Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Heliyon ; 10(15): e34772, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39144980

RESUMEN

Magnesium alloys have been extensively studied as degradable biomaterials for clinical applications due to their biocompatibility and mechanical properties. However, their poor corrosion resistance can lead to issues such as osteolysis and the release of gaseous hydrogen. This study investigated the influence of the activation time of magnesium surfaces in a sodium hydroxide (NaOH) solution on the concentration of active hydroxyl groups and corrosion resistance. The results indicated that immersion time significantly influences the formation of a corrosion-resistant film and the distribution of surface hydroxyl groups. Specifically, specimens treated for 7.5 h exhibited the highest concentration of hydroxyl groups and the most uniform oxide film distribution. Electrochemical tests demonstrated capacitive behavior and passive surface formation for all evaluated times, with the 7.5-h immersion in NaOH yielding superior corrosion resistance, lower current density, and a more efficient and thicker protective film. SEM and EDS analyses confirmed increased formation of Mg(OH)2 for samples treated for 5 and 7.5 h, while a 10-h treatment resulted in a brittle, porous layer prone to degradation. Statistical analysis using ANOVA and Fisher's LSD test corroborated these findings. The optimal 7.5-h alkali treatment enhanced magnesium's corrosion resistance and surface properties, making it a promising candidate for orthopedic implants. However, further studies are necessary to assess biocompatibility and physiological responses before clinical implementation.

2.
Heliyon ; 10(12): e32713, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39027458

RESUMEN

Mg-based and Zn-based biodegradable materials have the potential to become the next-generation implant materials to treat bone diseases, because of their desired degradation and mechanical properties. This article reviews the status of these implant materials. The required properties of biodegradable materials such as biodegradability, mechanical properties, and biocompatibility for performance evaluation were briefly discussed. The influence of fabrication techniques, microstructure, alloying elements, and post-processing techniques on the properties of Mg and Zn-based materials was addressed. The degradation mechanism by dissolution, oxidation, and interaction with human body cells was discussed. The biocompatibility of Mg and Zn-based biodegradable materials was analyzed. The significance of in vitro and in vivo biocompatibility testing was highlighted, emphasizing the superiority of in vivo results over cell line studies. This article identifies the many Mg and Zn-based biodegradable materials and summarizes the key findings.

3.
Acta Biomater ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002920

RESUMEN

Magnesium as a biodegradable material offers promising results in recent studies of different maxillo-facial fracture models. To overcome adverse effects caused by the fast corrosion of pure magnesium in fluid surroundings, various alloys, and surface modifications are tested in animal models. In specified cases, magnesium screws already appeared for clinical use in maxillofacial surgery. The present study aims to compare the bone healing outcome in a non-load-bearing fracture scenario of the forehead in sheep when fixed with standard-sized WE43 magnesium fixation plates and screws with plasma electrolytic oxidation (PEO) surface modification in contrast to titanium osteosynthesis. Surgery was performed on 24 merino mix sheep. The plates and screws were explanted en-bloc with the surrounding tissue after four and twelve weeks. The outcome of bone healing was investigated with micro-computed tomography, histological, immunohistological, and fluorescence analysis. There was no significant difference between groups concerning the bone volume, bone volume/ total volume, and newly formed bone in volumetric and histological analysis at both times of investigation. The fluorescence analysis revealed a significantly lower signal in the magnesium group after one week, although there was no difference in the number of osteoclasts per mm2. The magnesium group had significantly fewer vessels per mm2 in the healing tissue. In conclusion, the non-inferiority of WE43-based magnesium implants with PEO surface modification was verified concerning fracture healing under non-load-bearing conditions in a defect model. STATEMENT OF SIGNIFICANCE: Titanium implants, the current gold standard of fracture fixation, can lead to adverse effects linked to the implant material and often require surgical removal. Therefore, degradable metals like the magnesium alloy WE43 with plasma electrolytic oxidation (PEO) surface modification gained interest. Yet, miniplates of this alloy with PEO surface modification have not been examined in a fracture defect model of the facial skeleton in a large animal model. This study shows, for the first time, the non-inferiority of magnesium miniplates compared to titanium miniplates. In radiological and histological analysis, bone healing was undisturbed. Magnesium miniplates can reduce the number of interventions for implant removal, thus reducing the risk for the patient and minimizing the costs.

