RESUMEN
BACKGROUND: Endoscopic submucosal dissection (ESD) is a well-established treatment for gastrointestinal tumors and enables en bloc resection. Adequate counter traction with good visualization is important for safe and effective dissection. OBJECTIVE: Based on magnetic anchor-guided endoscopic submucosal dissection (MAG-ESD), we would like to explore the feasibility of magnetic hydrogel as an internal magnetic anchor that can be injected into the submucosa through an endoscopic needle to assist colonic endoscopic submucosal dissection. METHODS: This prospective trial was conducted on 20 porcine colons ex vivo. We injected magnetic hydrogel into submucosa of the porcine colons ex vivo for MAG-ESD to evaluate the traction effect and operation satisfaction. RESULTS: Magnetic hydrogel assisted ESD was successfully performed on 20 porcine colons ex vivo. Adequate counter traction with good visualization was successfully obtained during the procedure of dissection. CONCLUSION: Magnetic hydrogel assisted MAG-ESD is feasible and effective.
RESUMEN
A novel thermal-responsive ß-cyclodextrin-based magnetic hydrogel [ß-cyclodextrin-graft-poly(N-isopropylacrylamide)/Fe3O4 (ß-CD-g-PNIPAAm/Fe3O4)] was fabricated as a novel nanomedicine for chemo/hyperthermia treatment of cancer cells. Firstly, ß-CD was modified by maleic anhydride (MA) followed by copolymerization with NIPAAm monomer and thiol-end capped Fe3O4 nanoparticles (NPs) in the presence of a crosslinker through acrylamide-thiol polymerization system to afford a magnetic hydrogel. The saturation magnetization (δ s) value for developed hydrogel was determined to be 8.2 emu g-1. The hydrogel was physically loaded with an anticancer agent, doxorubicin hydrochloride (Dox). The encapsulation efficiency (EE) of drug into the hydrogel was obtained as 73 %. The system represented acceptable thermal-triggered drug release behavior that best fitted with Higuchi model, demonstrating the release of drug is mostly controlled by diffusion mechanism. The anticancer performance of the ß-CD-g-PNIPAAm/Fe3O4-Dox was evaluated using MCF7 cells by MTT-assay. In addition, flow cytometry analyses showed considerable cellular uptake of Dox in the cells treated with ß-CD-g-PNIPAAm/Fe3O4-Dox (â¼70 %) compared to free Dox (â¼28 %). As results, in time period of 48 h by combination of chemo- and hyperthermia-therapies, the developed system displayed greater anticancer efficiency than the free Dox.
RESUMEN
A novel approach was devised to address the challenges in delivering cisplatin (CIS) for lung cancer treatment. This involved the development of a non-invasive hydrogel delivery system, aiming to minimize side effects associated with its administration. Using carbopol 971 (CP) and chitosan (CH) at varying ratios, the hydrogels were prepared and loaded with eco-friendly iron oxide nanoparticles (IONPs) conjugated to CIS. The physical properties, yield, drug loading, and cytotoxicity against lung cancer cell lines (A549) were assessed, along with hydrogel rheological properties and in vitro drug diffusion. Hydrogel A1 that composed of 1:1 of CP:CH hydrogel loaded with 100 mg IONPs and 250 µg CIS demonstrated distinctive properties that indicate its suitability for potential delivery. The loaded greenly synthesized IONPs@CIS exhibited a particle size of 23.0 nm, polydispersity index of 0.47, yield of 71.6%, with 88.28% drug loading. They displayed significant cytotoxicity (61.7%) against lung cancer cell lines (A549), surpassing free CIS cytotoxicity (28.1%). Moreover, they demonstrated shear-thinning behaviour, viscoelastic properties, and Fickian drug release profile over 24 h (flux 2.34 µg/cm2/h, and permeability 0.31 cm/h).
