential of these noninvasive biomarkers in the early stage of diabetic nephropathy in type 2 diabetic patients. Method: This study included 100 participants; urinary exosomes were isolated using polyethylene glycol (PEG). Gene expression of exosomal uromodulin mRNA was determined by quantitative real-time polymerase chain reaction (q-RT-PCR). The urinary uromodulin levels were determined by an enzyme-linked immunosorbent assay (ELISA). Result: In this study, the gene expression of exosomal uromodulin (UMOD) mRNA and the level of urinary uromodulin showed a significant increase in all diabetic groups with and without nephropathy compared to the control group. The exosomal UMOD mRNA showed a significant positive correlation with urinary uromodulin in all groups. Multiple logistic regression showed that urinary uromodulin was an independent determinant for DN. A diagnostic model of two indicators, exosomal UMOD mRNA and urinary uromodulin, can significantly predict DN. The area under the curve is 0.095, with a 95% confidence interval of 0.98-1, and 0.81, with a 95% confidence interval of 0.69-0.92, for the exosomal UMOD mRNA and urinary uromodulin, respectively. Conclusion: Urinary exosomal mRNA of UMOD and urinary uromodulin levels are progressively elevated in an early stage of DN, even before the microalbuminuria stage, so they could be used as early predictors for DN.

5.
mBio ; : e0066824, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105586

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 has had a persistent and significant impact on global public health for 4 years. Recently, there has been a resurgence of seasonal influenza transmission worldwide. The co-circulation of SARS-CoV-2 and seasonal influenza viruses results in a dual burden on communities. Additionally, the pandemic potential of zoonotic influenza viruses, such as avian Influenza A/H5N1 and A/H7N9, remains a concern. Therefore, a combined vaccine against all these respiratory diseases is in urgent need. mRNA vaccines, with their superior efficacy, speed in development, flexibility, and cost-effectiveness, offer a promising solution for such infectious diseases and potential future pandemics. In this study, we present FLUCOV-10, a novel 10-valent mRNA vaccine created from our proven platform. This vaccine encodes hemagglutinin (HA) proteins from four seasonal influenza viruses and two avian influenza viruses with pandemic potential, as well as spike proteins from four SARS-CoV-2 variants. A two-dose immunization with the FLUCOV-10 elicited robust immune responses in mice, producing IgG antibodies, neutralizing antibodies, and antigen-specific cellular immune responses against all the vaccine-matched viruses of influenza and SARS-CoV-2. Remarkably, the FLUCOV-10 immunization provided complete protection in mouse models against both homologous and heterologous strains of influenza and SARS-CoV-2. These results highlight the potential of FLUCOV-10 as an effective vaccine candidate for the prevention of influenza and COVID-19.IMPORTANCEAmidst the ongoing and emerging respiratory viral threats, particularly the concurrent and sequential spread of SARS-CoV-2 and influenza, our research introduces FLUCOV-10. This novel mRNA-based combination vaccine, designed to counteract both influenza and COVID-19, by incorporating genes for surface glycoproteins from various influenza viruses and SARS-CoV-2 variants. This combination vaccine was highly effective in preclinical trials, generating strong immune responses and ensuring protection against both matching and heterologous strains of influenza viruses and SARS-CoV-2. FLUCOV-10 represents a significant step forward in our ability to address respiratory viral threats, showcasing potential as a singular, adaptable vaccine solution for global health challenges.

6.
ACS Nano ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105751

RESUMEN

Nanoparticle-mediated mRNA delivery has emerged as a promising therapeutic modality, but its growth is still limited by the discovery and optimization of effective and well-tolerated delivery strategies. Lipid nanoparticles containing charged or ionizable lipids are an emerging standard for in vivo mRNA delivery, so creating facile, tunable strategies to synthesize these key lipid-like molecules is essential to advance the field. Here, we generate a library of N-substituted glycine oligomers, peptoids, and undertake a multistage down-selection process to identify lead candidate peptoids as the ionizable component in our Nutshell nanoparticle platform. First, we identify a promising peptoid structural motif by clustering a library of >200 molecules based on predicted physical properties and evaluate members of each cluster for reporter gene expression in vivo. Then, the lead peptoid motif is optimized using design of experiments methodology to explore variations on the charged and lipophilic portions of the peptoid, facilitating the discovery of trends between structural elements and nanoparticle properties. We further demonstrate that peptoid-based Nutshells leads to expression of therapeutically relevant levels of an anti-respiratory syncytial virus antibody in mice with minimal tolerability concerns or induced immune responses compared to benchmark ionizable lipid, DLin-MC3-DMA. Through this work, we present peptoid-based nanoparticles as a tunable delivery platform that can be optimized toward a range of therapeutic programs.