4.
Materials (Basel) ; 17(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998157

RESUMEN

The process of grain refinement during welding significantly influences both the final microstructure and performance of the weld joint. In the present work, merits of acoustic addition in the conventional Frictions Stir Welding (FSW) process were evaluated for joining dissimilar Al/Mg alloys. To capture the near "in situ" structure around the exit hole, an "emergency stop" followed by rapid cooling using liquid nitrogen was employed. Electron Backscatter Diffraction analysis was utilized to characterize and examine the evolution of grain microstructure within the aluminum matrix as the material flowed around the exit hole. The findings reveal that two mechanisms, continuous dynamic recrystallization (CDRX) and geometric dynamic recrystallization (GDRX), jointly or alternatively influence the grain evolution process. In conventional FSW, CDRX initially governs grain evolution, transitioning to GDRX as material deformation strain and temperature increase. Subsequently, as material deposition commences, CDRX reasserts dominance. Conversely, in acoustic addition, ultrasonic vibration accelerates GDRX, promoting its predominance by enhancing material flow and dislocation movements. Even during the material deposition, GDRX remains the dominant mechanism.

5.
Bioact Mater ; 39: 456-478, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38873086

RESUMEN

Due to matching biomechanical properties and significant biological activity, Mg-based implants present great potential in orthopedic applications. In recent years, the biocompatibility and therapeutic effect of magnesium-based implants have been widely investigated in trauma repair. In contrast, the R&D work of Mg-based implants in spinal fusion is still limited. This review firstly introduced the general background for Mg-based implants. Secondly, the mechanical properties and degradation behaviors of Mg and its traditional and novel alloys were reviewed. Then, different surface modification techniques of Mg-based implants were described. Thirdly, this review comprehensively summarized the biological pathways of Mg degradation to promote bone formation in neuro-musculoskeletal circuit, angiogenesis with H-type vessel formation, osteogenesis with osteoblasts activation and chondrocyte ossification as an integrated system. Fourthly, this review followed the translation process of Mg-based implants via updating the preclinical studies in fracture fixation, sports trauma repair and reconstruction, and bone distraction for large bone defect. Furthermore, the pilot clinical studies were involved to demonstrate the reliable clinical safety and satisfactory bioactive effects of Mg-based implants in bone formation. Finally, this review introduced the background of spine fusion surgeryand the challenges of biological matching cage development. At last, this review prospected the translation potential of a hybrid Mg-PEEK spine fusion cage design.

6.
Materials (Basel) ; 17(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893998

RESUMEN

A high strength and ductile Mg-Gd-Y-Zn-Zr alloy was designed and fabricated. The local strain evolution of the alloys during plastic deformation was analyzed using high-resolution digital image correlation (DIC). The results showed that the ß particles, nano-sized γ' phases, and LPSO phases were distributed in the as-extruded alloy and a bimodal microstructure was exhibited, including elongated un-dynamic recrystallized grains and fine dynamic recrystallized grains. With increasing extrusion ratio, the grain size remained, with the volume fraction of dynamic recrystallization of the as-extruded alloy increasing from 30% to 75%, and the as-extruded alloy exhibited a high strength-ductility synergy, which is attributed to the grain refinement, extensive ß particles, and elongated block-shaped LPSO phases. The strain evolution analysis showed that a strain-transfer from un-DRXed regions to adjacent DRXed regions and LPSO phases can promote uniform plastic deformation, which tends to improve the ductility of the alloy.

7.
Heliyon ; 10(9): e30286, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765150

RESUMEN

In this work, the corrosion behavior of pure Mg, Mg3Ag, Mg6Ag, and MgZnYNd alloys in different fixatives (ethyl alcohol (EA), 85 % ethyl alcohol (85 % EA), 10 % neutral buffered formalin (10 % NBF), 4 % glutaric dialdehyde (4 % GD), and 4 % paraformaldehyde (4 % PFA)) was investigated to provide a valuable reference for the selection of fixatives during the histological evaluation of Mg implants. Through the hydrogen evolution test, pH test, and corrosion morphology and product characterization, it was found that corrosion proceeded slowest in the EA and 85 % EA groups, slightly faster in 4 % GD, faster in 10 % NBF, and fastest in 4 % PFA. After corrosion, the EA group surface remained unchanged, while the 85%EA group surface developed minor cracks and warping. The 4%GD fixative formed a dense needle-like protective layer on the Mg substrate. The 10%NBF group initially grew a uniform layer, but later developed irregular pits due to accelerated corrosion. In contrast, the 4%PFA solution caused more severe corrosion attributed to chloride ions. The main corrosion products in the EA and 85%EA groups were MgO and Mg(OH)2, while the other fixatives containing diverse ions also yielded phosphates like Mg3(PO4)2 and MgHPO4. In 4 % PFA, AgCl formed on the surface of Mg6Ag alloy after corrosion. Therefore, to minimize Mg alloy corrosion without compromising staining quality, EA or 85 % EA is recommended, while 4 % PFA is not recommended due to its significant impact.

