Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Intervalo de año de publicación
1.
Meat Sci ; 217: 109606, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39033556

RESUMEN

This study aims to evaluate the pork meat quality after ultrasonic brining at different frequencies, thereby providing a more comprehensive understanding of the effects of ultrasound marination on meat. The texture profile analysis showed that ultrasonic curing at various frequencies significantly improved the textural properties of samples, especially at 26.8 kHz, resulting in a reduction of tenderness, hardness, and chewiness values by 44%, 43%, and 44%, respectively. The cooking loss of samples marinated by ultrasound decreased from 27% without ultrasonic treatment to 22%, indicating a significant improvement in water-holding capacity, while the changes in pH had only a subtle impact on pork quality. Meanwhile, the color of pork became more rosy hue due to decreased L⁎ values and increased a⁎ values, which was mainly attributed to an elevated proportion of oxymyoglobin and reduced metmyoglobin content. Additionally, ultrasonic marination did not exert a negative impact on the oxidation of pork protein and lipids. After roasting, samples marinated by ultrasound exhibited a significantly higher abundance of volatile flavor compounds compared to static marinated meat (with an increase of 16 flavor substances) and fresh pork (with an increase of 24 flavor substances), demonstrating the efficacy of ultrasonic marination in enhancing the overall flavor and taste profile of pork. Consequently, the application of ultrasonic technology holds great potential for the "home kitchen type" rapid marination.


Asunto(s)
Culinaria , Manipulación de Alimentos , Mioglobina , Carne de Cerdo , Compuestos Orgánicos Volátiles , Animales , Mioglobina/análisis , Carne de Cerdo/análisis , Compuestos Orgánicos Volátiles/análisis , Porcinos , Culinaria/métodos , Manipulación de Alimentos/métodos , Gusto , Color , Frío
2.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38738625

RESUMEN

Inosine monphosphate (IMP) is one of the important indicators for evaluating meat flavor, and long noncoding RNAs (lncRNAs) play an important role in its transcription and post-transcriptional regulation. Currently, there is little information about how lncRNA regulates the specific deposition of IMP in chicken muscle. In this study, we used transcriptome sequencing to analyze the lncRNAs of the breast and leg muscles of the Jingyuan chicken and identified a total of 357 differentially expressed lncRNAs (DELs), of which 158 were up-regulated and 199 were down-regulated. There were 2,203 and 7,377 cis- and trans-regulated target genes of lncRNAs, respectively, and we identified the lncRNA target genes that are involved in NEGF signaling pathway, glycolysis/glucoseogenesis, and biosynthesis of amino acids pathways. Meanwhile, 621 pairs of lncRNA-miRNA-mRNA interaction networks were constructed with target genes involved in purine metabolism, fatty acid metabolism, and biosynthesis of amino acids. Next, three interacting meso-networks gga-miR-1603-LNC_000324-PGM1, gga-miR-1768-LNC_000324-PGM1, and gga-miR-21-LNC_011339-AMPD1 were identified as closely associated with IMP-specific deposition. Both differentially expressed genes (DEGs) PGM1 and AMPD1 were significantly enriched in IMP synthesis and metabolism-related pathways, and participated in the anabolic process of IMP in the form of organic matter synthesis and energy metabolism. This study obtained lncRNAs and target genes affecting IMP-specific deposition in Jingyuan chickens based on transcriptome analysis, which deepened our insight into the role of lncRNAs in chicken meat quality.


Jingyuan chicken is an excellent local chicken breed listed in the Catalogue of Livestock and Poultry Genetic Resources of China. Its unique growing environment has enabled Jingyuan chicken to develop the characteristics of compact meat, unique flavor, and high nutritional value, which makes it the first choice for chicken food. Inosine monophosphate (IMP) is widely recognized as an important indicator for evaluating the flavor of livestock and poultry meat. To mine potential long noncoding RNAs (lncRNAs) and their regulatory IMP-specific deposition interaction networks, we used transcriptome sequencing to identify 357 lncRNAs that were differentially expressed in breast and leg muscles of 180-d-old Jingyuan hens. We screened the key lncRNAs affecting IMP and three lncRNA-miRNA-mRNA regulatory networks by bioinformatics methods. This provides a new approach to studying IMP-specific deposition, improvement of chicken meat flavor, and breed improvement in Jingyuan chickens.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , Inosina Monofosfato , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Pollos/genética , Pollos/metabolismo , Inosina Monofosfato/metabolismo , Transcriptoma , MicroARNs/genética , MicroARNs/metabolismo , Carne/análisis , Inosina/metabolismo , Inosina/genética , Músculo Esquelético/metabolismo , Regulación de la Expresión Génica
3.
Food Chem ; 450: 139354, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636385

RESUMEN

The interaction between gut microbiota and muscles through the gut-muscle axis has received increasing attention. This study attempted to address existing research gaps by investigating the effects of gut microbiota on meat flavor. Specifically, lactic acid bacteria were administered to ducks, and the results of e-nose and e-tongue showed significantly enhanced meat flavor in the treatment group. Further analyses using GC-MS revealed an increase in 6 characteristic volatile flavor compounds, including pentanal, hexanal, heptanal, 1-octen-3-ol, 2,3-octanedione, and 2-pentylfuran. Linoleic acid was identified as the key fatty acid that influences meat flavor. Metagenomic and transcriptomic results further confirmed that cecal microbiota affects the duck meat flavor by regulating the metabolic pathways of fatty acids and amino acids, especially ACACB was related to fatty acid biosynthesis and ACAT2, ALDH1A1 with fatty acid degradation. This study sheds light on a novel approach to improving the flavor of animal-derived food.