7.
Heliyon ; 10(14): e34347, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108860

RESUMEN

Background: Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial for ending the pandemic of coronavirus disease 2019 (COVID-19). Currently, the cumulative effect of booster shots of mRNA vaccines on adverse events is not sufficiently characterized. Methods: A survey-based study on vaccine adverse events was conducted in a Japanese medical institute after the third dose of Pfizer BNT162b2. Adverse events were grouped using network analysis, and a heteroscedastic probit model was built to analyse adverse events. Results: There were two main clusters of adverse events, systemic and local injection site-associated events. Subject background and the experience of previous vaccine-related adverse events were variably associated with the occurrence and intensity of adverse events following the third dose. Among adverse events, only lymphadenopathy increased prominently following the third dose, while the largest increase in other systemic adverse events occurred generally following the second dose. Conclusions: The effect of repeated booster vaccines on the frequency and intensity of adverse events differs depending on the kind of adverse event.

8.
J Infect Chemother ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103148

RESUMEN

BACKGROUND: The association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines and myocarditis/pericarditis in the Japanese population has not been systematically investigated. This study was aimed at clarifying the association between SARS-CoV-2 mRNA vaccines (BNT162b2 and mRNA-1273) and myocarditis/pericarditis as well as influencing factors by using the Japanese Adverse Drug Event Report database. METHODS: Reporting odds ratios (RORs) and 95 % confidence intervals (95 % CIs) for the association between the vaccines and myocarditis/pericarditis were calculated using data from the database (April 2004-December 2023). Age, sex, onset time, and outcomes in symptomatic patients were evaluated. RESULTS: The total number of reports was 880,999 (myocarditis: 1846; pericarditis: 761). The adverse events associated with the vaccines included myocarditis (919 cases) and pericarditis (321 cases), with the ROR [95 % CIs] being significant for both (myocarditis: 30.51 [27.82-33.45], pericarditis: 21.99 [19.03-25.40]). Furthermore, the ROR [95 % CIs] of BNT162b2 and mRNA-1273 were 15.64 [14.15-17.28] and 54.23 [48.13-61.10], respectively, for myocarditis, and 15.78 [13.52-18.42] and 27.03 [21.58-33.87], respectively, for pericarditis. Furthermore, most cases were ≤30 years or male. The period from vaccination to onset was ≤8 days, corresponding to early failure type based on analysis using the Weibull distribution. Outcomes were recovery or remission for most cases; however, they were severe or caused death in some cases. CONCLUSION: In the Japanese population, SARS-CoV-2 mRNA vaccination was significantly associated with the onset of myocarditis/pericarditis. The influencing factors included age of ≤30 years and male. Furthermore, although most adverse events occurred early after vaccination, overall outcomes were good.

9.
Radiol Case Rep ; 19(9): 4087-4090, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39104450

RESUMEN

COVID-19 vaccines, a cornerstone of the fight against the disease have generally proven to be safe with most commonly reported side effects being mild and self-limiting. Uncommon severe adverse effects like thromboembolism have been reported during postmarketing surveillance. Viral-based vector vaccines have been most commonly implicated in these reports. Our report however portrays a case of a 26-year-old female who developed extensive pulmonary embolism following administration of the Pfizer- BNT162b2 mRNA COVID-19 vaccine. The patient did not have any risk factors for thromboembolism. She was admitted, put on enoxaparin, and given Altaplase thrombolytic therapy. Her condition improved and she was discharged on Apixaban. The Thrombophilia screen performed on the 6-month follow-up was negative and following the resolution of thrombosis, Apixaban was stopped. Our case highlights the importance of continued surveillance of uncommon adverse effects and the need for prompt diagnosis and management of such side effects.

