Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 731
Filtrar
1.
Can Commun Dis Rep ; 50(10): 365-374, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39386278

RESUMEN

Background: In response to the COVID-19 pandemic, a new oral antiviral called nirmatrelvir-ritonavir (PaxlovidTM) was authorized for use in Canada in January 2022. In vitro studies have reported mutations in Mpro protein that may be associated with the development of nirmatrelvir resistance. Objectives: To survey the prevalence, relevance and temporal patterns of Mpro mutations among SARS-CoV-2 Omicron lineages in Ontario, Canada. Methods: A total of 93,082 Mpro gene sequences from December 2021 to September 2023 were analyzed. Reported in vitro Mpro mutations were screened against our database using in-house data science pipelines to determine the nirmatrelvir resistance. Negative binomial regression was conducted to analyze the temporal trends in Mpro mutation counts over the study time period. Results: A declining trend was observed in non-synonymous mutations of Mpro sequences, showing a 7.9% reduction (95% CI: 6.5%-‬9.4%; p<0.001) every 30 days. The P132H was the most prevalent mutation (higher than 95%) in all Omicron lineages. In vitro nirmatrelvir-resistant mutations were found in 3.12% (n=29/929) Omicron lineages with very low counts, ranging from one to 19. Only two mutations, A7T (n=19) and M82I (n=9), showed temporal presence among the BA.1.1 in 2022 and the BQ.1.2.3 in 2022, respectively. Conclusion: The observations suggest that, as of September 2023, no significant or widespread resistance to nirmatrelvir has developed among SARS-CoV-2 Omicron variants in Ontario. This study highlights the importance of creating automated monitoring systems to track the emergence of nirmatrelvir-resistant mutations within the SARS-CoV-2 virus, utilizing genomic data generated in real-time.

2.
J Biomater Sci Polym Ed ; : 1-21, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39264734

RESUMEN

SARS-CoV-2 is one of the deadly outbreaks in the present era and still showing its presence around the globe. Researchers have produced various vaccines that offer protection against infection, but we have not yet found a cure for COVID-19. Currently, efforts are focused on identifying effective therapeutic approaches to treat this infectious disease. In the present work, we investigated the main protease (Mpro) protein, a crucial component in SARS-CoV-2 viral particle formation, as a drug target and proposed phytocompounds with therapeutic potential against SARS-CoV-2. Initially, several plant-based resources were exploited to screen around one thousand phytocompounds and further their physiochemical characterization and assessment of drug likeliness were performed using SwissADME. Eventually, we screened 95 compounds based on docking analysis using AutoDock Vina. Five compounds were selected having the highest affinity for Mpro for the analysis of ligand-receptor interaction using molecular dynamic (MD) simulation. Docking and MD simulation studies elucidated the promising stable interaction of selected 5 ligands with Mpro. During MD simulation of 100 ns, Abacopterin F showed the lowest binding energy (-37.13 kcal/mol) with the highest affinity towards Mpro and this compound may be proposed as a lead molecule for further investigation. This interaction may result in modulation of the Mpro activity, consequently leading to hindrance in viral particle formation. However, in-vitro and in-vivo experimental validation would be needed to process the selected phytomolecules as a therapeutic lead against SARS-CoV-2.

3.
Adv Exp Med Biol ; 1460: 919-954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287877

RESUMEN

Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing ß-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.