Asunto(s)
Patos , Microbioma Gastrointestinal , Lactobacillales , Carne , Gusto , Animales , Patos/microbiología , Carne/análisis , Carne/microbiología , Lactobacillales/metabolismo , Lactobacillales/genética , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Ácidos Grasos/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química
4.
Poult Sci ; 103(5): 103590, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457991

RESUMEN

Histidine-containing dipeptides (HCDs), such as anserine and carnosine, are enormously beneficial to human health and contribute to the meat flavor in chickens. Meat quality traits, including flavor, are polygenic traits with medium to high heritability. Polygenic traits can be improved through a better understanding of their genetic mechanisms. Genome-wide association studies (GWAS) constitute an effective genomic tool to identify the significant single-nucleotide polymorphisms (SNPs) and potential candidate genes related to various traits of interest in chickens. This study identified potential candidate genes influencing the anserine and carnosine contents in chicken meat through GWAS. We performed GWAS of anserine and carnosine using the Illumina chicken 60K SNP chip (Illumina Inc., San Diego, CA) in 637 Korean native chicken-red-brown line (KNC-R) birds consisting of 228 males and 409 females. The contents of anserine and carnosine in breast meat of KNC-R chickens were investigated. The mean value of the anserine and carnosine are 29.12 mM/g and 10.69 mM/g respectively. The genomic heritabilities were moderate (0.24) for anserine and high (0.43) for carnosine contents. Four and nine SNPs were significantly (P < 0.05) associated with anserine and carnosine, respectively. Based on the GWAS result, the 30.6 to 31.9 Mb region on chicken chromosome 7 was commonly associated with both anserine and carnosine. Through the functional annotation analysis, we identified HNMT and HNMT-like genes as potential candidate genes associated with both anserine and carnosine. The results presented here will contribute to the ongoing improvement of meat quality to satisfy current consumer demands, which are based on healthier, better-flavored, and higher-quality chicken meat.


Asunto(s)
Anserina , Carnosina , Pollos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Carnosina/metabolismo , Carnosina/análisis , Carnosina/genética , Pollos/genética , República de Corea , Estudio de Asociación del Genoma Completo/veterinaria , Anserina/análisis , Anserina/metabolismo , Masculino , Femenino , Músculos Pectorales/química , Músculos Pectorales/metabolismo , Carne/análisis , Proteínas Aviares/genética , Proteínas Aviares/metabolismo
5.
Food Chem ; 446: 138853, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422645

RESUMEN

Meat flavoring was prepared using mainly enzymatic hydrolysate of plant protein mix, VB1, cysteine, and glucose by three heating processes, including A (80 °C-140 min), B (two-stage, 80 °C-30 min/120 °C-30 min), and C (120 °C-40 min). The A-, B-, and C-heated samples exhibited the strongest fatty and weakest meaty, the strongest meaty and kokumi, and the strongest roasted and bitterness characteristics, respectively. PLS-DA for free amino acids with TAVs and that for SPME/GC-MS results with GC-O and OAVs, suggested three amino acids and eight flavor compounds contributed significantly in differentiating taste or aroma attributes of the three heated samples. Molecular weight distribution and degree of amino substitution suggested 1-5 kDa peptides contributed to kokumi taste. Overall, C- and A-heating exhibited the highest rates in Maillard reaction and lipid oxidation, respectively, while those of B heating were between these two heating processes and responsible for better flavor of meat flavoring.


Asunto(s)
Calefacción , Gusto , Reacción de Maillard , Aminoácidos , Carne/análisis , Hidrolisados de Proteína , Proteínas de Plantas/química , Aromatizantes/análisis , Odorantes/análisis
6.
Animals (Basel) ; 13(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38066986

RESUMEN

The objective of this study was to determine the influence of supplementing the diet of growing-finishing pigs with glycerin and/or a mixture of vitamin C and niacinamide on carcass traits and pork quality. Eighty-four weaned piglets with an initial average body weight of 20.35 ± 2.14 kg were assigned, at random, to four groups for a 103-day feeding experiment: control; glycerin-supplemented group; vitamin C and niacinamide-supplemented group; and glycerin, vitamin C and niacinamide-supplemented group. At the end of the experiment, three pigs/group were randomly selected and slaughtered, and samples were collected for analysis. The results indicated that supplementing crossbred pigs with glycerin, vitamin C and niacinamide simultaneously increased the redness (a*) value (p < 0.05), glycerol content (p < 0.01) and myristoleic acid content (p < 0.01) in the longissimus dorsi and tended to increase the level of flavor amino acids, linoleic acid, linolenic acid and erucic acid, as well as the percentage and density of type I myofibers in the longissimus dorsi and the semimembranosus muscle. Glycerin had an influence (p < 0.01) on the erucic acid content in the longissimus dorsi and the semimembranosus muscle, and vitamin C and niacinamide had an interaction effect (p < 0.05) on the redness (a*) value of the longissimus dorsi. Glycerin, vitamin C and niacinamide supplementation in the diet of crossbred pigs improved the color, flavor and nutritional value of pork, which contributed to an increased intent to purchase this product.