10.
Mol Ther Nucleic Acids ; 35(3): 102263, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39104868

RESUMEN

mRNA applications have undergone unprecedented applications-from vaccination to cell therapy. Natural killer (NK) cells are recognized to have a significant potential in immunotherapy. NK-based cell therapy has drawn attention as allogenic graft with a minimal graft-versus-host risk leading to easier off-the-shelf production. NK cells can be engineered with either viral vectors or electroporation, involving high costs, risks, and toxicity, emphasizing the need for alternative way as mRNA technology. We successfully developed, screened, and optimized novel lipid-based platforms based on imidazole lipids. Formulations are produced by microfluidic mixing and exhibit a size of approximately 100 nm with a polydispersity index of less than 0.2. They are able to transfect NK-92 cells, KHYG-1 cells, and primary NK cells with high efficiency without cytotoxicity, while Lipofectamine Messenger Max and D-Lin-MC3 lipid nanoparticle-based formulations do not. Moreover, the translation of non-modified mRNA was higher and more stable in time compared with a modified one. Remarkably, the delivery of therapeutically relevant interleukin 2 mRNA resulted in extended viability together with preserved activation markers and cytotoxic ability of both NK cell lines and primary NK cells. Altogether, our platforms feature all prerequisites needed for the successful deployment of NK-based therapeutic strategies.

11.
Cureus ; 16(7): e63983, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39105031

RESUMEN

The development of new vaccines against the SARS-CoV-2 virus in response to the COVID-19 pandemic represents a milestone in the history of public health. However, due to the rapid development and short duration of these new vaccines, the full spectrum of side effects is not yet known. A 76-year-old man presented to the clinic for follow-up after being discharged from the emergency department for hyperglycemia. His medical history included well-controlled type 2 diabetes for two years, hypertension, and hyperlipidemia. He had recently noticed high home blood glucose readings over 400 mg/dL, and his hemoglobin A1c (mean 90-day glucose level) had increased from 6.5% to 12.6%. Notably, the patient reported having excellent health behaviors, including daily exercise, a closely monitored healthy diet, and regular blood glucose testing. After extensive endocrinology workup, the rapid change in blood glucose was thought to be due to his having recently received the COVID-19 messenger RNA (mRNA) vaccine. He was started on long- and short-acting insulin and a glucagon-like peptide-1 agonist (novel injectable type 2 diabetes medication), with improvement in blood glucose. He was tapered off all medications and remains on metformin 1,000 mg twice daily after one year.Whether the new COVID-19 mRNA vaccines directly incur hyperglycemia within certain groups of patients with diabetes is not known; thus, studies exploring the relationship between vaccine antigen binding and pancreatic function are needed.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39108147

RESUMEN

Migratory birds undertake long journeys across continents to reach breeding habitats with abundant resources. These migrations are essential for their survival and are shaped by a complex interplay of physiological adaptations, behavioral cues, and gene expression patterns. Central to migration are stopovers, critical resting points where birds replenish energy stores before continuing their journey. In this study, we integrate physiological measurements, behavioral observations, and molecular data from temporarily caged migrating Garden Warblers (Sylvia borin) to gain insights into their stopover strategies and physiological adaptations after crossing the extended ecological barrier formed by the Sahara Desert and the Mediterranean Sea. Depleted individuals, marked by low body mass and flight muscle mass, showcased remarkable plasticity in recovering and rapidly rebuilding energy stores within a short 5-day stopover. Flight muscle mass increased during this period, highlighting a dynamic trade-off between muscle rebuilding and refuelling. Notably, birds prioritizing muscle rebuilding exhibited a trade-off with the downregulation of genes related to lipid transport and metabolism and at the same time showing evidence of skeletal muscle angiogenesis. Early arrivals were more motivated to depart and exhibited higher levels of physiological stress. Our study highlights the importance of understanding the adaptive responses of birds to changing environmental conditions along their migration routes.

