Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Nutrients ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39275130

RESUMEN

Amino acid (AA)-related inherited metabolic disorders (IMDs) and urea cycle disorders (UCDs) require strict dietary management including foods low in protein such as fruits, vegetables and starchy roots. Despite this recommendation, there are limited data on the AA content of many of these foods. The aim of this study is to describe an analysis of the protein and AA content of a range of fruits, vegetables and starchy roots, specifically focusing on amino acids (AAs) relevant to AA-related IMDs such as phenylalanine (Phe), methionine (Met), leucine (Leu), lysine (Lys) and tyrosine (Tyr). AA analysis was performed using high-performance liquid chromatography (HPLC) on 165 food samples. Protein analysis was also carried out using the Dumas method. Foods were classified as either 'Fruits', 'Dried fruits', 'Cruciferous vegetables', 'Legumes', 'Other vegetables' or 'Starchy roots'. 'Dried fruits' and 'Legumes' had the highest median values of protein, while 'Fruits' and 'Cruciferous vegetables' contained the lowest median results. 'Legumes' contained the highest and 'Fruits' had the lowest median values for all five AAs. Variations were seen in AA content for individual foods. The results presented in this study provide useful data on the protein and AA content of fruits, vegetables and starchy roots which can be used in clinical practice. This further expansion of the current literature will help to improve diet quality and metabolic control among individuals with AA-related IMDs and UCDs.


Asunto(s)
Aminoácidos , Proteínas en la Dieta , Frutas , Raíces de Plantas , Almidón , Verduras , Verduras/química , Frutas/química , Raíces de Plantas/química , Aminoácidos/análisis , Proteínas en la Dieta/análisis , Almidón/análisis , Humanos , Enfermedades Metabólicas , Cromatografía Líquida de Alta Presión/métodos , Valor Nutritivo
2.
Cureus ; 16(8): e67983, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39347258

RESUMEN

In this report, we describe the case of a patient with concomitant maple syrup urine disease (MSUD) and type I diabetes mellitus (T1DM) who underwent domino liver transplantation (DLT) , and the associated perioperative management. To the best of our knowledge, a DLT in an adult with both MSUD and T1DM has not been previously reported in the literature. Intensive care admission with multidisciplinary oversight is necessary for metabolic preconditioning prior to surgery. The complex interplay between these two disease processes presented with grossly elevated baseline insulin requirements and refractory intraoperative hyperglycemia. Following the successful procedure, the patient maintained excellent glycemic control on a normal diet. Four months post transplant, the patient presented with mild to moderate cellular graft rejection.

3.
Nutrients ; 16(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39339744

RESUMEN

The treatment for Maple Syrup Urine Disease (MSUD) consists of a hypoproteic diet with integration therapy to limit leucine intake, ensuring adequate energy, macronutrients, and micronutrients to prevent catabolism and promote anabolism. We conducted a retrospective cross-sectional study at the Metabolic Rare Disease Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy. Patients with MSUD who were over 3 years old, not treated with liver transplantation, and who provided written consent, were included. The study aimed to describe the dietary treatment of patients with MSUD, evaluate growth data, and analyze the effect of a low-protein and semi-synthetic diet on body composition. Data on height, weight, BMI, waist circumference, food intake, physical activity, and DEXA scans were collected. Thirteen subjects (11 classic MSUD, 2 intermediate MSUD) were included, of which 5 < 18 years old. Results indicated that patients with MSUD follow a balanced diet and have body compositions like healthy subjects in terms of fat and lean mass. A high incidence of osteopenia was observed from a young age, with a positive correlation between protein intake and lean mass and a negative correlation between BCAA-free mixture consumption and bone mineral density z-score. The study highlights the positive effects and potential consequences of the semi-synthetic diet on the body composition of patients with MSUD. A similar study involving all Italian metabolic centers treating MSUD is recommended.