Asunto(s)
COVID-19 , Síndrome de Activación Macrofágica , Obesidad , SARS-CoV-2 , Humanos , COVID-19/virología , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/complicaciones , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/epidemiología , Obesidad/virología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , Síndrome de Activación Macrofágica/virología , Síndrome de Activación Macrofágica/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/virología , Diabetes Mellitus Tipo 2/metabolismo , Pandemias , MicroARNs/genética , MicroARNs/metabolismo , Citocinas/metabolismo , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virología
4.
Proc Natl Acad Sci U S A ; 121(37): e2404175121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39236245

RESUMEN

We generated SARS-CoV-2 variants resistant to three SARS-CoV-2 main protease (Mpro) inhibitors (nirmatrelvir, TKB245, and 5h), by propagating the ancestral SARS-CoV-2WK521WT in VeroE6TMPRSS2 cells with increasing concentrations of each inhibitor and examined their structural and virologic profiles. A predominant E166V-carrying variant (SARS-CoV-2WK521E166V), which emerged when passaged with nirmatrelvir and TKB245, proved to be resistant to the two inhibitors. A recombinant SARS-CoV-2E166V was resistant to nirmatrelvir and TKB245, but sensitive to 5h. X-ray structural study showed that the dimerization of Mpro was severely hindered by E166V substitution due to the disruption of the presumed dimerization-initiating Ser1'-Glu166 interactions. TKB245 stayed bound to MproE166V, whereas nirmatrelvir failed. Native mass spectrometry confirmed that nirmatrelvir and TKB245 promoted the dimerization of Mpro, and compromised the enzymatic activity; the Ki values of recombinant MproE166V for nirmatrelvir and TKB245 were 117±3 and 17.1±1.9 µM, respectively, indicating that TKB245 has a greater (by a factor of 6.8) binding affinity to MproE166V than nirmatrelvir. SARS-CoV-2WK521WT selected with 5h acquired A191T substitution in Mpro (SARS-CoV-2WK521A191T) and better replicated in the presence of 5h, than SARS-CoV-2WK521WT. However, no significant enzymatic or structural changes in MproA191T were observed. The replicability of SARS-CoV-2WK521E166V proved to be compromised compared to SARS-CoV-2WK521WT but predominated over SARS-CoV-2WK521WT in the presence of nirmatrelvir. The replicability of SARS-CoV-2WK521A191T surpassed that of SARS-CoV-2WK521WT in the absence of 5h, confirming that A191T confers enhanced viral fitness. The present data should shed light on the understanding of the mechanism of SARS-CoV-2's drug resistance acquisition and the development of resistance-repellant COVID-19 therapeutics.


Asunto(s)
Proteasas 3C de Coronavirus , Farmacorresistencia Viral , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Humanos , Chlorocebus aethiops , Animales , Farmacorresistencia Viral/genética , Células Vero , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , COVID-19/virología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Cristalografía por Rayos X , Lactamas , Leucina , Nitrilos , Prolina
5.
Adv Sci (Weinh) ; : e2404884, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319611

RESUMEN

The COVID-19 pandemic has required an expeditious advancement of innovative antiviral drugs. In this study, focused compound libraries are synthesized in 96- well plates utilizing modular click chemistry to rapidly discover potent inhibitors targeting the main protease (Mpro) of SARS-CoV-2. Subsequent direct biological screening identifies novel 1,2,3-triazole derivatives as robust Mpro inhibitors with high anti-SARS-CoV-2 activity. Notably, C5N17B demonstrates sub-micromolar Mpro inhibitory potency (IC50 = 0.12 µM) and excellent antiviral activity in Calu-3 cells determined in an immunofluorescence-based antiviral assay (EC50 = 0.078 µM, no cytotoxicity: CC50 > 100 µM). C5N17B shows superior potency to nirmatrelvir (EC50 = 1.95 µM) and similar efficacy to ensitrelvir (EC50 = 0.11 µM). Importantly, this compound displays high antiviral activities against several SARS-CoV-2 variants (Gamma, Delta, and Omicron, EC50 = 0.13 - 0.26 µM) and HCoV-OC43, indicating its broad-spectrum antiviral activity. It is worthy that C5N17B retains antiviral activity against nirmatrelvir-resistant strains with T21I/E166V and L50F/E166V mutations in Mpro (EC50 = 0.26 and 0.15 µM, respectively). Furthermore, C5N17B displays favorable pharmacokinetic properties. Crystallography studies reveal a unique, non-covalent multi-site binding mode. In conclusion, these findings substantiate the potential of C5N17B as an up-and-coming drug candidate targeting SARS-CoV-2 Mpro for clinical therapy.

