Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(44)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39059434

RESUMEN

Traditional electronics rely on charge currents for controlling and transmitting information, resulting in energy dissipation due to electron scattering. Over the last decade, magnons, quanta of spin waves, have emerged as a promising alternative. This perspective article provides a brief review of experimental and theoretical studies on quantum and hybrid magnonics resulting from the interaction of magnons with other quasiparticles in the GHz frequency range, offering insights into the development of functional magnonic devices. In this process, we discuss recent advancements in the quantum theory of magnons and their coupling with various types of qubits in nanoscale ferromagnets, antiferromagnets, synthetic antiferromagnets, and magnetic bulk systems. Additionally, we explore potential technological platforms that enable new functionalities in magnonics, concluding with future directions and emerging phenomena in this burgeoning field.

2.
J Phys Condens Matter ; 36(44)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38959908

RESUMEN

Quasiperiodic magnonic crystals, in contrast to their periodic counterparts, lack strict periodicity which gives rise to complex and localised spin wave spectra characterized by numerous band gaps and fractal features. Despite their intrinsic structural complexity, quasiperiodic nature of these magnonic crystals enables better tunability of spin wave spectra over their periodic counterparts and therefore holds promise for the applications in reprogrammable magnonic devices. In this article, we provide an overview of magnetization reversal and precessional magnetization dynamics studied so far in various quasiperiodic magnonic crystals, illustrating how their quasiperiodic nature gives rise to tailored band structure, enabling unparalleled control over spin waves. The review is concluded by highlighting the possible potential applications of these quasiperiodic magnonic crystals, exploring potential avenues for future exploration followed by a brief summary.

3.
Adv Mater ; 36(36): e2404639, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39022882

RESUMEN

Spin waves in magnetic materials are promising information carriers for future computing technologies due to their ultra-low energy dissipation and long coherence length. Antiferromagnets are strong candidate materials due, in part, to their stability to external fields and larger group velocities. Multiferroic antiferromagnets, such as BiFeO3 (BFO), have an additional degree of freedom stemming from magnetoelectric coupling, allowing for control of the magnetic structure, and thus spin waves, with the electric field. Unfortunately, spin-wave propagation in BFO is not well understood due to the complexity of the magnetic structure. In this work, long-range spin transport is explored within an epitaxially engineered, electrically tunable, 1D magnonic crystal. A striking anisotropy is discovered in the spin transport parallel and perpendicular to the 1D crystal axis. Multiscale theory and simulation suggest that this preferential magnon conduction emerges from a combination of a population imbalance in its dispersion, as well as anisotropic structural scattering. This work provides a pathway to electrically reconfigurable magnonic crystals in antiferromagnets.

4.
Nano Lett ; 24(31): 9528-9534, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38899856

RESUMEN

Utilizing ultrafast terahertz (THz) magnons, the quanta of collective magnetic excitations, as carriers may provide a promising alternative to overcome the problems associated with electrical losses in nanoelectronic devices and circuits. However, efficient excitation of propagating coherent THz magnons in magnonic nanowaveguides is an essential requirement for the development of such devices. Here, by growing ultrathin ferromagnetic nanostructures on a reconstructed surface, we create well-ordered periodic magnetic nanostripes. We demonstrate that such atomically architectured nanowaveguides not only provide a versatile platform for an efficient generation of THz magnons but also allow for their fast propagation. Our results reveal the complex nature of the spin dynamics within such designed nanowaveguides and pave the way for designing ultrafast magnon-based logic devices with THz operation frequencies.

5.
J Phys Condens Matter ; 36(39)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917843

RESUMEN

In this paper, we study the intrinsic contribution of nonlinear magnon thermal Hall Effect. We derive the intrinsic second-order thermal Hall conductivity of magnon by the thermal scalar potential method and the thermal vector potential method. We find that the intrinsic second-order magnon thermal Hall conductivity is related to the thermal Berry-connection polarizability. We apply our theory to the monolayer ferromagnetic Hexagonal lattice, and we find that the second-order magnon thermal Hall conductivity can be controlled by changing Dzyaloshinskii-Moriya strength and applying strain.