8.
Materials (Basel) ; 17(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38730818

RESUMEN

This paper presents the results of tribological tests on WE43 and WE54 magnesium alloys with rare earth metals performed in linear reciprocating motion for four different material couples (AISI 316-L steel, silicon nitride-Si3N4, WC tungsten carbide, and zirconium dioxide-ZrO2). Additionally, magnesium alloys were subjected to a complex heat treatment consisting of precipitation hardening combined with a deep cryogenic treatment. The study presents the effect of deep cryogenic treatment combined with precipitation hardening on the tribological properties of WE43 and WE54 alloys. Tribological tests revealed the most advantageous results for the magnesium alloy-AISI 316-L steel friction node. For both alloys tested after heat treatment, a nearly 2-fold reduction in specific wear rate has been achieved. Furthermore, microscopic examinations of the wear track areas and wear products were performed, and the wear mechanisms and types of wear products occurring in linear reciprocating friction were determined. Wear measurements were taken using the 3D profilometric method and compared with the results obtained from calculations performed in accordance with ASTM G133 and ASTM D7755, which were modified to improve the accuracy of the calculation results (the number of measured profiles was increased from four to eight). Appropriately selected calculation methods allow for obtaining reliable tribological test results and enabling the verification of both the most advantageous heat treatment variant and material couple, which results in an increase in the durability of the tested alloys.

9.
Materials (Basel) ; 17(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38730869

RESUMEN

This paper presents the methodology of measuring chip temperature in the cutting zone in the rough milling of magnesium alloys. Infrared measurements are taken to determine the effect of variable cutting speed, feed per tooth, and depth of cut on the maximum temperature of chips. Thermal images of chip temperature for a generated collective frame and corresponding histograms are presented. Chip temperatures are presented in numerical terms as median and average values; maximum and minimum values; range; and standard deviation. Box plots are also shown for selected machining conditions. The problems arising during signal recording with a mean emissivity coefficient ε = 0.13, a value which is dedicated during machining magnesium alloys, are discussed in detail. Chip temperatures obtained in the tests do not exceed approx. 420 °C. Therefore, the dry rough milling process carried out with carbide tools with different blade geometries can be considered safe for a wide range of machining parameters. The proposed methodology of chip temperature measurement and result processing is a new and effective approach to safety assessment in the dry milling of magnesium alloys.

10.
Materials (Basel) ; 17(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673145

RESUMEN

Due to the absence of thermodynamic data concerning the Ag-Mg-Ti system in the existing literature, this study aims to fill this gap by offering the outcomes of calorimetric investigations conducted on ternary liquid solutions of these alloys. The measurements were performed using the drop calorimetry method at temperatures of 1294 K and 1297 K for the liquid solutions with the following constant mole fraction ratio: xAg/xMg = 9/1, 7/3, 1/1, 3/7 [(Ag0.9Mg0.1)1-xTix, (Ag0.7Mg0.3)1-xTix, (Ag0.5Mg0.5)1-xTix, (Ag0.3Mg0.7)1-xTix)], and xAg/xTi = 19/1 [(Ag0.95Ti0.05)1-xMgx]. The results show that the mixing enthalpy change is characterized by negative deviations from the ideal solutions and the observed minimal value equals -13.444 kJ/mol for the Ag0.95Ti0.05 alloy and xMg = 0.4182. Next, based on the thermodynamic properties of binary systems described by the Redlich-Kister model and the determined experimental data from the calorimetric measurements, the ternary optimized parameters for the Ag-Mg-Ti liquid phase were calculated by the Muggianu model. Homemade software (TerGexHm 1.0) was used to optimize the calorimetric data using the least squares method. Next, the partial and molar thermodynamic functions were calculated and are presented in the tables and figures. Moreover, this work presents, for comparative purposes, the values of the enthalpy of mixing of liquid Ag-Mg-Ti alloys, which were calculated using Toop's model. It was found that the best agreement between the modeled and experimental data was observed for the cross-sections xAg/xTi = 19/1 [(Ag0.95Ti0.05)1-xMgx] and xAg/xMg = 9/1 [(Ag0.9Mg0.1)1-xTix]. The results of the experiments presented in this paper are the first step in the investigation and future evaluation of the thermodynamics of phases and the calculation of the phase diagram of the silver-magnesium-titanium system.