Asunto(s)
Composición Corporal , Enfermedad de la Orina de Jarabe de Arce , Humanos , Masculino , Enfermedad de la Orina de Jarabe de Arce/dietoterapia , Femenino , Estudios Retrospectivos , Estudios Transversales , Niño , Adolescente , Adulto , Preescolar , Adulto Joven , Italia , Dieta con Restricción de Proteínas , Densidad Ósea , Dieta
4.
Mol Genet Metab ; 143(1-2): 108569, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39270351

RESUMEN

Biallelic pathogenic variants cause maple syrup urine disease (MSUD) in one of the branched-chain α-keto acid dehydrogenase (BCKDH) complex genes (BCKDHA, BCKDHB, DBT, DLD, and PPM1K) leading to the accumulation of leucine, isoleucine, and valine. This study aimed to perform a molecular diagnosis of Brazilian patients with MSUD using gene panels and massive parallel sequencing. Eighteen Brazilian patients with a biochemical diagnosis of MSUD were analyzed by massive parallel sequencing in the Ion PGM Torrent Server using a gene panel with the BCKDHA, BCKDHB, and DBT genes. The American College of Medical Genetics and Genomics guidelines were used to determine variant pathogenicity. Thirteen patients had both variants found by massive parallel sequencing, whereas 3 patients had only one variant found. In 2 patients, the variants were not found by this analysis. These 5 patients required additional Sanger sequencing to confirm their genotype. Twenty-five pathogenic variants were identified in the 3 MSUD-related genes (BCKDHA, BCKDHB, and DBT). Most variants were present in the BCKDHB gene, and no common variants were found. Nine novel variants were observed: c.922 A > G, c.964C > A, and c.1237 T > C in the BCKDHA gene; and c.80_90dup, c.384delA, c.478 A > T, c.528C > G, c.977 T > C, and c.1039-2 A > G in the BCKDHB gene. All novel variants were classified as pathogenic. Molecular modeling of the novel variants indicated that the binding of monomers was affected in the BCKDH complex tetramer, which could lead to a change in the stability and activity of the enzyme. Massive parallel sequencing with targeted gene panels seems to be a cost-effective method that can provide a molecular diagnosis of MSUD.

5.
Mol Biol Res Commun ; 13(4): 235-246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39315288

RESUMEN

Maple syrup urine disease (MSUD) represents an infrequent metabolic disease precipitated by an insufficiency of the enzymatic complex known as branched-chain alpha-keto acid dehydrogenase. MSUD can be classified as classic (severe), intermediate, or intermittent based on the severity of the condition. The disease is associated with mutations in several genes, including BCKDHA, BCKDHB, DBT, and DLD. This study aimed to investigate the genetic landscape of MSUD in Iranian patients and explore the clinical implications of identified gene variants. A comprehensive analysis was conducted using various molecular techniques and bioinformatics tools to predict protein stability, pathogenicity, amino acid conservation, and secondary/tertiary structure. The in silico analysis highlighted high-risk pathogenic variants and provided insights into their potential impact on protein structure and function. Furthermore, the predicted 3D structures of wild-type and mutant proteins elucidated structural differences. Protein-protein interaction analysis shed light on the network of interactions involving MSUD-related proteins. The Iranome database uncovered a potential pathogenic variant (c.554C>T) in the Persian population. This research contributes to a better understanding of MSUD genetics in the Iranian population and outlines potential avenues for further clinical investigations. The findings have implications for genetic testing, prognosis, and genetic counseling in affected families.

6.
Neurocrit Care ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138714

RESUMEN

BACKGROUND: Acute metabolic crises in inborn errors of metabolism (such as urea cycle disorders, organic acidemia, maple syrup urine disease, and mitochondrial disorders) are neurological emergencies requiring management in the pediatric intensive care unit (PICU). There is a paucity of data pertaining to electroencephalograms (EEG) characteristics in this cohort. We hypothesized that the incidence of background abnormalities and seizures in this cohort would be high. Neuromonitoring data from our center's PICU over 10 years are presented in this article. METHODS: Data were collected by retrospective chart review for patients with the aforementioned disorders who were admitted to the PICU at our institution because of metabolic/neurologic symptoms from 2008 to 2018. Descriptive statistics (χ2 test or Fisher's exact test) were used to study the association between EEG parameters and outcomes. RESULTS: Our cohort included 40 unique patients (8 with urea cycle disorder, 7 with organic acidemia, 3 with maple syrup urine disease, and 22 with mitochondrial disease) with 153 admissions. Presenting symptoms included altered mentation (36%), seizures (41%), focal weakness (5%), and emesis (28%). Continuous EEG was ordered in 34% (n = 52) of admissions. Twenty-three admissions were complicated by seizures, including eight manifesting as status epilepticus (seven nonconvulsive and one convulsive). Asymmetry and focal slowing on EEG were associated with seizures. Moderate background slowing or worse was noted in 75% of EEGs. Among those patients monitored on EEG, 4 (8%) died, 3 (6%) experienced a worsening of their Pediatric Cerebral Performance Category (PCPC) score as compared to admission, and 44 (86%) had no change (or improvement) in their PCPC score during admission. CONCLUSIONS: This study shows a high incidence of clinical and subclinical seizures during metabolic crisis in patients with inborn errors of metabolism. EEG background features were associated with risk of seizures as well as discharge outcomes. This is the largest study to date to investigate EEG features and risk of seizures in patients with neurometabolic disorders admitted to the PICU. These data may be used to inform neuromonitoring protocols to improve mortality and morbidity in inborn errors of metabolism.