6.
Chin J Nat Med ; 22(9): 797-807, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39326974

RESUMEN

The Chinese herb Ephedra (also known as Mahuang) has been extensively utilized for the prevention and treatment of coronavirus-induced diseases, including coronavirus disease 2019 (COVID-19). However, the specific anti-SARS-CoV-2 compounds and mechanisms have not been fully elucidated. The main protease (Mpro) of SARS-CoV-2 is a highly conserved enzyme responsible for proteolytic processing during the viral life cycle, making it a critical target for the development of antiviral therapies. This study aimed to identify naturally occurring covalent inhibitors of SARS-CoV-2 Mpro from Ephedra and to investigate their covalent binding sites. The results demonstrated that the non-alkaloid fraction of Ephedra (ENA) exhibited a potent inhibitory effect against the SARS-CoV-2 Mpro effect, whereas the alkaloid fraction did not. Subsequently, the chemical constituents in ENA were identified, and the major constituents' anti-SARS-CoV-2 Mpro effects were evaluated. Among the tested constituents, herbacetin (HE) and gallic acid (GA) were found to inhibit SARS-CoV-2 Mpro in a time- and dose-dependent manner. Their combination displayed a significant synergistic effect on this key enzyme. Additionally, various techniques, including inhibition kinetic assays, chemoproteomic methods, and molecular dynamics simulations, were employed to further elucidate the synergistic anti-Mpro mechanisms of the combination of HE and GA. Overall, this study deciphers the naturally occurring covalent inhibitors of SARS-CoV-2 Mpro from Ephedra and characterizes their synergistic anti-Mpro synergistic effect, providing robust evidence to support the anti-coronavirus efficacy of Ephedra.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Ephedra , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Ephedra/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ácido Gálico/farmacología , Ácido Gálico/química , Tratamiento Farmacológico de COVID-19 , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Flavonoides
7.
J Mol Recognit ; : e3101, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221493

RESUMEN

The SARS-CoV-2 main protease (Mpro) is an essential enzyme that promotes viral transcription and replication. Mpro conserved nature in different variants and its nonoverlapping nature with human proteases make it an attractive target for therapeutic intervention against SARS-CoV-2. In this work, the interaction mechanism between Mpro and diindolylmethane derivatives was investigated by molecular docking, enzymatic inhibition assay, UV-vis, fluorescence spectroscopy, and circular dichroism spectroscopy. Results of IC50 values show that 1p (9.87 µM) was the strongest inhibitor for Mpro in this work, which significantly inhibited the activity of Mpro. The binding constant (4.07 × 105 Lmol-1), the quenching constant (5.41 × 105 Lmol-1), and thermodynamic parameters indicated that the quenching mode of 1p was static quenching, and the main driving forces between 1p and Mpro are hydrogen bond and van der Waals force. The influence of molecular structure on the binding is investigated. Chlorine atoms and methoxy groups are favorable for the diindolylmethane derivative inhibitors of Mpro. This work confirms the changes in the microenvironment of Mpro by 1p, and provides clues for the design of potential inhibitors.

