Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153015

RESUMEN

Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38869621

RESUMEN

Biosilica (BS) and spongin (SPG) from marine sponges are highlighted for their potential to promote bone regeneration. Moreover, 3D printing is introduced as a technology for producing bone grafts with optimized porous structures, allowing for better cell attachment, proliferation, and differentiation. Thus, this study aimed to characterize the BS and BS/SPG 3D printed scaffolds and to evaluate the biological effects in vitro. The scaffolds were printed using an ink containing 4 wt.% of sodium alginate. The physicochemical characteristics of BS and BS/SPG 3D printed scaffolds were analyzed by SEM, EDS, FTIR, porosity, evaluation of mass loss, and pH measurement. For in vitro analysis, the cellular viability of the MC3T3-E1 cell lineage was assessed using the AlamarBlue® assay and confocal microscopy, while genotoxicity and mineralization potential were evaluated through the micronucleus assay and Alizarin Red S, respectively. SEM analysis revealed spicules in BS, the fibrillar structure of SPG, and material degradation over the immersion period. FTIR indicated peaks corresponding to silicon oxide in BS samples and carbon oxide and amine in SPG samples. BS-SPG scaffolds exhibited higher porosity, while BS scaffolds displayed greater mass loss. pH measurements indicated a significant decrease induced by BS, which was mitigated by SPG over the experimental periods. In vitro studies demonstrated the biocompatibility and non-cytotoxicity of scaffold extracts. .Also, the scaffolds promoted cellular differentiation. The micronucleus test further confirmed the absence of genotoxicity. These findings suggest that 3D printed BS and BS/SPG scaffolds may possess desirable morphological and physicochemical properties, indicating in vitro biocompatibility.

3.
Mar Drugs ; 22(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38921546

RESUMEN

Neurodegenerative diseases involve neuroinflammation and a loss of neurons, leading to disability and death. Hence, the research into new therapies has been focused on the modulation of the inflammatory response mainly by microglia/macrophages. The extracts and metabolites of marine sponges have been presented as anti-inflammatory. This study evaluated the toxicity of an extract and purified compound from the Brazilian marine sponge Aplysina fulva as well as its neuroprotection against inflammatory damage associated with the modulation of microglia response. PC12 neuronal cells and neonatal rat microglia were treated with the methanolic extract of A. fulva (AF-MeOH, 0.1-200 µg/mL) or with its purified dimethyl ketal of 3,5-dibromoverongiaquinol (AF-H1, 0.1-100 µM). Cytotoxicity was determined by MTT tetrazolium, Trypan blue, and propidium iodide; microglia were also treated with the conditioned medium (CM) from PC12 cells in different conditions. The microglia phenotype was determined by the expression of Iba-1 and CD68. AF-MeOH and AF-H1 were not toxic to PC12 or the microglia. Inflammatory damage with Escherichia coli lipopolysaccharide (LPS, 5 µg/mL) was not observed in the PC12 cells treated with AF-MeOH (1-10 µg/mL) or AF-H1 (1-10 µM). Microglia subjected to the CM from PC12 cells treated with LPS and AF-MeOH or AF-H1 showed the control phenotype-like (multipolar, low-CD68), highlighting the anti-neuroinflammatory and neuroprotective effect of components of this marine sponge.


Asunto(s)
Microglía , Fármacos Neuroprotectores , Poríferos , Animales , Microglía/efectos de los fármacos , Ratas , Poríferos/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Células PC12 , Brasil , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Hidrocarburos Bromados/farmacología , Inflamación/tratamiento farmacológico
4.
Mar Drugs ; 22(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38786604

RESUMEN

Marine sponges of the genus Spongia have proven to be unabated sources of novel secondary metabolites with remarkable scaffold diversities and significant bioactivities. The discovery of chemical substances from Spongia sponges has continued to increase over the last few years. The current work provides an up-to-date literature survey and comprehensive insight into the reported metabolites from the members of the genus Spongia, as well as their structural features, biological activities, and structure-activity relationships when available. In this review, 222 metabolites are discussed based on published data from the period from mid-2015 to the beginning of 2024. The compounds are categorized into sesquiterpenes, diterpenes, sesterterpenes, meroterpenes, linear furanoterpenes, steroids, alkaloids, and other miscellaneous substances. The biological effects of these chemical compositions on a vast array of pharmacological assays including cytotoxic, anti-inflammatory, antibacterial, neuroprotective, protein tyrosine phosphatase 1B (PTP1B)-inhibitory, and phytoregulating activities are also presented.