13.
BMC Med Genomics ; 17(1): 197, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107825

RESUMEN

BACKGROUND: Ventricular septal defect (VSD) is the most common congenital heart disease. Although a small number of genes associated with VSD have been found, the genetic factors of VSD remain unclear. In this study, we evaluated the association of 10 candidate single nucleotide polymorphisms (SNPs) with isolated VSD in a population from Southwest China. METHODS: Based on the results of 34 congenital heart disease whole-exome sequencing and 1000 Genomes databases, 10 candidate SNPs were selected. A total of 618 samples were collected from the population of Southwest China, including 285 VSD samples and 333 normal samples. Ten SNPs in the case group and the control group were identified by SNaPshot genotyping. The chi-square (χ2) test was used to evaluate the relationship between VSD and each candidate SNP. The SNPs that had significant P value in the initial stage were further analysed using linkage disequilibrium, and haplotypes were assessed in 34 congenital heart disease whole-exome sequencing samples using Haploview software. The bins of SNPs that were in very strong linkage disequilibrium were further used to predict haplotypes by Arlequin software. ViennaRNA v2.5.1 predicted the haplotype mRNA secondary structure. We evaluated the correlation between mRNA secondary structure changes and ventricular septal defects. RESULTS: The χ2 results showed that the allele frequency of FLT4 rs383985 (P = 0.040) was different between the control group and the case group (P < 0.05). FLT4 rs3736061 (r2 = 1), rs3736062 (r2 = 0.84), rs3736063 (r2 = 0.84) and FLT4 rs383985 were in high linkage disequilibrium (r2 > 0.8). Among them, rs3736061 and rs3736062 SNPs in the FLT4 gene led to synonymous variations of amino acids, but predicting the secondary structure of mRNA might change the secondary structure of mRNA and reduce the free energy. CONCLUSIONS: These findings suggest a possible molecular pathogenesis associated with isolated VSD, which warrants investigation in future studies.


Asunto(s)
Predisposición Genética a la Enfermedad , Haplotipos , Defectos del Tabique Interventricular , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Humanos , Defectos del Tabique Interventricular/genética , China , Masculino , Femenino , Frecuencia de los Genes , Estudios de Casos y Controles , Niño , Preescolar , Lactante
14.
Mol Cancer ; 23(1): 159, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107843

RESUMEN

Circular RNA (circRNA) is thought to mediate the occurrence and development of human cancer and usually acts as a tiny RNA (miRNA) sponge to regulate downstream gene expression. However, it is not clear whether and how circACVR2A (hsa_circ_0001073) is involved in the progression of HCC. The purpose of this study is to clarify the potential role and molecular mechanism of circACVR2A in regulating the progression of hepatocellular carcinoma cells (HCC). The abundance of related proteins in circACVR2A, microRNA (miR511-5p) and PI3K-Akt signaling pathway was determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) or Western blotting. Cell viability, invasion and apoptosis were analyzed by CCK-8, Transwell analysis and Tunel staining, respectively. The interaction between circACVR2A and microRNA was evaluated by double luciferase reporter gene assay. The results showed that circACVR2A was highly expressed in hepatocellular carcinoma cell lines. Our in vivo and in vitro data showed that circACVR2A promoted the proliferation, migration and invasion of HCC. In terms of mechanism, we found that circACVR2A can directly interact with miR511-5p and act as a miRNA sponge to regulate the expression of related proteins in PI3K-Akt signaling pathway.In HCC, circACVR2A can mediate miR-511-5p/mRNA network to activate PI3K signal pathway. This shows that the molecular regulatory network with circACVR2A as the core is a new potential target for diagnosis and treatment of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , MicroARNs , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , ARN Circular , Transducción de Señal , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , MicroARNs/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , ARN Circular/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular/genética , Animales , Línea Celular Tumoral , Ratones , Apoptosis/genética , Progresión de la Enfermedad , Masculino
15.
Cell Rep ; 43(8): 114610, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116201

RESUMEN

The tumor suppressor p53 and its antagonists MDM2 and MDM4 integrate stress signaling. For instance, dysbalanced assembly of ribosomes in nucleoli induces p53. Here, we show that the ribosomal protein L22 (RPL22; eL22), under conditions of ribosomal and nucleolar stress, promotes the skipping of MDM4 exon 6. Upon L22 depletion, more full-length MDM4 is maintained, leading to diminished p53 activity and enhanced cellular proliferation. L22 binds to specific RNA elements within intron 6 of MDM4 that correspond to a stem-loop consensus, leading to exon 6 skipping. Targeted deletion of these intronic elements largely abolishes L22-mediated exon skipping and re-enables cell proliferation, despite nucleolar stress. L22 also governs alternative splicing of the L22L1 (RPL22L1) and UBAP2L mRNAs. Thus, L22 serves as a signaling intermediate that integrates different layers of gene expression. Defects in ribosome synthesis lead to specific alternative splicing, ultimately triggering p53-mediated transcription and arresting cell proliferation.