Asunto(s)
Antineoplásicos , Cisplatino , Liberación de Fármacos , Hidrogeles , Humanos , Cisplatino/farmacología , Cisplatino/administración & dosificación , Hidrogeles/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/química , Células A549 , Nanopartículas Magnéticas de Óxido de Hierro/química , Portadores de Fármacos/química , Tamaño de la Partícula , Tecnología Química Verde/métodos , Quitosano/química , Neoplasias Pulmonares/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodosRESUMEN
Relapse and unresectability have become the main obstacle for further improving hepatocellular carcinoma (HCC) treatment effect. Currently, single therapy for HCC in clinical practice is limited by postoperative recurrence, intraoperative blood loss and poor patient outcomes. Multidisciplinary therapy has been recognized as the key to improving the long-term survival rate for HCC. However, the clinical application of HCC synthetic therapy is restricted by single functional biomaterials. In this study, a magnetic nanocomposite hydrogel (CG-IM) with iron oxide nanoparticle-loaded mica nanosheets (Iron oxide nanoparticles@Mica, IM) is reported. This biocompatible magnetic hydrogel integrated high injectability, magnetocaloric property, mechanical robustness, wet adhesion, and hemostasis, leading to efficient HCC multidisciplinary therapies including postoperative tumor margin treatment and percutaneous locoregional ablation. After minimally invasive hepatectomy of HCC, the CG-IM hydrogel can facilely seal the bleeding hepatic margin, followed by magnetic hyperthermia ablation to effectively prevent recurrence. In addition, CG-IM hydrogel can inhibit unresectable HCC by magnetic hyperthermia through the percutaneous intervention under ultrasound guidance.
Asunto(s)
Silicatos de Aluminio , Carcinoma Hepatocelular , Hipertermia Inducida , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Hidrogeles/farmacología , Fenómenos MagnéticosRESUMEN
Gamma-aminobutyric acid (GABA) is an vital neurotransmitter, and the reaction to obtain GABA through biocatalysis requires coenzymes, which are therefore limited in the production of GABA. In this study, polyacrylamide hydrogels doped with chitosan and waste toner were synthesized for glutamate decarboxylase (GAD) and coenzyme co-immobilization to realize the production of GABA and the recovery of coenzymes. Enzymatic properties of immobilized GAD were discussed. The immobilized enzymes have significantly improved pH and temperature tolerance compared to free enzymes. In terms of reusability, after 10 repeated reuses of the immobilized GAD, the residual enzyme activity of immobilized GAD still retains 100% of the initial enzyme activity, and the immobilized coenzyme can also be kept at about 32%, with better stability and reusability. And under the control of no exogenous pH, immobilized GAD showed good performance in producing GABA. Therefore, in many ways, the new composite hydrogel provides another way for the utilization of waste toner and promises the possibility of industrial production of GABA.
Asunto(s)
Quitosano , Glutamato Descarboxilasa/química , Ácido gamma-Aminobutírico , Coenzimas , Fenómenos MagnéticosRESUMEN
Articular cartilage defects afflict millions of individuals worldwide, presenting a significant challenge due to the tissue's limited self-repair capability and anisotropic nature. Hydrogel-based biomaterials have emerged as promising candidates for scaffold production in artificial cartilage construction, owing to their water-rich composition, biocompatibility, and tunable properties. Nevertheless, conventional hydrogels typically lack the anisotropic structure inherent to natural cartilage, impeding their clinical and preclinical applications. Recent advancements in tissue engineering (TE) have introduced magnetically responsive hydrogels, a type of intelligent hydrogel that can be remotely controlled using an external magnetic field. These innovative materials offer a means to create the desired anisotropic architecture required for successful cartilage TE. In this review, we first explore conventional techniques employed for cartilage repair and subsequently delve into recent breakthroughs in the application and utilization of magnetic hydrogels across various aspects of articular cartilage TE.
Asunto(s)
Cartílago Articular , Humanos , Hidrogeles/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Fenómenos Magnéticos , Andamios del TejidoRESUMEN
Direct discharge of electroplating wastewater containing hazardous metal ions such as Cu2+ and Ag + results in environmental pollution. In this study, we rationally prepare a magnetic composite hydrogel consisted of Fe3O4, UiO-66-NH2, chitosan (CTS) and polyethyleneimine (PEI), namely Fe3O4@UiO-66-NH2/CTS-PEI. Thanks to the strong attraction between the amino group and metal cations, the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel shows the maximum adsorption capacities of 321.67 mg g-1 for Cu2+ ions and 226.88 mg g-1 for Ag + ions within 120 min. As real scenario, the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel exhibits excellent removal efficiencies for metallic ions even in the complicated media of actual electroplating wastewater. In addition, we explore the competitive adsorption order of metal cations by using experimental characterization and theoretical calculations. The optimal configuration of CTS-PEI is also discovered with the density functional theory, and the water retention within hydrogel is simulated through molecular dynamics modeling. We find that the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel could be reused and after 5 cycles of adsorption-desorption, removal efficiency could maintain 80%. Finally, the Ag+ accumulated by hydrogel are reduced to generate a photocatalyst for efficient degradation of Rhodamine B. The novel magnetic hydrogel paves a promising path for efficient removal of heavy metal ions in wastewater and further resource utilization as photocatalysts.