Asunto(s)
Poríferos , Poríferos/metabolismo , Poríferos/química , Animales , Humanos , Relación Estructura-Actividad , Productos Biológicos/farmacología , Productos Biológicos/química , Metabolismo Secundario
5.
Antonie Van Leeuwenhoek ; 117(1): 65, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602593

RESUMEN

Dynamics of microbiomes through time are fundamental regarding survival and resilience of their hosts when facing environmental alterations. As for marine species with commercial applications, such as marine sponges, assessing the temporal change of prokaryotic communities allows us to better consider the adaptation of sponges to aquaculture designs. The present study aims to investigate the factors shaping the microbiome of the sponge Dactylospongia metachromia, in a context of aquaculture development in French Polynesia, Rangiroa, Tuamotu archipelago. A temporal approach targeting explants collected during farming trials revealed a relative high stability of the prokaryotic diversity, meanwhile a complementary biogeographical study confirmed a spatial specificity amongst samples at different longitudinal scales. Results from this additional spatial analysis confirmed that differences in prokaryotic communities might first be explained by environmental changes (mainly temperature and salinity), while no significant effect of the host phylogeny was observed. The core community of D. metachromia is thus characterized by a high spatiotemporal constancy, which is a good prospect for the sustainable exploitation of this species towards drug development. Indeed, a microbiome stability across locations and throughout the farming process, as evidenced by our results, should go against a negative influence of sponge translocation during in situ aquaculture.


Asunto(s)
Microbiota , Poríferos , Animales , Acuicultura , Agricultura , Polinesia
6.
Mar Drugs ; 22(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38535473

RESUMEN

The Verongida order comprises several sponge families, such as Aplysinellidae, Aplysinidae, Ianthellidae, and Pseudoceratinidae, reported for producing bromotyrosine-derived compounds. First identified in 1913, bromotyrosine derivatives have since captivated interest notably for their antitumor and antimicrobial properties. To date, over 360 bromotyrosine derivatives have been reported. Our review focuses specifically on bromotyrosine derivatives newly reported from 2004 to 2023, by summarizing current knowledge about their chemical diversity and their biological activities.


Asunto(s)
Vendajes , Poríferos , Tirosina/análogos & derivados , Humanos , Animales
7.
Mar Drugs ; 22(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38535455

RESUMEN

Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.


Asunto(s)
Actinobacteria , Antozoos , Antineoplásicos , Neoplasias , Animales , Estudios Prospectivos , Ensayos Clínicos como Asunto
8.
Mar Drugs ; 22(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38393026

RESUMEN

Chondrosia reniformis is a collagen-rich marine sponge that is considered a sustainable and viable option for producing an alternative to mammalian-origin collagens. However, there is a lack of knowledge regarding the properties of collagen isolated from different sponge parts, namely the outer region, or cortex, (ectosome) and the inner region (choanosome), and how it affects the development of biomaterials. In this study, a brief histological analysis focusing on C. reniformis collagen spatial distribution and a comprehensive comparative analysis between collagen isolated from ectosome and choanosome are presented. The isolated collagen characterization was based on isolation yield, Fourier-transformed infrared spectroscopy (FTIR), circular dichroism (CD), SDS-PAGE, dot blot, and amino acid composition, as well as their cytocompatibility envisaging the development of future biomedical applications. An isolation yield of approximately 20% was similar for both sponge parts, as well as the FTIR, CD, and SDS-PAGE profiles, which demonstrated that both isolated collagens presented a high purity degree and preserved their triple helix and fibrillar conformation. Ectosome collagen had a higher OHpro content and possessed collagen type I and IV, while the choanosome was predominately constituted by collagen type IV. In vitro cytotoxicity assays using the L929 fibroblast cell line displayed a significant cytotoxic effect of choanosome collagen at 2 mg/mL, while ectosome collagen enhanced cell metabolism and proliferation, thus indicating the latter as being more suitable for the development of biomaterials. This research represents a unique comparative study of C. reniformis body parts, serving as a support for further establishing this marine sponge as a promising alternative collagen source for the future development of biomedical applications.