6.
Chemistry ; : e202401092, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856100

RESUMEN

Air pollution and greenhouse emissions are significant problems across various sectors, urging the need for advanced technologies to detect and capture harmful gases. In recent years, two-dimensional (2D) materials have attracted increasing attention due to their large surface-to-volume ratio and reactivity. Herein, we investigate the potential of single-layer CrSBr for gas sensing and capturing by means of first-principles calculations. We explore the adsorption behaviour of different pollutant gases (H2S, NH3, NO, NO2, CO and CO2) on this 2D ferromagnet and the impact of intrinsic defects on its magnetic properties. Interestingly, we find that Br vacancies enhance the adsorption of NH3, NO and NO2 and induce a selective frequency shift on the magnon dispersion. This work motivates the creation of novel magnonic gas sensing devices based on 2D van der Waals magnetic materials.

7.
J Phys Condens Matter ; 36(40)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38906128

RESUMEN

We investigate the magnetization dynamics in nanomagnet vertices often found in artificial spin ices. Our analysis involves creating a simplified model that depicts edge magnetization using magnetic charges. We utilize the model to explore the energy landscape, its associated curvatures, and the fundamental modes. Our study uncovers specific magnonic regimes and transitions between magnetization states, marked by zero-modes, which can be understood within the framework of Landau theory. To verify our model, we compare it with micromagnetic simulations, demonstrating a noteworthy agreement.

8.
J Phys Condens Matter ; 36(41)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38942012

RESUMEN

In this work high-frequency magnetization dynamics and statics of artificial spin-ice lattices with different geometric nanostructure array configurations are studied where the individual nanostructures are composed of ferromagnetic/non-magnetic/ferromagnetic trilayers with different non-magnetic thicknesses. These thickness variations enable additional control over the magnetic interactions within the spin-ice lattice that directly impacts the resulting magnetization dynamics and the associated magnonic modes. Specifically the geometric arrangements studied are square, kagome and trigonal spin ice configurations, where the individual lithographically patterned nanomagnets (NMs) are trilayers, made up of two magnetic layers ofNi81Fe19of 30 nm and 70 nm thickness respectively, separated by a non-magnetic copper layer of either 2 nm or 40 nm. We show that coupling via the magnetostatic interactions between the ferromagnetic layers of the NMs within square, kagome and trigonal spin-ice lattices offers fine-control over magnetization states and magnetic resonant modes. In particular, the kagome and trigonal lattices allow tuning of an additional mode and the spacing between multiple resonance modes, increasing functionality beyond square lattices. These results demonstrate the ability to move beyond quasi-2D single magnetic layer nanomagnetics via control of the vertical interlayer interactions in spin ice arrays. This additional control enables multi-mode magnonic programmability of the resonance spectra, which has potential for magnetic metamaterials for microwave or information processing applications.

9.
J Phys Condens Matter ; 36(36)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38565125

RESUMEN

Magnonicsis a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes.

10.
ACS Appl Mater Interfaces ; 16(17): 22177-22188, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648102

RESUMEN

Expanding upon the burgeoning discipline of magnonics, this research elucidates the intricate dynamics of spin waves (SWs) within three-dimensional nanoenvironments. It marks a shift from traditionally used planar systems to exploration of magnetization configurations and the resulting dynamics within 3D nanostructures. This study deploys micromagnetic simulations alongside ferromagnetic resonance measurements to scrutinize magnetic gyroids, periodic chiral configurations composed of chiral triple junctions with a period in nanoscale. Our findings uncover distinctive attributes intrinsic to the gyroid network, most notably the localization of collective SW excitations and the sensitivity of the gyroid's ferromagnetic response to the orientation of the static magnetic field, a correlation closely tied to the crystallographic alignment of the structure. Furthermore, we show that for the ferromagnetic resonance, multidomain gyroid films can be treated as a magnonic material with effective magnetization scaled by its filling factor. The implications of our research carry the potential for practical uses such as an effective, metamaterial-like substitute for ferromagnetic parts and lay the groundwork for radio frequency filters. The growing areas of 3D magnonics and spintronics present exciting opportunities to investigate and utilize gyroid nanostructures for signal processing purposes.

11.
Small ; 20(25): e2308724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229571

RESUMEN

In future information storage and processing, magnonics is one of the most promising candidates to replace traditional microelectronics. Yttrium iron garnet (YIG) films with perpendicular magnetic anisotropy (PMA) have aroused widespread interest in magnonics. Obtaining strong PMA in a thick YIG film with a small lattice mismatch (η) has been fascinating but challenging. Here, a novel strategy is proposed to reduce the required minimum strain value for producing PMA and increase the maximum thickness for maintaining PMA in YIG films by slight oxygen deficiency. Strong PMA is achieved in the YIG film with an η of only 0.4% and a film thickness up to 60 nm, representing the strongest PMA for such a small η reported so far. Combining transmission electron microscopy analyses, magnetic measurements, and a theoretical model, it is demonstrated that the enhancement of PMA physically originates from the reduction of saturation magnetization and the increase of magnetostriction coefficient induced by oxygen deficiency. The Gilbert damping values of the 60-nm-thick YIG films with PMA are on the order of 10-4. This strategy improves the flexibility for the practical applications of YIG-based magnonic devices and provides promising insights for the theoretical understanding and the experimental enhancement of PMA in garnet films.