Asunto(s)
Quitosano , Cobre , Plata , Aguas Residuales , Hidrogeles , Galvanoplastia , Iones , Fenómenos MagnéticosRESUMEN
In the present work, a novel Fe3O4-GLP@CAB was successfully synthesized via a co-precipitation procedure and applied for the removal of methylene blue (MB) from aqueous environment. The structural and physicochemical characteristics of the as-prepared materials were explored using a variety of characterization methods, including pHPZC, XRD, VSM, FE-SEM/EDX, BJH/BET, and FTIR. The effects of several experimental factors on the uptake of MB using Fe3O4-GLP@CAB were examined through batch experiments. The highest MB dye removal efficiency of Fe3O4-GLP@CAB was obtained to be 95.2 % at pH 10.0. Adsorption equilibrium isotherm data at different temperatures showed an excellent agreement with the Langmuir model. The adsorption uptake of MB onto Fe3O4-GLP@CAB was determined as 136.7 mg/g at 298 K. The kinetic data were well-fitted by the pseudo-first-order model, indicating that physisorption mainly controlled it. Several thermodynamic variables derived from adsorption data, like as ΔGo, ΔSo, ΔHo, and Ea, accounted for a favourable, spontaneous, exothermic, and physisorption process. Without seeing a substantial decline in adsorptive performance, the Fe3O4-GLP@CAB was employed for five regeneration cycles. Because they can be readily separated from wastewater after treatment, the synthesized Fe3O4-GLP@CAB was thus regarded as a highly recyclable and effective adsorbent for MB dye.
Asunto(s)
Nanopartículas , Psidium , Contaminantes Químicos del Agua , Adsorción , Polvos , Azul de Metileno/química , Alginatos/química , Hidrogeles , Fenómenos Magnéticos , Hojas de la Planta , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de HidrógenoRESUMEN
Magnetic chitosan hydrogels are organic-inorganic composite material with the characteristics of both magnetic materials and natural polysaccharides. Due to its biocompatibility, low toxicity and biodegradability, chitosan, a natural polymer has been widely used for preparing magnetic hydrogels. The addition of magnetic nanoparticles to chitosan hydrogels not only improves their mechanical strength, but also endows them with magnetic thermal effects, targeting capabilities, magnetically-sensitive release characteristics, easy separation and recovery, thus enabling them to be used in various applications including drug delivery, magnetic resonance imaging, magnetothermal therapy, and adsorption of heavy metals and dyes. In this review, the physical and chemical crosslinking methods of chitosan hydrogels and the methods for binding magnetic nanoparticles in hydrogel networks are first introduced. Subsequently, the properties of magnetic chitosan hydrogels were summarized including mechanical properties, self-healing, pH responsiveness and properties in magnetic fields. Finally, the potential for further technological and applicative advancements of magnetic chitosan hydrogels is discussed.
Asunto(s)
Quitosano , Quitosano/química , Hidrogeles/química , Sistemas de Liberación de Medicamentos/métodos , Polisacáridos , Fenómenos FísicosRESUMEN
Magnetic hybrid hydrogels have exhibited remarkable efficacy in various areas, particularly in the biomedical sciences, where these inventive substances exhibit intriguing prospects for controlled drug delivery, tissue engineering, magnetic separation, MRI contrast agents, hyperthermia, and thermal ablation. Additionally, droplet-based microfluidic technology enables the fabrication of microgels possessing monodisperse characteristics and controlled morphological shapes. Here, alginate microgels containing citrated magnetic nanoparticles (MNPs) were produced by a microfluidic flow-focusing system. Superparamagnetic magnetite nanoparticles with an average size of 29.1 ± 2.5 nm and saturation magnetization of 66.92 emu/g were synthesized via the co-precipitation method. The hydrodynamic size of MNPs was changed from 142 nm to 826.7 nm after the citrate group's attachment led to an increase in dispersion and the stability of the aqueous phase. A microfluidic flow-focusing chip was designed, and the mold was 3D printed by stereo lithographic technology. Depending on inlet fluid rates, monodisperse and polydisperse microgels in the range of 20-120 µm were produced. Different conditions of droplet generation in the microfluidic device (break-up) were discussed considering the model of rate-of-flow-controlled-breakup (squeezing). Practically, this study indicates guidelines for generating droplets with a predetermined size and polydispersity from liquids with well-defined macroscopic properties, utilizing a microfluidic flow-focusing device (MFFD). Fourier transform infrared spectrometer (FT-IR) results indicated a chemical attachment of citrate groups on MNPs and the existence of MNPs in the hydrogels. Magnetic hydrogel proliferation assay after 72 h showed a better rate of cell growth in comparison to the control group (p = 0.042).