Asunto(s)
Micropartículas Derivadas de Células , Poríferos , Animales , Micropartículas Derivadas de Células/metabolismo , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/metabolismo , Poríferos/metabolismo , Colágeno/química , Colágeno Tipo I/metabolismo , Mamíferos/metabolismo
9.
Mar Pollut Bull ; 200: 116050, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262213

RESUMEN

Sponges are not routinely employed as metal bioindicators in Brazil. In this sense, this study reports baseline metal and metalloid concentrations, determined by inductively coupled plasma mass spectrometry, for two Demospongiae sponge species, Hymeniacidon heliophila and Desmapsamma anchorata, sampled from two Southeastern Brazil areas. Sponges from Ilha Grande Bay, an Environmental Protection Area, exhibited higher Al, As, Cd, Co, Cr, Fe, and Ni levels compared to Vermelha Beach, a metropolitan area in the Rio de Janeiro city. Several strong correlations were noted between elemental pairs, indicating common contamination sources and/or similar metabolic detoxification routes. Comparisons of the means determined herein for each study site to other reports indicate mostly lower Ag, As, Co, Cd, and Cu levels, while Al levels were higher than other studies, and Cr, Ni, and Fe were within reported ranges. These baseline data further knowledge on metal pollution in Desmspongiae members, which are still limited.


Asunto(s)
Metaloides , Metales Pesados , Poríferos , Contaminantes Químicos del Agua , Animales , Metaloides/análisis , Brasil , Cadmio/análisis , Poríferos/metabolismo , Metales/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis
10.
Mar Drugs ; 21(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38132936

RESUMEN

The majority of natural products utilized to treat a diverse array of human conditions and diseases are derived from terrestrial sources. In recent years, marine ecosystems have proven to be a valuable resource of diverse natural products that are generated to defend and support their growth. Such marine sources offer a large opportunity for the identification of novel compounds that may guide the future development of new drugs and therapies. Using the National Oceanic and Atmospheric Administration (NOAA) portal, we explore deep-sea coral and sponge species inhabiting a segment of the U.S. Exclusive Economic Zone, specifically off the western coast of Florida. This area spans ~100,000 km2, containing coral and sponge species at sea depths up to 3000 m. Utilizing PubMed, we uncovered current knowledge on and gaps across a subset of these sessile organisms with regards to their natural products and mechanisms of altering cytoskeleton, protein trafficking, and signaling pathways. Since the exploitation of such marine organisms could disrupt the marine ecosystem leading to supply issues that would limit the quantities of bioactive compounds, we surveyed methods and technological advances that are necessary for sustaining the drug discovery pipeline including in vitro aquaculture systems and preserving our natural ecological community in the future. Collectively, our efforts establish the foundation for supporting future research on the identification of marine-based natural products and their mechanism of action to develop novel drugs and therapies for improving treatment regimens of human conditions and diseases.


Asunto(s)
Antozoos , Productos Biológicos , Poríferos , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Descubrimiento de Drogas , Ecosistema , Florida
11.
Braz. arch. biol. technol ; 61: e18180104, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-974083

RESUMEN

ABSTRACT Marine sponges are a rich source of bioactive natural products with multiple pharmacological properties. In this study, the anti-inflammatory and antinociceptive effects of extracts obtained from Aplysina caissara, Haliclona sp. and Dragmacidon reticulatum were evaluated by using the writhing test and formalin-induced mouse paw edema model in mice. All extracts were administered via oral pathway in the doses of 60 and 90 mg/kg. In the writhing test the pre-treatment with all sponges resulted in significant inhibition of the acetic acid-induced response, suggesting an antinociceptive effect. The formalin test showed that the extracts from A. caissara, Haliclona sp. and D. reticulatum, in the tested doses, did not affect the first formalin phase, however, they were effective in the late phase. To assess the potential anti-inflammatory activity of the extracts, the test of formalin-induced paw edema was used. The oral administration of A. caissara, Haliclona sp. and D. reticulatum extracts significantly reduced the formalin-induced paw edema in mice. In conclusion, our data show that marine sponges can be an important source of anti-inflammatory and antinocicpetive products that can be promising therapeutical leads. Furthermore, pharmacological and chemical studies have been developed not only to characterize the mechanism(s) that is/are responsible for the antinociceptive and anti-inflammatory action but also to identify the active principles of sponges.