7.
Pediatr Transplant ; 28(6): e14845, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39158064

RESUMEN

INTRODUCTION: Maple syrup urine disease (MSUD) is caused by the deficiency of branched-chain keto acid dehydrogenase (BCKAD) and, it is well described that BCKAD contributed by an allograft following liver transplantation (LT) phenotypically normalizes this inborn error of metabolism (IEM). There is, however, a paucity of data especially with regards to the neurodevelopmental aspects and catch-up growth profiles after LT in a resource-challenged setting. We present our series of children under 6 years of age who underwent LT for MSUD particularly focusing on their amino acid homeostasis, neurodevelopmental and somatic growth profiles. METHODS: Of 580 consecutive pediatric LT (PLT) performed between January 2011 and December 2022, all children who underwent LT for MSUD were included for analysis. Data accrued included peri-LT details, pre- and post-LT metabolic profile, neurodevelopmental assessment, somatic growth evaluation, and long-term outcomes. RESULTS: Six children underwent LT for MSUD with a median age and weight at LT of 20.5 (IQR: 8-60) months and 10.1 (IQR: 6.7-15.8) kg, respectively. One explanted liver was used as a domino graft for Arginase deficiency. Median follow-up period was 52.5 (IQR: 27-94) months. None had vascular or biliary complications. Following LT, all children were started on an unrestricted protein diet and had normalization of BCAA levels. Post-LT height and weight improved by 1 SD but did not achieve the normal profile. None of the children had neuro-deterioration and have achieved new milestones. CONCLUSION: This is the first-report presenting the growth aspects, amino acid and neurodevelopmental profiles of children who underwent LT for MSUD within the socio-economic-cultural idiosyncrasies and constraints prevalent in our part of the world.


Asunto(s)
Aminoácidos , Homeostasis , Trasplante de Hígado , Enfermedad de la Orina de Jarabe de Arce , Humanos , Enfermedad de la Orina de Jarabe de Arce/cirugía , Masculino , Femenino , Lactante , Preescolar , Aminoácidos/metabolismo , Estudios Retrospectivos , Estudios de Seguimiento , Desarrollo Infantil
9.
QJM ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837343

RESUMEN

BACKGROUND: Maple Syrup Urine Disease (MSUD) is an autosomal recessive metabolic disorder originating from defects in the branched-chain α-ketoacid dehydrogenase (BCKDH) complex encoded by BCKDHA, BCKDHB, and DBT. This condition presents a spectrum of symptoms and potentially fatal outcomes. Although numerous mutations in the BCKDH complex genes associated with MSUD have been identified, the relationship between specific genotypes remains to be fully elucidated. AIM: Our objective was to predict the pathogenicity of these genetic mutations and establish potential links between genotypic alterations and the clinical phenotypes of MSUD. DESIGN: Retrospective population-based cohort. METHODS: We analyzed 20 MSUD patients from the Children's Hospital at Zhejiang University School of Medicine (Hangzhou, China), recorded from January 2010 to May 2023. Patients' blood samples were collected by heel-stick through neonatal screening, and amino acid profiles were measured by tandem mass spectrometry. In silico methods were employed to assess the pathogenicity, stability, and biophysical properties. Various computation tools were utilized for assessment, namely PredictSNP, MAGPIE, iStable, Align GVGD, ConSurf and SNP effect. RESULTS: We detected 25 distinct mutations, including 12 novel mutations. The BCKDHB gene was the most commonly affected (53.3%) compared to the BCKDHA gene (20.0%) and DBT gene (26.7%). In silico webservers predicted all novel mutations were disease-causing. CONCLUSIONS: This study highlights the genetic complexity of MSUD and underscores the importance of early detection and intervention. Integrating neonatal screening with advanced sequencing methodologies is pivotal in ensuring precise diagnosis and effective management of MSUD, thereby significantly improving the prognosis for individuals afflicted with this condition.