12.
Adv Sci (Weinh) ; 11(14): e2310032, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279583

RESUMEN

A cavity-magnonic system composed of a superconducting microwave resonator coupled to a magnon mode hosted by the organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]x) is demonstrated. This work is motivated by the challenge of scalably integrating a low-damping magnetic system with planar superconducting circuits. V[TCNE]x has ultra-low intrinsic damping, can be grown at low processing temperatures on arbitrary substrates, and can be patterned via electron beam lithography. The devices operate in the strong coupling regime, with a cooperativity exceeding 1000 for coupling between the Kittel mode and the resonator mode at T≈0.4 K, suitable for scalable quantum circuit integration. Higher-order magnon modes are also observed with much narrower linewidths than the Kittel mode. This work paves the way for high-cooperativity hybrid quantum devices in which magnonic circuits can be designed and fabricated as easily as electrical wires.

13.
ACS Nano ; 18(6): 4717-4725, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38271997

RESUMEN

Performing nanoscale scanning electron paramagnetic resonance (EPR) requires three essential ingredients: First, a static magnetic field together with field gradients to Zeeman split the electronic energy levels with spatial resolution; second, a radio frequency (rf) magnetic field capable of inducing spin transitions; finally, a sensitive detection method to quantify the energy absorbed by spins. This is usually achieved by combining externally applied magnetic fields with inductive coils or cavities, fluorescent defects, or scanning probes. Here, we theoretically propose the realization of an EPR scanning sensor merging all three characteristics into a single device: the vortex core stabilized in ferromagnetic thin-film discs. On one hand, the vortex ground state generates a significant static magnetic field and field gradients. On the other hand, the precessional motion of the vortex core around its equilibrium position produces a circularly polarized oscillating magnetic field, which is enough to produce spin transitions. Finally, the spin-magnon coupling broadens the vortex gyrotropic frequency, suggesting a direct measure of the presence of unpaired electrons. Moreover, the vortex core can be displaced by simply using external magnetic fields of a few mT, enabling EPR scanning microscopy with large spatial resolution. Our numerical simulations show that, by using low damping magnets, it is theoretically possible to detect single spins located on the disc's surface. Vortex nanocavities could also attain strong coupling to individual spin molecular qubits with potential applications to mediate qubit-qubit interactions or to implement qubit readout protocols.

14.
Nano Lett ; 23(20): 9303-9309, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819876

RESUMEN

Confining magnons in cavities can introduce new functionalities to magnonic devices, enabling future magnonic structures to emulate the established photonic and electronic components. As a proof-of-concept, we report magnon confinement in a lithographically defined all-on-chip YIG cavity created between two YIG/Permalloy bilayers. We take advantage of the modified magnetic properties of the covered/uncovered YIG film to define on-chip distinct regions with boundaries capable of confining magnons. We confirm this by measuring multiple spin-pumping voltage peaks in a 400 nm wide platinum strip placed along the center of the cavity. These peaks coincide with multiple spin-wave resonance modes calculated for a YIG slab with the corresponding geometry. The fabrication of micrometer-sized YIG cavities following this technique represents a new approach to control coherent magnons, while the spin-pumping voltage in a nanometer-sized Pt strip demonstrates to be a noninvasive local detector of the magnon resonance intensity.

15.
Sci Bull (Beijing) ; 68(22): 2734-2742, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37863774

RESUMEN

Atomically thin van der Waals magnetic materials have not only provided a fertile playground to explore basic physics in the two-dimensional (2D) limit but also created vast opportunities for novel ultrafast functional devices. Here we systematically investigate ultrafast magnetization dynamics and spin wave dynamics in few-layer topological antiferromagnetic MnBi2Te4 crystals as a function of layer number, temperature, and magnetic field. We find laser-induced (de)magnetization processes can be used to accurately track the distinct magnetic states in different magnetic field regimes, including showing clear odd-even layer number effects. In addition, strongly field-dependent AFM magnon modes with tens of gigahertz frequencies are optically generated and directly observed in the time domain. Remarkably, we find that magnetization and magnon dynamics can be observed in not only the time-resolved magneto-optical Kerr effect but also the time resolved reflectivity, indicating strong correlation between the magnetic state and electronic structure. These measurements present the first comprehensive overview of ultrafast spin dynamics in this novel 2D antiferromagnet, paving the way for potential applications in 2D antiferromagnetic spintronics and magnonics as well as further studies of ultrafast control of both magnetization and topological quantum states.