11.
Ultrason Sonochem ; 104: 106836, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430906

RESUMEN

The dissolution of metals, influenced by mechanical and chemical factors, plays a crucial role in various applications. Ultrasonic irradiation has been explored for its ability to enhance dissolution rates and modify surface characteristics. In this study, we investigate the dissolution of magnesium (Mg) and magnesium alloys under high-intensity focused ultrasound (HIFU) conditions with frequency sweeping (wobbling). Our findings reveal distinct effects of cavitation and acoustic streaming on the dissolution process. For pure magnesium, ultrasonic treatment significantly increases dissolution rates compared to silent conditions. Negative frequency sweeps result in the highest dissolution rates, linked to increased cavitation activity, while positive sweeps reduce dissolution rates but maintain acoustic streaming effects. The removal of surface oxides is accelerated in all sonication conditions. Macro- and micro-roughness patterns on the surface correspond to the wobbling frequency range, with wavelengths matching the average ultrasonic frequency. However, dissolution is not uniform across the sample, and preferential attack occurs at the focal point during negative frequency sweeps. In contrast, magnesium alloys exhibit lower dissolution rates than pure Mg. The alloy's mechanical properties make it less susceptible to cavitation erosion but more sensitive to acoustic streaming-induced dissolution. Grain boundaries are preferentially attacked, revealing differences between ductile pure Mg and the harder, more cavitation-resistant, alloy. This study highlights the complex interplay between cavitation and acoustic streaming in the dissolution of magnesium and its alloys under HIFU conditions, shedding light on the limits and potential applications of this technique, particularly in microstructure analysis.

12.
Appl Radiat Isot ; 206: 111227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382134

RESUMEN

Efforts to lightweight neutron absorbing composites are limited by incomplete understandings of the interaction between absorbing particles and their matrices. In this study, analytical models and a more physically representative simulation evaluated the penalty to neutron absorbing performance due to neutron channeling between large absorbing particles. Models and simulation agreed that B4C particles smaller than 100µm and especially those smaller than 10µm did not cause excessive neutron channeling. A more comprehensive neutron absorbing composite design metric - boron-10 equivalent areal density, which considers the particle size penalty and the matrix contribution to absorptivity - was introduced and used to estimate lightweighting via matrix substitution. Calculations using this new metric showed that a non-absorbing Mg matrix reduced mass by up to 35% over Al, constrained by the difference in mass density, while an absorbing Mg-Li matrix reduced mass by up to 60%, exceeding the difference in mass densities alone. Measurement of apparent absorber areal density through two experimental techniques - foil activation and direct counting - validated estimated absorber areal density as a neutron absorbing composite design metric. This updated understanding of the particle size penalty, newly introduced design metric, and experimental validation demonstrate a path to lightweight neutron absorbing composites.

13.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256151

RESUMEN

Cardiovascular diseases (CVDs) increasingly burden health systems and patients worldwide, necessitating the improved awareness of current treatment possibilities and the development of more efficient therapeutic strategies. When plaque deposits narrow the arteries, the standard of care implies the insertion of a stent at the lesion site. The most promising development in cardiovascular stents has been the release of medications from these stents. However, the use of drug-eluting stents (DESs) is still challenged by in-stent restenosis occurrence. DESs' long-term clinical success depends on several parameters, including the degradability of the polymers, drug release profiles, stent platforms, coating polymers, and the metals and their alloys that are employed as metal frames in the stents. Thus, it is critical to investigate new approaches to optimize the most suitable DESs to solve problems with the inflammatory response, delayed endothelialization, and sub-acute stent thrombosis. As certain advancements have been reported in the literature, this review aims to present the latest updates in the coatings field for cardiovascular stents. Specifically, there are described various organic (e.g., synthetic and natural polymer-based coatings, stents coated directly with drugs, and coatings containing endothelial cells) and inorganic (e.g., metallic and nonmetallic materials) stent coating options, aiming to create an updated framework that would serve as an inception point for future research.