8.
J Mol Biol ; 436(22): 168784, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245318

RESUMEN

Globally, the continuous spread and evolution of SARS-CoV-2, along with its variants, profoundly impact human well-being, health, security, and the growth of socio-economic. In the field of development of drugs against COVID-19, the main protease (Mpro) is a critical target as it plays a core role in the lifecycle of SARS-CoV-2. Bofutrelvir acts as a potent inhibitor of SARS-CoV-2 Mpro, demonstrating high efficacy and broad-spectrum antiviral activity. Compared to therapies that require pharmacokinetic boosters, such as ritonavir, the monotherapy approach of Bofutrelvir reduces the risk of potential drug interactions, making it suitable for a wider patient population. However, further studies on the potency and mechanism of inhibition of Bofutrelvir against the Mpro of COVID-19 and its variants, together with other coronaviruses, are needed to prepare for the possibility of a possible re-emerging threat from an analogous virus in the future. Here, we reveal the effective inhibition of Bofutrelvir against the Mpro of SARS-CoV-2, SARS-CoV, and HCoV-229E through FRET and crystallographic analysis. Furthermore, the inhibitory mechanisms of Bofutrelvir against two SARS-CoV-2 Mpro mutants (G15S and K90R) were also elucidated through FRET and crystallographic studies. Through detailed analysis and comparison of these crystal structures, we identified crucial structural determinants of inhibition and elucidated the binding mode of Bofutrelvir to Mpros from different coronaviruses. These findings are hopeful to accelerate the development of safer and more potent inhibitors against the Mpro of coronavirus, and to provide important references for the prevention and treatment of similar viruses that may emerge in the future.

9.
Comput Biol Med ; 181: 108963, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216402

RESUMEN

MOTIVATION: This study aims to investigate non-covalent and non-peptide inhibitors of Mpro, a crucial protein target, by employing a comprehensive approach that integrates molecular docking, molecular dynamics simulations, and top-hits activity predictions. The focus is on elucidating the non-covalent and non-peptide binding modes of potential inhibitors with Mpro. METHODS: We employed a semi-flexible molecular docking methodology, binding score and ADME screening, which are based on structure, to screen compounds from CMNPD and HERB in silico. These methodologies allowed us to find potential candidates depending on their binding values and interactions with the binding site of main protease. To further evaluate the stability of these interactions, we conducted molecular dynamics simulations and calculated binding energies. Ultimately, a top-hits activity prediction method was employed to prioritize compounds based on their predicted inhibitory potential. RESULTS: Through a combination of binding energy calculations and activity predictions, we identified six potential inhibitor molecules exhibiting promising activity against Mpro. These compounds demonstrated favorable binding interactions and stability profiles, making them attractive candidates for further experimental validation and drug development efforts targeting Mpro.


Asunto(s)
Productos Biológicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Humanos , Unión Proteica
10.
SLAS Discov ; 29(6): 100179, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39151824

RESUMEN

The SARS-CoV-2 main protease (Mpro) is essential for viral replication because it is responsible for the processing of most of the non-structural proteins encoded by the virus. Inhibition of Mpro prevents viral replication and therefore constitutes an attractive antiviral strategy. We set out to develop a high-throughput Mpro enzymatic activity assay using fluorescently labeled peptide substrates. A library of fluorogenic substrates of various lengths, sequences and dye/quencher positions was prepared and tested against full length SARS-CoV-2 Mpro enzyme for optimal activity. The addition of buffers containing strongly hydrated kosmotropic anion salts, such as citrate, from the Hofmeister series significantly boosted the enzyme activity and enhanced the assay detection limit, enabling the ranking of sub-nanomolar inhibitors without relying on the low-throughput Morrison equation method. By comparing cooperativity in citrate or non-citrate buffer while titrating the Mpro enzyme concentration, we found full positive cooperativity of Mpro with citrate buffer at less than one nanomolar (nM), but at a much higher enzyme concentration (∼320 nM) with non-citrate buffer. In addition, using a tight binding Mpro inhibitor, we confirmed there was only one active catalytical site in each Mpro monomer. Since cooperativity requires at least two binding sites, we hypothesized that citrate facilitates dimerization of Mpro at sub-nanomolar concentration as one of the mechanisms enhances Mpro catalytic efficiency. This assay has been used in high-throughput screening and structure activity relationship (SAR) studies to support medicinal chemistry efforts. IC50 values determined in this assay correlates well with EC50 values generated by a SARS-CoV-2 antiviral assay after adjusted for cell penetration.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Pruebas de Enzimas , Ensayos Analíticos de Alto Rendimiento , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Antivirales/farmacología , Antivirales/química , Pruebas de Enzimas/métodos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , COVID-19/virología , Tratamiento Farmacológico de COVID-19
11.
Chem Biodivers ; : e202401034, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109873