10.
Am J Obstet Gynecol MFM ; 6(8): 101399, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871294

RESUMEN

As the diagnosis and treatment of patients with inborn errors of metabolism has improved dramatically over the years, more people with these conditions are surviving into child-bearing years. Given the changes in metabolism throughout pregnancy, this time presents a unique challenge in their care. Overall metabolic shifts in pregnancy go from anabolism to catabolism driven by endocrinologic changes, along with changes in rates of gluconeogenesis, glucose consumption, amino acid transport, protein consumption, and lipid breakdown, result in a complicated metabolic picture. Additionally, maternal inborn errors of metabolism can affect a fetus, as in phenylketonuria, and fetal inborn errors of metabolism can affect the mother, as in certain fatty acid oxidation disorders. Data on these conditions is often very limited. A summary of the current literature, risks associated with pregnancy in inborn errors of metabolism, and suggestions for management of these conditions will be presented.


Asunto(s)
Errores Innatos del Metabolismo , Complicaciones del Embarazo , Humanos , Femenino , Embarazo , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/terapia , Complicaciones del Embarazo/diagnóstico , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/terapia
11.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891907

RESUMEN

Currently, tandem mass spectrometry-based newborn screening (NBS), which examines targeted biomarkers, is the first approach used for the early detection of maple syrup urine disease (MSUD) in newborns, followed by confirmatory genetic mutation tests. However, these diagnostic approaches have limitations, demanding the development of additional tools for the diagnosis/screening of MUSD. Recently, untargeted metabolomics has been used to explore metabolic profiling and discover the potential biomarkers/pathways of inherited metabolic diseases. Thus, we aimed to discover a distinctive metabolic profile and biomarkers/pathways for MSUD newborns using untargeted metabolomics. Herein, untargeted metabolomics was used to analyze dried blood spot (DBS) samples from 22 MSUD and 22 healthy control newborns. Our data identified 210 altered endogenous metabolites in MSUD newborns and new potential MSUD biomarkers, particularly L-alloisoleucine, methionine, and lysoPI. In addition, the most impacted pathways in MSUD newborns were the ascorbate and aldarate pathways and pentose and glucuronate interconversions, suggesting that oxidative and detoxification events may occur in early life. Our approach leads to the identification of new potential biomarkers/pathways that could be used for the early diagnosis/screening of MSUD newborns but require further validation studies. Our untargeted metabolomics findings have undoubtedly added new insights to our understanding of the pathogenicity of MSUD, which helps us select the appropriate early treatments for better health outcomes.


Asunto(s)
Biomarcadores , Pruebas con Sangre Seca , Enfermedad de la Orina de Jarabe de Arce , Metabolómica , Tamizaje Neonatal , Humanos , Enfermedad de la Orina de Jarabe de Arce/sangre , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Recién Nacido , Pruebas con Sangre Seca/métodos , Biomarcadores/sangre , Metabolómica/métodos , Masculino , Femenino , Tamizaje Neonatal/métodos , Metaboloma , Espectrometría de Masas en Tándem
12.
JIMD Rep ; 65(3): 144-155, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38736638

RESUMEN

Maple syrup urine disease (MSUD) is a disorder of branched-chain amino acid metabolism caused by a defect in the branched-chain α-ketoacid dehydrogenase (BCKD) complex (OMIM #248600). The hallmark presentation is encephalopathic crisis in neonates, but can also present with metabolic decompensation, developmental delays, and feeding difficulties. Biochemical evidence for MSUD includes elevated branched-chain amino acids (BCAA) and the pathognomonic presence of alloisoleucine. The BCKD complex contains several subunits associated with autosomal recessive MSUD, while its regulatory proteins have less well-defined disease associations. We report on two families with the same BCKDK variant (c.1115C>G (p.Thr372Arg)). Probands were detected on newborn screening and demonstrated biochemical evidence of MSUD. The variant was identified in reportedly asymptomatic parents and additional family members who had elevated BCAA and alloisoleucine, following an autosomal dominant pattern of inheritance. To better define the functional effect of the variant on the kinase, we completed molecular modeling using sequence-based (2D), structural-based (3D), and dynamic-based (4D) analyses. The BCKDK variant modeling indicated a gain-of-function which leads to impaired BCAA catabolism consistent with the biochemical evidence in this cohort. Combining the evidence gained from molecular modeling with the absence of metabolic decompensation in our patients and several adult family members, despite encountering stressors typically problematic in classic MSUD, we suggest that heterozygous gain-of-function variants in BCKDK may represent a novel biochemical phenotype of MSUD with a benign clinical course.