12.
Biol. Res ; 51: 28, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-983933

RESUMEN

BACKGROUND: Pectinase enzymes catalyze the breakdown of pectin, a key component of the plant cell wall. At industrial level, pectinases are used in diverse applications, especially in food-processing industry. Currently, most of the industrial pectinases have optimal activity at mesophilic temperatures. On the contrary, very little is known about the pectinolytic activities from organisms from cold climates such as Antarctica. In this work, 27 filamentous fungi isolated from marine sponges collected in King George Island, Antarctica, were screened as new source of cold-active pectinases. RESULTS: In semi-quantitative plate assays, 8 out 27 of these isolates showed pectinolytic activities at 15 °C and one of them, Geomyces sp. strain F09-T3-2, showed the highest production of pectinases in liquid medium containing pectin as sole carbon source. More interesting, Geomyces sp. F09-T3-2 showed optimal pectinolytic activity at 30 °C, 10 °C under the temperature of currently available commercial mesophilic pectinases. CONCLUSION: Filamentous fungi associated with Antarctic marine sponges are a promising source of pectinolytic activity. In particular, pectinases from Geomyces sp. F09-T3-2 may be potentially suitable for biotechnological applications needing cold-active pectinases. To the best of our knowledge, this is the first report describing the production of pectinolytic activity from filamentous fungi from any environment in Antarctica.


Asunto(s)
Animales , Poligalacturonasa/biosíntesis , Poríferos/microbiología , Hongos/enzimología , Frío , Regiones Antárticas
13.
An. acad. bras. ciênc ; 89(4): 2785-2792, Oct.-Dec. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-886858

RESUMEN

ABSTRACT Marine sponges has been a large reservoir of microbial diversity, with the presence of many species specific populations as well as producing biologically active compounds, which has attracted great biotechnological interest. In order to verify the influence of the environment in the composition of the bacterial community present in marine sponges and biotechnological potential of bacteria isolated from these organisms, three species of sponges and the waters surrounding them were collected in different beaches of Rio de Janeiro, Brazil. The profile of the bacterial community present in sponges and water was obtained by PCR-DGGE technique and the biotechnological potential of the strains isolated by producing amylase, cellulase, protease and biosurfactants. The results showed that despite the influence of the environment in the composition of the microbial community, studied marine sponges shown to have specific bacterial populations, with some, showing potential in the production of substances of biotechnological applications.


Asunto(s)
Animales , Poríferos/microbiología , Bacterias/aislamiento & purificación , Poríferos/enzimología , Bacterias/clasificación , Biotecnología , Brasil , Reacción en Cadena de la Polimerasa , Biología Marina
14.
Rev. bras. farmacogn ; 25(6): 651-656, Nov.-Dec. 2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-769939

RESUMEN

Abstract Chagas' disease is a parasitic infection caused by protozoan Trypanosoma cruzi that affect millions of people worldwide. The available drugs for treatment of this infection cause serious side effects and have variable efficacy, especially in the chronic phase of the disease. In this context, natural compounds have shown great potential for the discovery of new chemotherapies for the treatment of this infection and various other diseases. In present study, we evaluated the in vitro antiprotozoal activity of five species of Brazilian and Spanish marine sponges (Condrosia reniformes, Tethya rubra, Tethya ignis, Mycale angulosa and Dysidea avara) against T. cruzi. By GC–MS data, we observed that in these extracts were present the major classes of the following compounds: hydrocarbons, terpenes, steroids and alcohols. The extracts showed activity against the three forms of this parasite and did not induce toxicity in mammalian cells. Better activities were observed with the extracts of marine sponges, C. reniformes (EC50 = 0.6 μg/ml), D. avara (EC50 = 1.1 μg/ml) and M. angulosa (EC50 = 3.8 μg/ml), against trypomastigote forms. In intracellular amastigote forms, the extract of T. ignis showed IC50 of 7.2 μg/ml and SI of 24.65. On this basis, our results indicate that these extracts can be promising chemotherapeutic agents against T. cruzi.