RESUMEN

The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) represents a promising target for antiviral drugs aimed at combating COVID-19. Consequently, the development of Mpro inhibitor is an ideal strategy for combating the virus. In this study, we identified twenty-two dithiocarbamates (1 a-h), dithiocarbamate-Cu(II) complexes (2 a-hCu) and disulfide derivatives (2 a-e, 2 i) as potent inhibitors of Mpro, with IC50 value range of 0.09-0.72, 0.9-24.7, and 15.1-111 µM, respectively, through FRET screening. The enzyme kinetics, inhibition mode, jump dilution, and DTT assay revealed that 1 g may be a partial reversible inhibitor, while 2 d and 2 f-Cu are the irreversible and dose- and time-dependent inhibitors, potentially covalently binding to the target. Binding of 2 d, 2 f-Cu, and 1 g to Mpro was found to decrease the stability of the protein. Additionally, DTT assays and thermal shift assays indicated that 2 f-Cu and 2 d are the nonspecific and promiscuous cysteine protease inhibitor. ICP-MS implied that the inhibitory activity of 2 f-Cu may stem from the uptake of Cu(II) by the enzyme. Cytotoxicity assays demonstrated that 2 d and 1 g exhibit low cytotoxicity, whereas 2 f-Cu show certain cytotoxicity in L929 cells. Overall, this work presents two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.

12.
Int J Biol Macromol ; 278(Pt 3): 134870, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173802

RESUMEN

This study reports the synthesis and analysis of biologically active acylthiourea compounds (1 and 2) with a cyclohexyl moiety. The compounds were characterized using UV-Visible, FT-IR, 1H/13C NMR, and elemental analysis. The crystal structure of 2 was solved, revealing intra- and inter-molecular hydrogen bonds. Density functional theory (DFT) calculations provided insights into chemical reactivity and non-covalent interactions. Cytotoxicity assays showed the cyclohexyl group enhanced the activity of compound 2 compared to compound 1. Epoxide hydrolase 1 was predicted as the enzyme target for both compounds. We modeled the structure of epoxide hydrolase 1 and performed molecular dynamics simulation and docking studies. Additionally, in silico docking with SARS-CoV-2 main protease, human ACE2, and avian influenza H5N1 hemagglutinin indicated strong binding potential of the compounds. This integrated approach improves our understanding of the biological potential of acylthiourea derivatives.


Asunto(s)
Teoría Funcional de la Densidad , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Tiourea , Tiourea/química , Tiourea/farmacología , Tiourea/análogos & derivados , Humanos , SARS-CoV-2/efectos de los fármacos , Epóxido Hidrolasas/química , Epóxido Hidrolasas/metabolismo , Epóxido Hidrolasas/antagonistas & inhibidores , Enlace de Hidrógeno , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos
13.
Viruses ; 16(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205192