Asunto(s)
Enfermedades Cardiovasculares , Células Endoteliales , Humanos , Enfermedades Cardiovasculares/terapia , Arterias , Aleaciones , Polímeros
14.
Materials (Basel) ; 17(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255511

RESUMEN

Magnesium alloys are promising materials for bioresorbable implants that will improve patient life and reduce healthcare costs. However, their clinical use is prevented by the rapid degradation and corrosion of magnesium, which leads to a fast loss of mechanical strength and the formation of by-products that can trigger tissue inflammation. Here, a tannic acid coating is proposed to control the degradation of AZ31 and AZ91 alloys, starting from a previous study by the authors on AZ91. The coatings on the two materials were characterized both by the chemical (EDS, FTIR, XPS) and the morphological (SEM, confocal profilometry) point of view. Static degradation tests in PBS and electrochemical measurements in different solutions showed that the protective performances of the tannic acid coatings are strongly affected by the presence of cracks. The presence of fractures in the protective layer generates galvanic couples between the coating scales and the metal, worsening the corrosion resistance. Although degradation control was not achieved, useful insights on the degradation mechanisms of coated Mg surfaces were obtained, as well as key points for future studies: it resulted that the absence of cracks in protective coatings is of uttermost importance for novel biodegradable implants with proper degradation kinetics.

15.
Materials (Basel) ; 16(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068060

RESUMEN

Magnesium alloys with high damping, high specific strength and low density have attracted great attention in recent years. However, the application of magnesium alloys is limited by the balance between their mechanical and damping properties. The strength and plasticity of magnesium alloys with high damping performance often cannot meet the industrial requirements. Understanding the damping mechanism of magnesium alloys is significant for developing new materials with high damping and mechanical properties. In this paper, the damping mechanisms and internal factors of the damping properties of magnesium alloys are comprehensively reviewed. Some damping mechanisms have been studied by many scholars, and it has been found that they can be used to explain damping performance. Among existing damping mechanisms, the G-L dislocation theory, twin damping mechanism and interface damping mechanism are considered common. In addition, some specific long-period stacking ordered (LPSO) phases' crystal structures are conducive to dislocation movement, which is good for improving damping performance. Usually, the damping properties of magnesium alloys are affected by some internal factors directly, such as dislocation density, solute atoms, grain texture and boundaries, etc. These internal factors affect damping performance by influencing the dissipation of energy within the crystal. Scholars are working to find novel damping mechanisms and suitable solute atoms that can improve damping performance. It is important to understand the main damping mechanisms and the internal factors for guiding the development of novel high-damping magnesium alloys.

16.
Biomimetics (Basel) ; 8(7)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37999167

RESUMEN

Magnesium (Mg) alloys are adequate materials for orthopedic and maxilo-facial implants due to their biocompatibility, good mechanical properties closely related to the hard tissues, and processability. Their main drawbacks are the high-speed corrosion process and hydrogen release. In order to improve corrosion and mechanical properties, the Mg matrix can be strengthened through alloying elements with high temperature-dependent solubility materials. Rare earth elements (RE) contribute to mechanical properties and degradation improvement. Another possibility to reduce the corrosion rate of Mg-based alloys was demonstrated to be the different types of coatings (bioceramics, polymers, and composites) applied on their surface. The present investigation is related to the coating of two Mg-based alloys from the system Mg3Nd (Mg-Nd-Y-Zr-Zn) with polymeric-based composite coatings made from cellulose acetate (CA) combined with two fillers, respectively hydroxyapatite (HAp) and Mg particles. The main functions of the coatings are to reduce the biodegradation rate and to modify the surface properties in order to increase osteointegration. Firstly, the microstructural features of the experimental Mg3Nd alloys were revealed by optical microscopy and scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy. Apart from the surface morphology revealed by SEM, the roughness and wettability of all experimental samples were evaluated. The corrosion behavior of the uncoated and coated samples of both Mg3Nd alloys was investigated by immersion testing and electrochemical testing using Simulated Body Fluid as the medium. The complex in vitro research performed highlights that the composite coating based on CA with HAp particles exhibited the best protective effect for both Mg3Nd alloys.