16.
Nano Lett ; 23(18): 8719-8724, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37691265

RESUMEN

Spin-wave-based transmission and processing of information is a promising emerging nanotechnology that can help overcome limitations of traditional electronics based on the transfer of electrical charge. Among the most important challenges for this technology is the implementation of spin-wave devices that can operate without the need for an external bias magnetic field. Here we experimentally demonstrate that this can be achieved using submicrometer wide spin-wave waveguides fabricated from ultrathin films of a low-loss magnetic insulator, yttrium iron garnet (YIG). We show that these waveguides exhibit a highly stable single-domain static magnetic configuration at zero field and support long-range propagation of spin waves with gigahertz frequencies. The experimental results are supported by micromagnetic simulations, which additionally provide information for the optimization of zero-field guiding structures. Our findings create the basis for the development of energy-efficient zero-field spin-wave devices and circuits.

17.
Nano Lett ; 23(15): 6979-6984, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37523860

RESUMEN

We demonstrate numerically how a spin wave (SW) beam obliquely incident on the edge of a thin film placed below a ferromagnetic stripe can excite leaky SWs guided along the stripe. During propagation, leaky waves emit energy back into the layer in the form of plane waves and several laterally shifted parallel SW beams. This resonance excitation, combined with interference effects of the reflected and re-emitted waves, results in the magnonic Wood's anomaly and a significant increase of the Goos-Hänchen shift magnitude. This yields a unique platform to control SW reflection and transdimensional magnonic router that can transfer SWs from a 2D platform into a 1D guided mode.

18.
Natl Sci Rev ; 10(5): nwac247, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37228254

RESUMEN

Squeezed light finds many important applications in quantum information science and quantum metrology, and has been produced in a variety of physical systems involving optical non-linear processes. Here, we show how a non-linear magnetostrictive interaction in a ferrimagnet in cavity magnomechanics can be used to reduce quantum noise of the electromagnetic field. We show optimal parameter regimes where a substantial and stationary squeezing of the microwave output field can be achieved. Realization of the scheme is within reach of current technology in cavity electromagnonics and magnomechanics. Our work provides a new and practicable approach for producing squeezed vacuum states of electromagnetic fields, and may find promising applications in quantum information processing and quantum metrology.

19.
J Phys Condens Matter ; 35(32)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37116510

RESUMEN

Reprogramming the structure of the magnonic bands during their operation is important for controlling spin waves in magnonic devices. Here, we report the tunability of the spin-wave spectra for a triangular shaped deterministic magnonic fractal, which is known as Sierpinski triangle by solving the Landau-Lifshitz-Gilbert equation using a micromagnetic simulations. The spin-wave dynamics change significantly with the variation of iteration number. A wide frequency gap is observed for a structure with an iteration number exceeding some value and a plenty of mini-frequency bandgaps at structures with high iteration number. The frequency gap could be controlled by varying the strength of the magnetic field. A sixfold symmetry in the frequency gap is observed with the variation of the azimuthal angle of the external magnetic field. The spatial distributions of the spin-wave modes allow to identify the bands surrounding the gap. The observations are important for the application of magnetic fractals as a reconfigurable aperiodic magnonic crystals.

20.
Nano Lett ; 22(21): 8771-8778, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36162813

RESUMEN

The recent isolation of two-dimensional (2D) magnets offers tantalizing opportunities for spintronics and magnonics at the limit of miniaturization. One of the key advantages of atomically thin materials is their outstanding deformation capacity, which provides an exciting avenue to control their properties by strain engineering. Herein, we investigate the magnetic properties, magnon dispersion, and spin dynamics of the air-stable 2D magnetic semiconductor CrSBr (TC = 146 K) under mechanical strain using first-principles calculations. Our results provide a deep microscopic analysis of the competing interactions that stabilize the long-range ferromagnetic order in the monolayer. We showcase that the magnon dynamics of CrSBr can be modified selectively along the two main crystallographic directions as a function of applied strain, probing the potential of this quasi-1D electronic system for magnon straintronics applications. Moreover, we predict a strain-driven enhancement of TC by ∼30%, allowing the propagation of spin waves at higher temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...