RESUMEN

The SARS-CoV-2 main protease (Mpro) is initially synthesized as part of polyprotein precursors that undergo autoproteolysis to release the free mature Mpro. To investigate the autoprocessing mechanism in transfected mammalian cells, we examined several fusion precursors, with the mature SARS-CoV-2 Mpro along with the flanking amino acids (to keep the native substrate sequences) sandwiched between different tags. Our analyses revealed differential proteolysis kinetics at the N- and C-terminal cleavage sites. Particularly, N-terminal processing is differentially influenced by various upstream fusion tags (GST, sGST, CD63, and Nsp4) and amino acid variations at the N-terminal P1 position, suggesting that precursor catalysis is flexible and subject to complex regulation. Mutating Q to E at the N-terminal P1 position altered both precursor catalysis and the properties of the released Mpro. Interestingly, the wild-type precursors exhibited different enzymatic activities compared to those of the released Mpro, displaying much lower susceptibility to known inhibitors targeting the mature form. These findings suggest the precursors as alternative targets for antiviral development. Accordingly, we developed and validated a high-throughput screening (HTS)-compatible platform for functional screening of compounds targeting either the N-terminal processing of the SARS-CoV-2 Mpro precursor autoprocessing or the released mature Mpro through different mechanisms of action.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , SARS-CoV-2 , SARS-CoV-2/enzimología , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , Humanos , Antivirales/farmacología , Antivirales/metabolismo , Antivirales/química , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/química , Proteolisis , Células HEK293 , Tratamiento Farmacológico de COVID-19 , COVID-19/virología
14.
SLAS Discov ; 29(6): 100181, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173830

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, SARS2) is responsible for the COVID-19 pandemic and infections that continue to affect the lives of millions of people worldwide, especially those who are older and/or immunocompromised. The SARS2 main protease enzyme, Mpro (also called 3C-like protease, 3CLpro), is a bona fide drug target as evidenced by potent inhibition with nirmatrelvir and ensitrelvir, the active components of the drugs Paxlovid and Xocova, respectively. However, the existence of nirmatrelvir and ensitrelvir-resistant isolates underscores the need to develop next-generation drugs with different resistance profiles and/or distinct mechanisms of action. Here, we report the results of a high-throughput screen of 649,568 compounds using a cellular gain-of-signal assay. In this assay, Mpro inhibits expression of a luciferase reporter, and 8,777 small molecules were considered hits by causing a gain in luciferase activity 3x SD above the sample field activity (6.8% gain-of-signal relative to 100 µM GC376). Single concentration and dose-response gain-of-signal experiments confirmed 3,522/8,762 compounds as candidate inhibitors. In parallel, all initial high-throughput screening hits were tested in a peptide cleavage assay with purified Mpro and only 39/8,762 showed inhibition. Importantly, 19/39 compounds (49%) re-tested positive in both SARS2 assays, including two previously reported Mpro inhibitors, demonstrating the efficacy of the overall screening strategy. This approach led to the rediscovery of known Mpro inhibitors such as calpain inhibitor II, as well as to the discovery of novel compounds that provide chemical information for future drug development efforts.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Ensayos Analíticos de Alto Rendimiento , SARS-CoV-2 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/genética , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasas/farmacología , Descubrimiento de Drogas/métodos , COVID-19/virología , Bibliotecas de Moléculas Pequeñas/farmacología
15.
J Biol Chem ; 300(9): 107675, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128719

RESUMEN

The assembly of two monomeric constructs spanning segments 1-199 (MPro1-199) and 10-306 (MPro10-306) of SARS-CoV-2 main protease (MPro) was examined to assess the existence of a transient heterodimer intermediate in the N-terminal autoprocessing pathway of MPro model precursor. Together, they form a heterodimer population accompanied by a 13-fold increase in catalytic activity. Addition of inhibitor GC373 to the proteins increases the activity further by ∼7-fold with a 1:1 complex and higher order assemblies approaching 1:2 and 2:2 molecules of MPro1-199 and MPro10-306 detectable by analytical ultracentrifugation and native mass estimation by light scattering. Assemblies larger than a heterodimer (1:1) are discussed in terms of alternate pathways of domain III association, either through switching the location of helix 201 to 214 onto a second helical domain of MPro10-306 and vice versa or direct interdomain III contacts like that of the native dimer, based on known structures and AlphaFold 3 prediction, respectively. At a constant concentration of MPro1-199 with molar excess of GC373, the rate of substrate hydrolysis displays first order dependency on the MPro10-306 concentration and vice versa. An equimolar composition of the two proteins with excess GC373 exhibits half-maximal activity at ∼6 µM MPro1-199. Catalytic activity arises primarily from MPro1-199 and is dependent on the interface interactions involving the N-finger residues 1 to 9 of MPro1-199 and E290 of MPro10-306. Importantly, our results confirm that a single N-finger region with its associated intersubunit contacts is sufficient to form a heterodimeric MPro intermediate with enhanced catalytic activity.