RESUMEN
Recent strides in the development of untethered miniature robots have shown the advantages of diverse actuation methods, flexible maneuverability, and precise locomotion control, which has made miniature robots attractive for biomedical applications such as drug delivery, minimally invasive surgery, and disease diagnosis. However, biocompatibility and environmental adaptability are among the challenges for further in vivo applications of miniature robots due to the sophisticated physiological environment. Herein, we propose a biodegradable magnetic hydrogel robot (BMHR) that possesses precise locomotion with four stable motion modes, namely tumbling mode, precession mode, spinning-XY mode, and spinning-Z mode. Using a homemade vision-guided magnetic driving system, the BMHR can achieve flexible conversion between the different motion modes to cope with changes in complex environments, and its superior ability to cross obstacles is demonstrated. In addition, the transformation mechanism between different motion modes is analyzed and simulated. Benefiting from the diverse motion modes, the proposed BMHR has promising applications in drug delivery, showing remarkable effectiveness in targeted cargo delivery. The BMHR's biocompatible property, multimodal locomotion, and functionality with drug-loaded particles can provide a new perspective to combine miniature robots with biomedical applications.
Asunto(s)
Robótica , Hidrogeles , Fenómenos Físicos , Locomoción , Fenómenos MagnéticosRESUMEN
Magnetic stimulation is becoming an attractive approach to promote neuroprotection, neurogenesis, axonal regeneration, and functional recovery in both the central nervous system and peripheral nervous system disorders owing to its painless, non-invasive, and deep penetration characteristics. Here, a magnetic-responsive aligned fibrin hydrogel (MAFG) was developed to import and amplify the extrinsic magnetic field (MF) locally to stimulate spinal cord regeneration in combination with the beneficial topographical and biochemical cues of aligned fibrin hydrogel (AFG). Magnetic nanoparticles (MNPs) were embedded uniformly in AFG during electrospinning to endow it magnetic-responsive feature, with saturation magnetization of 21.79 emu g-1. It is found that the MNPs under the MF could enhance cell proliferation and neurotrophin secretion of PC12 cellsin vitro. The MAFG that was implanted into a rat with 2 mm complete transected spinal cord injury (SCI) effectively enhanced neural regeneration and angiogenesis in the lesion area, thus leading to significant recovery of motor function under the MF (MAFG@MF). This study suggests a new multimodal tissue engineering strategy based on multifunctional biomaterials that deliver multimodal regulatory signals with the integration of aligned topography, biochemical cues, and extrinsic MF stimulation for spinal cord regeneration following severe SCI.
Asunto(s)
Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Ratas , Animales , Hidrogeles/farmacología , Fibrina , Traumatismos de la Médula Espinal/terapia , Regeneración Nerviosa , Fenómenos MagnéticosRESUMEN
Robust and reusable magnetic chitosan/calcium alginate double-network hydrogel beads (CSMAB) with an environmentally benign biocomposite material synthesis approach were used adsorption of surfactant and removal of methylene blue dye sequentially for the first time. Double network hydrogel structure with sodium alginate and chitosan and acidification of the surface with HCl provided the reusability of the beads at the pollutant removal in water. The CSMAB beads were characterized for structural analysis by FESEM, EDX, BET, VSM, and FTIR techniques. They were used for the adsorption of cationic hexadecylpyridinium chloride (HDPCl) and anionic sodium dodecyl sulfate (SDS) surfactants and reused in the removal of cationic methylene blue dye without any pretreatment. The effect of pH, adsorbent dose, and temperature on surfactant removal efficiency was analyzed and pH was found the statistical significance. The adsorption capacity of CSMAB beads with a surface area of 0.65 m2 g-1 was calculated as 1.9 mg g-1 for HDPCl, and 1.2 mg g-1 for SDS, respectively. The SDS and HDPCl adsorption followed the pseudo-second-order kinetic and Freundlich isotherm model. The thermodynamic results showed that the surfactant adsorption process is an exothermic and spontaneous process. SDS-reacted CSMAB beads showed higher efficiency with 61 % in the removal of methylene blue dye.
Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Hidrogeles/química , Quitosano/química , Adsorción , Azul de Metileno/química , Alginatos/química , Tensoactivos/química , Fenómenos Magnéticos , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de HidrógenoRESUMEN
Caffeine (CAF) is a psychostimulant present in many beverages and with rapid bioabsorption. For this reason, matrices that effectuate the sustained release of a low amount of CAF would help reduce the intake frequency and side effects caused by high doses of this stimulant. Thus, in this study, CAF was loaded into magnetic gelatin/alginate (Gel/Alg/MNP) hydrogels at 18.5 mg/ghydrogel. The in vitro release of CAF was evaluated in the absence and presence of an external magnetic field (EMF) and Ca2+. In all cases, the presence of Ca2+ (0.002 M) retarded the release of CAF due to favorable interactions between them. Remarkably, the release of CAF from Gel/Alg/MNP in PBS/CaCl2 (0.002 M) at 37 °C under an EMF was more sustained due to synergic effects. In PBS/CaCl2 (0.002 M) and at 37 °C, the amounts of CAF released after 45 min from Gel/Alg and Gel/Alg/MNP/EMF were 8.3 ± 0.2 mg/ghydrogel and 6.1 ± 0.8 mg/ghydrogel, respectively. The concentration of CAF released from Gel/Alg and Gel/Alg/MNP hydrogels amounted to ~0.35 mM, thereby promoting an increase in cell viability for 48 h. Gel/Alg and Gel/Alg/MNP hydrogels can be applied as reservoirs to release CAF at suitable concentrations, thus forestalling possible side effects and improving the viability of SH-SY5Y cells.
RESUMEN
High extracellular matrix stiffness is a prominent feature of malignant tumors associated with poor clinical prognosis. To elucidate mechanistic connections between increased matrix stiffness and tumor progression, a variety of hydrogel scaffolds with dynamic changes in stiffness have been developed. These approaches, however, are not biocompatible at high temperature, strong irradiation, and acidic/basic pH, often lack reversibility (can only stiffen and not soften), and do not allow study on the same cell population longitudinally. In this work, we develop a dynamic 3D magnetic hydrogel whose matrix stiffness can be wirelessly and reversibly stiffened and softened multiple times with different rates of change using an external magnet. With this platform, we found that matrix stiffness increased tumor malignancy including denser cell organization, epithelial-to-mesenchymal transition and hypoxia. More interestingly, these malignant transformations could be halted or reversed with matrix softening (i.e., mechanical rescue), to potentiate drug efficacy attributing to reduced solid stress from matrix and downregulation of cell mechano-transductors including YAP1. We propose that our platform can be used to deepen understanding of the impact of matrix softening on cancer biology, an important but rarely studied phenomenon.
Asunto(s)
Hidrogeles , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Matriz Extracelular/patología , Regulación hacia AbajoRESUMEN
Bone marrow-derived mesenchymal stem cell (MSC) is one of the most actively studied cell types due to its regenerative potential and immunomodulatory properties. Conventional cell expansion methods using 2D tissue culture plates and 2.5D microcarriers in bioreactors can generate large cell numbers, but they compromise stem cell potency and lack mechanical preconditioning to prepare MSC for physiological loading expected in vivo. To overcome these challenges, in this work, we describe a 3D dynamic hydrogel using magneto-stimulation for direct MSC manufacturing to therapy. With our technology, we found that dynamic mechanical stimulation (DMS) enhanced matrix-integrin ß1 interactions which induced MSCs spreading and proliferation. In addition, DMS could modulate MSC biofunctions including directing MSC differentiation into specific lineages and boosting paracrine activities (e.g., growth factor secretion) through YAP nuclear localization and FAK-ERK pathway. With our magnetic hydrogel, complex procedures from MSC manufacturing to final clinical use, can be integrated into one single platform, and we believe this 'all-in-one' technology could offer a paradigm shift to existing standards in MSC therapy.