15.
Braz. j. microbiol ; 44(1): 329-334, 2013. ilus, tab
Artículo en Inglés | LILACS | ID: lil-676923

RESUMEN

Poribacterial clone libraries constructed for Aplysina fulva sponge specimens were analysed with respect to diversity and phylogeny. Results imply the coexistence of several, prevalently "intraspecific" poribacterial genotypes in a single sponge host, and suggest quantitative analysis as a desirable approach in studies of the diversity and distribution of poribacterial cohorts in marine sponges


Asunto(s)
Microbiología Ambiental , Variación Genética , Técnicas In Vitro , Filogenia , Poríferos , ARN Bacteriano/aislamiento & purificación , Genotipo , Métodos , Estudios de Evaluación como Asunto
16.
Rev. cuba. farm ; 46(4): 436-445, oct.-dic. 2012.
Artículo en Español | LILACS | ID: lil-657884

RESUMEN

La esponja Leucetta aff. floridana produce compuestos con actividad antiproliferativa diferencial en células tumorales de pulmón y mama, la cual no ha sido explorada en otras líneas tumorales y se desconoce si su potencial antiproliferativo está relacionado con la progresión de células a través del ciclo celular. Objetivo: evaluar el potencial antiproliferativo, anticlonogénico y el efecto sobre el ciclo celular de los extractos hexánico y metanólico de la esponja Leucetta aff. floridana del Caribe colombiano en las líneas celulares leucemoides Jurkat y K562. Métodos: la viabilidad y proliferación celular se determinaron mediante el ensayo de azul de tripano a 0, 24, 48, 72 y 96 h. La eficiencia de clonación y el efecto sobre el ciclo celular se evaluaron a 10 y 100 µg/mL. Los datos se analizaron usando ANOVA multifactorial y la prueba Tukey. Resultados: el extracto hexánico presentó actividad antiproliferativa en ambas líneas celulares siendo Jurkat más sensible que K562, lo cual se corroboró con los ensayos de clonogenicidad. Este extracto también mostró un efecto de acumulación de células Sub-G1 dependiente de la dosis, el cual fue diferencial entre las dos líneas celulares. La duración del tratamiento con el extracto hexánico no fue significativa para las células K562 pero sí para la línea celular Jurkat. Además, el porcentaje de acumulación de las células Sub-G1 fue mayor para células K562 comparado con Jurkat. El extracto metanólico presentó un efecto antiproliferativo similar al hexánico, pero fue más potente con la menor concentración (10 µg/mL) en la clonogenicidad de K562. El efecto sobre el ciclo celular, también fue similar al hexánico, pero la duración del tratamiento no fue significativa en la acumulación de células en Sub-G1. Conclusiones: los resultados muestran el potencial diferencial de los extractos sobre el ciclo celular de las líneas leucemoides evaluadas...


Leucetta aff. floridana sponge produces compounds with differential antiproliferative activity on lung and breast cancer. Nevertheless, this activity in other tumour cell lines has not yet been tested and it remains unknown whether its antiproliferative potential is correlated with the cell progression through cell cycle or not. Objective: To evaluate the antiproliferative and anticlonogenic potential and the effect of methanolic and hexanic extracts of sponge L. aff. floridana from the Colombian Caribbean region on the cell cycle of Jurkat and K562 leukemoid cell lines. Methods: The viability and antiproliferative effect were determined using trypan blue assay at 0, 24, 48, 72 and 96 hours. Clongenicity and effect on cell cycle were assayed at 10 and 100 µg/mL Data obtained were analyzed using multifactorial ANOVA and Tukey's test. Results: The hexanic extract presented antiproliferative activity in both Jurkat and K652 cell lines; Jurkat being more sensitive than K652. These results were confirmed by clongenicity assays. The hexanic extract also showed its effect on the dose-dependent accumulation of Sub-G1 cells, although it was different in the two cell lines. The duration of the treatment with the hexanic extract was not significant for K562 cell line, but it was for Jurkat cells. Additionally, the percentage of cell accumulation in Sub-G1 was higher in K562 than in Jurkat cells. The methanolic extract showed antiproliferative effect similar to that of the hexanic extract, but more potent at the lowest concentration (10 µg/mL) in K652 cell line clonegenicity. The effect on cell cycle was also similar to that of the hexanic extract, but in this case the duration of treatment was not significant in the cell accumulation in Sub-G1. Conclusions: Altogether these results show the differential potential of the extracts on the cell cycle of the evaluated leukemoid cell lines...