16.
Cell ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39127037

RESUMEN

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of nucleoporins (Nups) in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.

17.
Eur J Med Res ; 29(1): 413, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127654

RESUMEN

BACKGROUND: The pathogenesis of noncystic fibrosis bronchiectasis in adults is complex, and the relevant molecular mechanisms remain unclear. In this study, we constructed a panoramic map of bronchiectasis mRNA, explored the potential molecular mechanisms, and identified potential therapeutic targets, thus providing a new clinical perspective for the preventive management of bronchiectasis and its acute exacerbation. METHODS: The mRNA profiles of peripheral blood and bronchiectasis tissues were obtained through transcriptome sequencing and public databases, and bioinformatics methods were used to screen for differentially expressed genes (DEGs). The DEGs were then subjected to biological function and pathway analyses. Some DEGs were validated using a real-time quantitative polymerase chain reaction (RT-qPCR) in peripheral blood. Spearman's correlation analysis was used to analyse the correlation between DEGs and clinical indicators. RESULTS: Based on transcriptome sequencing and public databases, the mRNA profile of bronchiectasis was determined. DEGs were obtained from the peripheral blood sequencing dataset (985 DEGs), tissue sequencing dataset (2919 DEGs), and GSE97258 dataset (1083 DEGs). Bioinformatics analysis showed that upregulated DEGs had enriched neutrophil-related pathways, and downregulated DEGs had enriched ribosome-related pathways. RT-qPCR testing confirmed the upregulated expression of VCAN, SESTD1, SLC12A1, CD177, IFI44L, SIGLEC1, and RSAD2 in bronchiectasis. These genes were related to many clinical parameters, such as neutrophils, C-reactive protein, and procalcitonin (P < 0.05). CONCLUSIONS: Transcriptomic methods were used to construct a panoramic map of bronchiectasis mRNA expression. The findings showed that neutrophil activation, chronic inflammation, immune regulation, impaired ribosomal function, oxidative phosphorylation, and energy metabolism disorders are important factors in the development of bronchiectasis. VCAN, SESTD1, SLC12A1, CD177, IFI44L, SIGLEC1, and RSAD2 may play important roles in the pathogenesis of bronchiectasis and are potential therapeutic targets.


Asunto(s)
Bronquiectasia , ARN Mensajero , Humanos , Bronquiectasia/genética , ARN Mensajero/genética , Femenino , Masculino , Perfilación de la Expresión Génica/métodos , Adulto , Biología Computacional/métodos , Persona de Mediana Edad , Transcriptoma/genética
18.
BMC Res Notes ; 17(1): 222, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127702

RESUMEN

Human T-lymphotropic virus type 1 (HTLV-1) is a RNA virus belonging to Retroviridae family and is associated with the development of various diseases, including adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Aside from HAM/TSP, HTLV-1 has been implicated in the development of several disorders that mimic auto-inflammation. T-cell migration is important topic in the context of HTLV-1 associated diseases progression. The primary objective of this case-control study was to assess the relationship between increased mRNA expression in virus migration following HTLV-1 infection. PBMCs from 20 asymptomatic patients and 20 healthy subjects were analyzed using real-time PCR to measure mRNA expression of LFA1, MLCK, RAC1, RAPL, ROCK1, VAV1 and CXCR4. Also, mRNA expression of Tax and HBZ were evaluated. Mean expression of Tax and HBZ in ACs (asymptomatic carriers) was 0.7218 and 0.6517 respectively. The results revealed a noteworthy upregulation of these genes involved in T-cell migration among ACs patients in comparison to healthy individuals. Considering the pivotal role of gene expression alterations associated with the progression into two major diseases (ATLL or HAM/TSP), analyzing the expression of these genes in the ACs group can offer probable potential diagnostic markers and aid in monitoring the condition of ACs.