13.
Neonatal Netw ; 43(3): 139-147, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38816225

RESUMEN

Although a rare cause of neonatal seizures, inborn errors of metabolism (IEMs) remain an essential component of a comprehensive differential diagnosis for poorly controlled neonatal epilepsy. Diagnosing neonatal-onset metabolic conditions proves a difficult task for clinicians; however, routine state newborn screening panels now include many IEMs. Three in particular-pyridoxine-dependent epilepsy, maple syrup urine disease, and Zellweger spectrum disorders-are highly associated with neonatal epilepsy and neurocognitive injury yet are often misdiagnosed. As research surrounding biomarkers for these conditions is emerging and gene sequencing technologies are advancing, clinicians are beginning to better establish early identification strategies for these diseases. In this literature review, the authors aim to present clinicians with an innovative clinical guide highlighting IEMs associated with neonatal-onset seizures, with the goal of promoting quality care and safety.


Asunto(s)
Convulsiones , Humanos , Recién Nacido , Convulsiones/diagnóstico , Tamizaje Neonatal/métodos , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/complicaciones , Diagnóstico Diferencial , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Enfermedad de la Orina de Jarabe de Arce/complicaciones
14.
Am J Med Genet A ; 194(9): e63637, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38682838

RESUMEN

Significant progress has been achieved in enhancing early outcomes for individuals with maple syrup urine disease (MSUD), a rare metabolic disorder that leads to the accumulation of branched-chain amino acids leucine, isoleucine, and valine, where leucine is known as the primary neurotoxic metabolite. Newborn screening is helpful in early diagnosis and implementation of dietary treatment, thus reducing neurological deterioration and complications in young children. However, patients face the life-long challenge of maintaining metabolic control through adherence to a strict low-leucine diet to avoid long-term consequences of chronic hyperleucinemia, which include cognitive deficits, mood disorders, and movement disorders. This case report exemplifies the complex involvement of MSUD in adult survivors. Despite presenting early in life, the patient thrived until the onset of psychiatric symptoms. The subject of this case is a 25-year-old woman with MSUD, who remained in her usual state of health until presentation to the emergency department (ED) with psychosis and altered mental status. However, due to a lack of medical records and poor communication, there was a delay in considering MSUD as a primary cause of her psychiatric symptoms. Although a genetics consultation was later arranged and efforts were made to decrease plasma leucine to the therapeutic range, these interventions proved inadequate in halting her deterioration in health. Her condition worsened within 72 h, culminating in her untimely death. This case emphasizes the comorbidity of psychiatric involvement in MSUD, which contributes to metabolic decompensation that can lead to cerebral edema and death. This case also highlights the pressing need for enhanced strategies for the acute management and long-term care of MSUD patients with psychiatric involvement, particularly in scenarios where mental disturbance could lead to noncompliance.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , Trastornos Psicóticos , Humanos , Femenino , Trastornos Psicóticos/genética , Trastornos Psicóticos/patología , Enfermedad de la Orina de Jarabe de Arce/genética , Enfermedad de la Orina de Jarabe de Arce/complicaciones , Adulto , Resultado Fatal , Leucina/sangre
15.
Paediatr Anaesth ; 34(4): 366-370, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38314877

RESUMEN

An 11-month-old female infant diagnosed with classic subtype IB maple syrup urine disease underwent living donor liver transplantation. Blood samples for plasma amino acid analysis were collected during the three phases of the operation. Despite the perioperative prophylactic administration of 12.5% hypertonic dextrose solution with insulin and a 20% intralipid emulsion, the blood levels of the branched-chain amino acids increased dramatically during surgery, consistent with an acute intraoperative metabolic decompensation. However, these blood levels normalized soon after liver transplantation with an excellent outcome. We suggest that the occurrence of an intraoperative metabolic crisis during liver transplantation is not necessarily a sign of graft failure.