17.
Materials (Basel) ; 16(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37629940

RESUMEN

The main objective of this article is to provide new information on the effects of mechanical pretreatment of AZ80 magnesium alloy ground with SiC emery papers of different grain sizes on the plasma electrolytic oxidation (PEO) process and corrosion properties of AZ80 in 0.1 M NaCl solution. Then, the roughness of the coated samples was measured by confocal microscopy. The corrosion properties of the ground and coated surfaces were determined by potentiodynamic polarization (PDP) within 1 h of exposure, and electrochemical impedance spectroscopy (EIS) was performed during 168 h of exposure at laboratory temperature. Consequently, the obtained results of the PDP measurements were evaluated by the Tafel analysis and the EIS evaluation was performed by the equivalent circuit analysis through Nyquist diagrams. The morphology and structure of PEO coatings were observed by scanning electron microscopy (SEM) through the secondary imaging technology, and the presence of certain elements in PEO coatings was analyzed by EDS analysis.

18.
Materials (Basel) ; 16(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629960

RESUMEN

Recently, Mg-Zn/hydroxyapatite (HA) composites have attracted much attention as potential candidates for use in bone implants. In this paper, the MgZn/HA composites were prepared using powder metallurgy (PM) and the merging mechanism of MgZn and HA particles was investigated by adjusting the weight ratio of the HA powder. The evolution of the HA distribution in the matrix was examined using SEM and micro-CT images. Afterward, the mechanical properties and biocompatibility of the composites were discussed in detail. The results revealed that the mechanical properties and biocompatibility of the Mg-Zn/HA composites were significantly affected by the HA content. Composites with a low HA content showed increased porosity, improved mechanical strength, and enhanced corrosion resistance after ball milling and cold pressing. These results underscore the importance of optimizing the HA content in Mg-Zn/HA composites for bone implants. Based on our findings, PM Mg-Zn/HA composites with a moderate HA content demonstrate the most promising characteristics as bone implants. The insights gained from this work contribute to the advancement of bone implant materials and hold great potential for enhancing orthopedic surgery outcomes.

19.
Materials (Basel) ; 16(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37570047

RESUMEN

In this study, the influence of pre-tension on free-end torsion behavior and compression mechanical properties and micro-hardness of an extruded AZ31 Mg alloy was investigated using electron backscatter diffraction (EBSD), compression testing and micro-hardness testing. The result indicates that pre-tension can cause significant dislocation strengthening, which can increase the torsion yield strength and make the shear stress-shear strain curve of the pre-tension sample almost parallel to that of the as-extruded sample during plastic deformation stage. Texture in edge position on the cross-section of both the pre-tension and as-extruded samples can be rotated towards the extrusion direction by about ~30° by free-end torsion. The Swift effect is mainly responsible for the occurrence of massive extension twins in the central region. In contrast, normal stress is the main cause of extension twins occurring in the edge region. However, the effect of extension twins on micro-hardness is less than that of dislocations. The micro-hardness of both free-end torsion specimens increases almost linearly with increasing distance from center to edge on the cross-section. Nevertheless, the increase in micro-hardness of the pre-tension and then torsion sample is inconspicuous because pre-tension leads to dislocation proliferation and dislocation accumulation saturation. The result also indicates that both pre-tension and free-end torsion can lead to dislocation strengthening, which can obviously increase the micro-hardness and compressive yield stress. The underlying mechanisms were explored and discussed in detail.

20.
Materials (Basel) ; 16(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37570128

RESUMEN

This study explores the application of ultrasonic vibration during plasma electrolytic oxidation (PEO) to enhance the corrosion resistance of magnesium (Mg) alloy. To this end, three different ultrasonic frequencies of 0, 40, and 135 kHz were utilized during PEO. In the presence of ultrasonic waves, the formation of a uniform and dense oxide layer on Mg alloys is facilitated. This is achieved through plasma softening, acoustic streaming, and improved mass transport for successful deposition and continuous reforming of the oxide layer. The oxide layer exhibits superior protective properties against corrosive environments due to the increase in compactness. Increasing ultrasonic frequency from 40 to 135 kHz, however, suppresses the optimum growth of the oxide layer due to the occurrence of super-soft plasma swarms, which results in a low coating thickness. The integration of ultrasonic vibration with PEO presents a promising avenue for practical implementation in industries seeking to enhance the corrosion protection of Mg alloys, manipulating microstructures and composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...