Asunto(s)
Proteasas 3C de Coronavirus , Multimerización de Proteína , SARS-CoV-2 , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , SARS-CoV-2/enzimología , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Humanos , Dominios Proteicos , COVID-19/virología , Modelos Moleculares
16.
Biochem Biophys Rep ; 39: 101804, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39193225

RESUMEN

The present study uses molecular docking and dynamic simulations to evaluate the inhibitory effect of flavonoid glycosides-based compounds on coronavirus Main protease (Mpro) and RNA polymerase. The Molegro Virtual Docker (MVD) software is utilized to simulate and calculate the binding parameters of compounds with coronavirus. The docking results show that the selected herbal compounds are more effective than those of chemical compounds. It is also revealed that five herbal ligands and two chemical ligands have the best docking scores. Furthermore, a Molecular Dynamics (MD) simulation was conducted for Hesperidin, confirming docking results. Analysis based on different parameters such as Root-mean-square deviation (RMSD), Root mean square fluctuation (RMSF), Radius of gyration (Rg), Solvent accessibility surface area (SASA), and the total number of hydrogen bonds suggests that Hesperidin formed a stable complex with Mpro. Absorption, Distribution, Metabolism, Excretion, And Toxicity (ADMET) analysis was performed to compare Hesperidin and Grazoprevir as potential antiviral medicines, evaluating both herbal and chemical ligand results. According to the study, herbal compounds could be effective on coronavirus and are admissible candidates for developing potential operative anti-viral medicines. Hesperidin was found to be the most acceptable interaction. Grazoprevir is an encouraging candidate for drug development and clinical trials, with the potential to become a highly effective Mpro inhibitor. Compared to RNA polymerase, Mpro showed a greater affinity for bonding with Hesperidin. van der Waals and electrostatic energies dominated, creating a stable Hesperidin-Mpro and Hesperidin-RNA polymerase complex.

17.
Biochem Biophys Res Commun ; 735: 150469, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39106601

RESUMEN

Recurrent epidemics of coronaviruses have posed significant threats to human life and health. The mortality rate of patients infected with the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is 35 %. The main protease (Mpro) plays a crucial role in the MERS-CoV life cycle, and Mpro exhibited a high degree of conservation among different coronaviruses. Therefore inhibition of Mpro has become an effective strategy for the development of broad-spectrum anti-coronaviral drugs. The inhibition of SARS-CoV-2 Mpro by the anti-tumor drug carmofur has been revealed, but structural studies of carmofur in complex with Mpro from other types of coronavirus have not been reported. Hence, we revealed the structure of the MERS-CoV Mpro-carmofur complex, analysed the structural basis for the binding of carmofur to MERS-CoV Mpro in detail, and compared the binding patterns of carmofur to Mpros of two different coronaviruses, MERS-CoV and SARS-CoV-2. Considering the importance of Mpros for coronavirus therapy, structural understanding of Mpro inhibition by carmofur could contribute to the design and development of novel antiviral drugs with safe and broad-spectrum efficacy.