17.
Braz. j. microbiol ; 42(4): 1560-1568, Oct.-Dec. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-614622

RESUMEN

Despite the large number of reports describing sponge-microbe associations, limited knowledge is available about associated fungi and their relationships with the hosts. In this work, specific fungal strains were obtained directly from in vitro sponge cell cultures (primmorphs) and single sponge cells (cytospins) and compared with those obtained from whole tissue preparations. A total of 27 fungal strains were isolated from the marine sponges Hymeniacidon heliophila and Haliclona melana. Fifteen strains, nine from H. heliophila and six from H. melana, were obtained from whole tissue and were considered as possible mesohyl associated or transient fungi. Twelve strains were isolated from in vitro sponge cell cultures (primmorphs) and were, therefore, considered as cell associated. From these, five different strains were obtained from H. heliophila isolated cells, while five were identified from cytospins and two from primmorphs of H. melana. The fungal strains obtained from cell cultures from both sponge species were different, and none of them were detected in the whole tissue preparations of the same species. Nine H. heliophila and seven H. melana strains shows low similarity with the sequences available in public databases and belong to potentially new species. This is the first report of fungi isolated directly from sponge cells, which allowed the observation and selection of specific strains that probably would not be obtained by usual culture dependent techniques.


Asunto(s)
Técnicas de Cultivo de Célula , Hongos Acuáticos/análisis , Técnicas In Vitro , Ambiente Marino , Fauna Marina , Poríferos/microbiología , Microbiología Ambiental , Métodos , Métodos
18.
Rev. bras. farmacogn ; 21(4): 608-614, jul.-ago. 2011. tab
Artículo en Inglés | LILACS | ID: lil-596246

RESUMEN

The exploration of marine environment represents a promising strategy in the search for new active antiviral compounds. The isolation and characterization of the nucleosides spongothymidine and spongouridine from the sponge Cryptotethia crypta used as models for the synthesis of ara-A (vidarabine), that has been used therapeutically against herpetic encephalitis, was the most important contribution since the late 1970s. This paper describes the in vitro antiviral evaluation of 26 organic extracts obtained from eleven octocoral species and fifteen marine sponges. Cytotoxicity was evaluated on Vero cells by MTT assay and the antiviral activity was tested against Herpes Simplex Virus type 1 (HSV-1, KOS strain) by plaque number reduction assay. Results were expressed as 50 percent cytotoxic (CC50) and 50 percent inhibitory (IC50) concentrations, respectively, in order to calculate the selectivity index (SI= CC50/IC50) of each extract. Among the tested marine octocoral species, only three extracts showed antiviral activity, but with low selectivity indices (<3.0). Among the tested marine sponges, eight extracts showed SI values higher than 2.0, and three can be considered promising (Aka cachacrouense, Niphates erecta and Dragmacidon reticulatum) with SI values of 5.0, 8.0 and 11.7, respectively, meriting complementary studies in order to identify the bioactive components of these sponge extracts, which are in course now.