Asunto(s)
Trasplante de Hígado , Enfermedad de la Orina de Jarabe de Arce , Lactante , Niño , Humanos , Femenino , Aminoácidos de Cadena Ramificada/metabolismo , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Enfermedad de la Orina de Jarabe de Arce/cirugía , Donadores Vivos
18.
Anaesth Intensive Care ; 52(1): 64-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37994838

RESUMEN

A 19-year-old woman with known maple syrup urine disease presented to hospital with metabolic crisis in the setting of influenza type A infection and intractable vomiting, rapidly progressing to acute cerebral oedema manifesting as refractory seizures and decreased level of consciousness needing emergency intubation and mechanical ventilation, continuous veno-venous haemodiafiltration and thiopentone coma. A computed tomography scan and magnetic resonance imaging of the brain demonstrated classic signs of cerebral oedema secondary to a metabolic crisis from the metabolic disorder. Her management posed multiple challenges to all teams involved due to lack of familiarity and experience in managing this clinical scenario in the adult intensive care setting.


Asunto(s)
Edema Encefálico , Enfermedad de la Orina de Jarabe de Arce , Femenino , Humanos , Adulto Joven , Encéfalo , Edema Encefálico/complicaciones , Edema Encefálico/patología , Imagen por Resonancia Magnética , Enfermedad de la Orina de Jarabe de Arce/complicaciones , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Enfermedades Raras/complicaciones , Enfermedades Raras/patología
19.
J Inherit Metab Dis ; 47(1): 41-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36880392

RESUMEN

Maple syrup urine disease (MSUD) is rare autosomal recessive metabolic disorder caused by the dysfunction of the mitochondrial branched-chain 2-ketoacid dehydrogenase (BCKD) enzyme complex leading to massive accumulation of branched-chain amino acids and 2-keto acids. MSUD management, based on a life-long strict protein restriction with nontoxic amino acids oral supplementation represents an unmet need as it is associated with a poor quality of life, and does not fully protect from acute life-threatening decompensations or long-term neuropsychiatric complications. Orthotopic liver transplantation is a beneficial therapeutic option, which shows that restoration of only a fraction of whole-body BCKD enzyme activity is therapeutic. MSUD is thus an ideal target for gene therapy. We and others have tested AAV gene therapy in mice for two of the three genes involved in MSUD, BCKDHA and DBT. In this study, we developed a similar approach for the third MSUD gene, BCKDHB. We performed the first characterization of a Bckdhb-/- mouse model, which recapitulates the severe human phenotype of MSUD with early-neonatal symptoms leading to death during the first week of life with massive accumulation of MSUD biomarkers. Based on our previous experience in Bckdha-/- mice, we designed a transgene carrying the human BCKDHB gene under the control of a ubiquitous EF1α promoter, encapsidated in an AAV8 capsid. Injection in neonatal Bckdhb-/- mice at 1014 vg/kg achieved long-term rescue of the severe MSUD phenotype of Bckdhb-/- mice. These data further validate the efficacy of gene therapy for MSUD opening perspectives towards clinical translation.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , Animales , Humanos , Ratones , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/química , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Enfermedad de la Orina de Jarabe de Arce/genética , Enfermedad de la Orina de Jarabe de Arce/terapia , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Fenotipo , Calidad de Vida
20.
Mol Neurobiol ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910283

RESUMEN

Maple syrup urine disease (MSUD) is caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, resulting in tissue accumulation of branched-chain α-keto acids and amino acids, particularly α-ketoisocaproic acid (KIC) and leucine. Affected patients regularly manifest with acute episodes of encephalopathy including seizures, coma, and potentially fatal brain edema during the newborn period. The present work investigated the ex vivo effects of a single intracerebroventricular injection of KIC to neonate rats on redox homeostasis and neurochemical markers of neuronal viability (neuronal nuclear protein (NeuN)), astrogliosis (glial fibrillary acidic protein (GFAP)), and myelination (myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase)) in the cerebral cortex and striatum. KIC significantly disturbed redox homeostasis in these brain structures 6 h after injection, as observed by increased 2',7'-dichlorofluorescein oxidation (reactive oxygen species generation), malondialdehyde levels (lipid oxidative damage), and carbonyl formation (protein oxidative damage), besides impairing the antioxidant defenses (diminished levels of reduced glutathione and altered glutathione peroxidase, glutathione reductase, and superoxide dismutase activities) in both cerebral structures. Noteworthy, the antioxidants N-acetylcysteine and melatonin attenuated or normalized most of the KIC-induced effects on redox homeostasis. Furthermore, a reduction of NeuN, MBP, and CNPase, and an increase of GFAP levels were observed at postnatal day 15, suggesting neuronal loss, myelination injury, and astrocyte reactivity, respectively. Our data indicate that disruption of redox homeostasis, associated with neural damage caused by acute intracerebral accumulation of KIC in the neonatal period may contribute to the neuropathology characteristic of MSUD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...