RESUMEN
Implantable flexible mechanical sensors have exhibited great potential in health monitoring and disease diagnosis due to continuous and real-time monitoring capability. However, the wires and power supply required in current devices cause inconvenience and potential risks. Magnetic-based devices have demonstrated advantages in wireless and passive sensing, but the mismatched mechanical properties, poor biocompatibility, and insufficient sensitivity have limited their applications in biomechanical monitoring. Here, a wireless and passive flexible magnetic-based strain sensor based on a gelatin methacrylate/Fe3O4 magnetic hydrogel has been fabricated. The sensor exhibits ultrasoft mechanical properties, strong magnetic properties, and long-term stability in saline solution and can monitor strains down to 50 µm. A model of the sensing process is established to identify the optimal detection location and the relation between the relative magnetic permeability and the sensitivity of the sensors. Moreover, an in vitro tissue model is developed to investigate the potential of the sensor in detecting subtle biomechanical signals and avoiding interference with bioactivities. Furthermore, a real-time and high-throughput biomonitoring platform is built and implements passive wireless monitoring of the drug response and cultural status of the cardiomyocytes. This work demonstrates the potential of applying magnetic sensing for biomechanical monitoring and provides ideas for the design of wireless and passive implantable devices.
Asunto(s)
Hidrogeles , Tecnología Inalámbrica , Prótesis e Implantes , Fenómenos Físicos , Fenómenos MagnéticosRESUMEN
Three-dimensional printing enables building objects shaped with a large degree of freedom. Additional functionalities can be included by modifying the printing material, e.g., by embedding nanoparticles in the molten polymer feedstock, the resin, or the solution used for printing, respectively. Such composite materials may be stronger or more flexible, conductive, magnetic, etc. Here, we give an overview of magnetic composites, 3D-printed by different techniques, and their potential applications. The production of the feedstock is described as well as the influence of printing parameters on the magnetic and mechanical properties of such polymer/magnetic composites.
RESUMEN
Due to the well-known biocompatibility, tunable biodegradability, and mechanical properties, silk fibroin hydrogel is an exciting material for localized drug delivery systems to decrease the therapy cost, decrease the negative side effects, and increase the efficiency of chemotherapy. However, the lack of remote stimuli response and active drug release behavior has yet to be analyzed comparatively. In this study, we developed magnetic silk fibroin (SF) hydrogel samples through the facile blending method, loaded with doxorubicin hydrochloride (DOX) and incorporated with different concentrations of iron oxide nanoparticles (IONPs), to investigate the presumable ability of controlled and sustained drug release under the various external magnetic field (EMF). The morphology and rheological properties of SF hydrogel and magnetic SF hydrogel were compared through FESEM images and rheometer analysis. Here, we demonstrated that adding magnetic nanoparticles (MNPs) into SFH decreased the complex viscosity and provided a denser porosity with a bigger pore size matrix structure, which allowed the drug to be released faster in the absence of an EMF. Release kinetic studies show that magnetic SF hydrogel could achieve controlled release of DOX in the presence of an EMF. Furthermore, the drug release from magnetic SF hydrogel decreased in the presence of a static magnetic field (SMF) and an alternating magnetic field (AMF), and the release rate decreased even more with the higher MNPs concentration and magnetic field strength. Subsequently, Wilms' tumor and human fibroblast cells were cultured with almost the same concentration of DOX released in different periods, and cell viability was investigated using MTT assay. MTT results indicated that the Wilms' tumor cells were more resistant to DOX than the human fibroblasts, and the IC50 values were calculated at 1.82 ± 0.001 and 2.73 ± 0.004 (µg/ml) for human fibroblasts and Wilms' tumor cells, respectively. Wilms' tumor cells showed drug resistance in a higher DOX concentration, indicating the importance of controlled drug delivery. These findings suggest that the developed magnetic SFH loaded with DOX holds excellent potential for intelligent drug delivery systems with noninvasive injection and remotely controlled abilities.
RESUMEN
This review reports recent advances in polysaccharide-based magnetic hydrogels as smart platforms for different biomedical applications. These hydrogels have proved to be excellent, viable, eco-friendly alternative materials for the biomedical field due to their biocompatibility, biodegradability, and possibility of controlling delivery processes via modulation of the remote magnetic field. We first present their main synthesis methods and compare their advantages and disadvantages. Next, the synergic properties of hydrogels prepared with polysaccharides and magnetic nanoparticles (MNPs) are discussed. Finally, we describe the main contributions of polysaccharide-based magnetic hydrogels in the targeted drug delivery, tissue regeneration, and hyperthermia therapy fields. Overall, this review aims to motivate the synthesis of novel composite biomaterials, based on the combination of magnetic nanoparticles and natural polysaccharides, to overcome challenges that still exist in the treatment of several diseases.