Asunto(s)
Movimiento Celular , Infecciones por HTLV-I , Virus Linfotrópico T Tipo 1 Humano , Humanos , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/fisiología , Masculino , Femenino , Adulto , Estudios de Casos y Controles , Persona de Mediana Edad , Infecciones por HTLV-I/inmunología , Infecciones por HTLV-I/virología , Infecciones por HTLV-I/genética , Productos del Gen tax/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Leucocitos/metabolismo , Leucocitos/inmunología , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Antígeno-1 Asociado a Función de Linfocito/genética , Proteínas de los Retroviridae , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico
19.
Int J Nanomedicine ; 19: 8029-8042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130684

RESUMEN

Purpose: Heterologous immunization using different vaccine platforms has been demonstrated as an efficient strategy to enhance antigen-specific immune responses. In this study, we performed a head-to-head comparison of both humoral and cellular immune response induced by different prime-boost immunization regimens of mRNA vaccine and adjuvanted protein subunit vaccine against varicella-zoster virus (VZV) in middle-aged mice, aiming to get a better understanding of the influence of vaccination schedule on immune response. Methods: VZV glycoprotein (gE) mRNA was synthesized and encapsulated into SM-102-based lipid nanoparticles (LNPs). VZV-primed middle-aged C57BL/6 mice were then subjected to homologous and heterologous prime-boost immunization strategies using VZV gE mRNA vaccine (RNA-gE) and protein subunit vaccine (PS-gE). The antigen-specific antibodies were evaluated using enzyme-linked immunosorbent assay (ELISA) analysis. Additionally, cell-mediated immunity (CMI) was detected using ELISPOT assay and flow cytometry. Besides, in vivo safety profiles were also evaluated and compared. Results: The mRNA-loaded lipid nanoparticles had a hydrodynamic diameter of approximately 130 nm and a polydispersity index of 0.156. Total IgG antibody levels exhibited no significant differences among different immunization strategies. However, mice received 2×RNA-gE or RNA-gE>PS-gE showed a lower IgG1/IgG2c ratio than those received 2×PS-gE and PS-gE> RNA-gE. The CMI response induced by 2×RNA-gE or RNA-gE>PS-gE was significantly stronger than that induced by 2×PS-gE and PS-gE> RNA-gE. The safety evaluation indicated that both mRNA vaccine and protein vaccine induced a transient body weight loss in mice. Furthermore, the protein vaccine produced a notable inflammatory response at the injection sites, while the mRNA vaccine showed no observable inflammation. Conclusion: The heterologous prime-boost strategy has demonstrated that an mRNA-primed immunization regimen can induce a better cell-mediated immune response than a protein subunit-primed regimen in middle-aged mice. These findings provide valuable insights into the design and optimization of VZV vaccines with the potentials to broaden varicella vaccination strategies in the future.


Asunto(s)
Adyuvantes Inmunológicos , Inmunidad Celular , Ratones Endogámicos C57BL , Nanopartículas , Vacunas de Subunidad , Animales , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Nanopartículas/química , Adyuvantes Inmunológicos/administración & dosificación , Femenino , Vacunas de ARNm , Ratones , Herpesvirus Humano 3/inmunología , Anticuerpos Antivirales/sangre , Inmunización Secundaria/métodos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/administración & dosificación , Vacuna contra el Herpes Zóster/inmunología , Vacuna contra el Herpes Zóster/administración & dosificación , Liposomas
20.
Front Immunol ; 15: 1416375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131158

RESUMEN

With the rapid global spread of COVID-19 and the continuous emergence of variants, there is an urgent need to develop safe and effective vaccines. Here, we developed a novel mRNA vaccine, HC009, based on new formulation by the QTsome delivery platform. Immunogenicity results showed that the prime-boost immunization strategy with HC009 was able to induce robust and durable humoral immunity, as well as Th1-biased cellular responses in rodents or non-human primates (NHPs). After further challenge with live SARS-CoV-2 virus, HC009 provided adequate protection against virus infection in hACE2 transgenic mice. Therefore, HC009 could provide significant immune protection against SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunogenicidad Vacunal , Ratones Transgénicos , SARS-CoV-2 , Vacunas de ARNm , Animales , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Ratones , Vacunas de ARNm/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Humanos , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Inmunidad Humoral , Femenino , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Ratones Endogámicos BALB C , Eficacia de las Vacunas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...