18.
Front Pharmacol ; 15: 1369659, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086396

RESUMEN

COVID-19 is currently considered the ninth-deadliest pandemic, spreading through direct or indirect contact with infected individuals. It has imposed a consistent strain on both the financial and healthcare resources of many countries. To address this challenge, there is a pressing need for the development of new potential therapeutic agents for the treatment of this disease. To identify potential antiviral agents as novel dual inhibitors of SARS-CoV-2, we retrieved 404 alkaloids from 12 selected medicinal antiviral plants and virtually screened them against the renowned catalytic sites and favorable interacting residues of two essential proteins of SARS-CoV-2, namely, the main protease and spike glycoprotein. Based on docking scores, 12 metabolites with dual inhibitory potential were subjected to drug-likeness, bioactivity scores, and drug-like ability analyses. These analyses included the ligand-receptor stability and interactions at the potential active sites of target proteins, which were analyzed and confirmed through molecular dynamic simulations of the three lead metabolites. We also conducted a detailed binding free energy analysis of pivotal SARS-CoV-2 protein inhibitors using molecular mechanics techniques to reveal their interaction dynamics and stability. Overall, our results demonstrated that 12 alkaloids, namely, adouetine Y, evodiamide C, ergosine, hayatinine, (+)-homoaromoline, isatithioetherin C, N,alpha-L-rhamnopyranosyl vincosamide, pelosine, reserpine, toddalidimerine, toddayanis, and zanthocadinanine, are shortlisted as metabolites based on their interactions with target proteins. All 12 lead metabolites exhibited a higher unbound fraction and therefore greater distribution compared with the standards. Particularly, adouetine Y demonstrated high docking scores but exhibited a nonspontaneous binding profile. In contrast, ergosine and evodiamide C showed favorable binding interactions and superior stability in molecular dynamics simulations. Ergosine demonstrated exceptional performance in several key pharmaceutical metrics. Pharmacokinetic evaluations revealed that ergosine exhibited pronounced bioactivity, good absorption, and optimal bioavailability. Additionally, it was predicted not to cause skin sensitivity and was found to be non-hepatotoxic. Importantly, ergosine and evodiamide C emerged as superior drug candidates for dual inhibition of SARS-CoV-2 due to their strong binding affinity and drug-like ability, comparable to known inhibitors like N3 and molnupiravir. This study is limited by its in silico nature and demands the need for future in vitro and in vivo studies to confirm these findings.

19.
Angew Chem Int Ed Engl ; 63(40): e202409527, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959351

RESUMEN

We investigate the inhibition mechanism between pomotrelvir and the SARS-CoV-2 main protease using molecular mechanics and quantum mechanics/molecular mechanics simulations. Alchemical transformations where each Pi group of pomotrelvir was transformed into its counterpart in nirmatrelvir were performed to unravel the individual contribution of each group to the binding and reaction processes. We have shown that while a γ-lactam ring is preferred at position P1, a δ-lactam ring is a good alternative for the design of inhibitors for variants presenting mutations at position 166. For the P2 position, tertiary amines are preferred with respect to secondary amines. Flexible side chains at the P2 position can disrupt the preorganization of the active site, favouring the exploration of non-reactive conformations. The substitution of the P2 group of pomotrelvir by that of nirmatrelvir resulted in a compound, named as C2, that presents a better binding free energy and a higher population of reactive conformations in the Michaelis complex. Analysis of the chemical reaction to form the covalent complex has shown a similar reaction mechanism and activation free energies for pomotrelvir, nirmatrelvir and C2. We hope that these findings could be useful to design better inhibitors to fight present and future variants of the SARS-CoV-2 virus.


Asunto(s)
Proteasas 3C de Coronavirus , Simulación de Dinámica Molecular , SARS-CoV-2 , SARS-CoV-2/enzimología , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Antivirales/química , Antivirales/farmacología , Antivirales/metabolismo , Humanos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/metabolismo , Teoría Cuántica , Leucina/análogos & derivados , Leucina/química , Leucina/metabolismo , Unión Proteica , Tratamiento Farmacológico de COVID-19 , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacología , Sitios de Unión , Farmacorresistencia Viral , Termodinámica , Lactamas , Nitrilos , Prolina
20.
Mol Cell Probes ; 77: 101973, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39025272

RESUMEN

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , SARS-CoV-2 , Replicación Viral , SARS-CoV-2/efectos de los fármacos , Humanos , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Antivirales/uso terapéutico , Reposicionamiento de Medicamentos/métodos , COVID-19/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...