19.
Rev. bras. farmacogn ; 20(2): 267-275, Apr.-May 2010. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-550027

RESUMEN

The growing number of bacterial strains resistant to conventional antibiotics has become a serious medical problem in recent years. Marine sponges are a rich source of bioactive compounds, and many species can be useful for the development of new antimicrobial drugs. This study reports the in vitro screening of marine sponges in the search for novel substances against antibiotic-resistant bacteria. Sponge extracts were tested against 44 bacterial strains, including fourteen antibiotic-resistant strains. Ten out of the twelve sponge species studied showed activity in one or more of the bioassays. Aqueous extracts of Cinachyrella sp. and Petromica citrina showed a large action spectrum over resistant-bacteria such as Staphylococcus aureus, coagulase-negative staphylococci and Enterococcus faecalis. Aqueous extract of P. citrina was fractioned and aqueous fraction showed a greatest inhibitory activity on Staphylococcus strains. In addition, this fraction demonstrated a bactericidal effect on exponentially growing S. aureus cells at the MIC (16 µg/mL). The mechanism of action of bioactive fraction is still unclear, but we showed that it affect protein biosynthesis of Staphylococcus. Our results demonstrated for the first time that P. citrina is a potential source of new drugs for the treatment of infections by antibiotic-resistant bacteria.


O número crescente de bactérias resistentes aos antibióticos tem se tornado um sério problema médico nos últimos anos. As esponjas marinhas são uma fonte rica em compostos bioativos e muitas espécies podem ser úteis para o desenvolvimento de novos antimicrobianos. Esse estudo descreve uma triagem in vitro de esponjas para a pesquisa de novas substâncias contra bactérias resistentes. Os extratos de esponjas foram testados sobre 44 estirpes bacterianas, incluindo quatorze resistentes a antibióticos. Dez entre doze espécies de esponjas apresentaram atividade em um ou mais bioensaios. Os extratos aquosos de Cinachyrella sp. e Petromica citrina apresentaram um amplo espectro de ação sobre estirpes bacterianas resistentes, tais como, Staphylococcus aureus, Staphylococcus coagulase-negativos e Enterococcus faecalis. O extrato aquoso de P. citrina foi fracionado e a fração aquosa apresentou atividade inibitória sobre estirpes de Staphylococcus. Esta fração, na concentração do CMI (16 µg/mL), demonstrou efeito bactericida sobre células de S. aureus na fase exponencial de crescimento. O mecanismo de ação da fração ainda não foi elucidado, mas nós observamos que esta afeta a síntese protéica de Staphylococcus. Nossos resultados demonstraram pela primeira vez que Petromica citrina é uma fonte potencial de novas drogas para o tratamento de infecções causadas por bactérias resistentes.

20.
Vitae (Medellín) ; 15(2): 285-289, jul.-dic. 2008. graf, tab
Artículo en Español | LILACS-Express | LILACS | ID: lil-637379

RESUMEN

La enzima dihidrofolato reductasa está implicada en la producción de la base pririmidínica timidina, componente esencial de la estructura del ADN. Por tanto, cualquier sustancia que la inhiba tiene como efecto la inhibición de la síntesis del ADN, y es potencialmente útil para el tratamiento de varios tipos de cáncer como leucemias linfoblásticas. En este trabajo se determina el grado de inhibición que los extractos etanólicos obtenidos de las esponjas marinas colombianas Svenzea zeai, Amphimedon compressa, Ircinia campana, Aplysina archeri, Xestospongia proxima y Xestospongia muta, presentan sobre la enzima purificada de origen humano dihidrofolato reductasa. Los resultados muestran que la mayoría de los extractos de estas esponjas inhiben esta enzima. Estos resultados se comparan con los del medicamento usado contra el cáncer, Metotrexate®, el cual se utiliza como control de inhibición de los ensayos y se observa que algunas de las esponjas tienen mayor inhibición que este medicamento.


Dihydrofolate reductase is an enzyme involved in the production of pyrimidinic base timidin, a structural component of DNA, therefore whatever substance that inhibit this enzyme inhibit the DNA synthesis as a consequence and it can be potentially useful as a treatment of several types of cancer like lymphoblastic leukemias. In this work we determinate the inhibition grade that the ethanol extracts from Colombian marine sponges: Svenzea zeai, Amphimedon compressa, Ircinia campana, Aplysina archeri, Xestospongia proxima y Xestospongia muta, over the human purified enzyme dihydrofolate reductase. The results shown that most of marine sponge extracts inhibite the enzyme. Results are compared with methotrexate® a medicament used against cancer which is used as a control for the bioassays. Results demonstrate that some of the analyzed extracts have more inhibition than the control metotrexate®.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...