7.
J Anim Sci Technol ; 65(4): 735-747, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37970507

RESUMEN

The composition of fatty acids determines the flavor and quality of meat. Flavor compounds are generated during the cooking process by the decomposition of volatile fatty acids via lipid oxidation. A number of research on candidate genes related to fatty acid content in livestock species have been published. The majority of these studies focused on pigs and cattle; the association between fatty acid composition and meat quality in chickens has rarely been reported. Therefore, this study investigated candidate genes associated with fatty acid composition in chickens. A genome-wide association study (GWAS) was performed on 767 individuals from an F2 crossbred population of Yeonsan Ogye and White Leghorn chickens. The Illumina chicken 60K significant single-nucleotide polymorphism (SNP) genotype data and 30 fatty acids (%) in the breast meat of animals slaughtered at 10 weeks of age were analyzed. SNPs were shown to be significant in 15 traits: C10:0, C14:0, C18:0, C18:1n-7, C18:1n-9, C18:2n-6, C20:0, C20:2, C20:3n-6, C20:4n-6, C20:5n-3, C24:0, C24:1n-9, monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). These SNPs were mostly located on chromosome 10 and around the following genes: ACSS3, BTG1, MCEE, PPARGC1A, ACSL4, ELOVL4, CYB5R4, ME1, and TRPM1. Both oleic acid and arachidonic acid contained the candidate genes: MCEE and TRPM1. These two fatty acids are antagonistic to each other and have been identified as traits that contribute to the production of volatile fatty acids. The results of this study improve our understanding of the genetic mechanisms through which fatty acids in chicken affect the meat flavor.

8.
Anim Nutr ; 14: 1-19, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37808949

RESUMEN

Normally, proper fermentation can be an efficient and widely used method to improve feed quality in animal rearing; however, the studies on crustaceans, especially Eriocheir sinensis, remain limited. This study aimed to investigate whether feed fermentation could meliorate dietary nutritional value and benefit E. sinensis rearing. First, non-fermented feed (NFD) and fermented feed (FD) were produced and assessed, respectively. Then, the "Y" maze feed choice behavior test (180 times; 30 times, 6 rounds) was conducted to assess the attractiveness of these 2 feeds for crabs. Finally, a total of 80 crabs (44.10 ± 0.80 g) were randomly assigned into 2 groups with 4 replicates, and fed the experimental diets for 8 weeks to evaluate the effects of each feed on growth, antioxidant capacity, meat flavor, and intestinal microbiota. In this study, FD showed higher levels of crude protein (P < 0.01), soluble protein (P < 0.01), amino acids (P < 0.05), lactic acid (P < 0.001), and lower levels of crude fiber (P < 0.05) and antinutritional factors (agglutinin, trypsin inhibitor, glycinin, and ß-conglycinin) (P < 0.001) than NFD. Additionally, FD was more attractive to crabs than NFD (P < 0.01) and it stimulated the appetite of crabs more than NFD (P < 0.05). The growth performance, feed efficiency, and digestive enzyme activity of FD-fed crabs were significantly higher than those of NFD-fed crabs (P < 0.05). The electronic sensory measurements and free amino acid profiles revealed that the FD diet had positive impacts on the meat flavor of crabs, particularly in "sweet" and "umami" tastes. Moreover, the antioxidant capacity of FD-fed crabs was significantly higher than that of NFD-fed crabs (P < 0.05). Fermented feed also affected the diversity and composition of intestinal microflora. The functional prediction of microbial communities showed that crabs fed FD had a better microecological environment in the intestine. In conclusion, the fermentation of aquafeed could be an effective approach to enhance feed quality and therefore benefit E. sinensis rearing.

9.
Front Nutr ; 10: 1279141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37899822

RESUMEN

Chinese indigenous chickens have a long history of natural and artificial selection and are popular for their excellent meat quality and unique flavor. This study investigated six meat quality-related traits in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens. Two-dimensional gas chromatography-time-of-flight mass spectrometry was used to detect unique flavors in 24 breast muscle samples from the same phenotyped chickens. Overall, 685, 618, 502, and 487 volatile organic compounds were identified in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens, respectively. The flavor components were separated into eight categories, including hydrocarbons and aldehydes. Multivariate analyses of the identified flavor components revealed some outstanding features of these breeds. For example, the hydrocarbons (22.09%) and aldehydes (14.76%) were higher in Ningdu yellow chickens and the highest content of N, N-dimethyl-methylamine was in Ningdu yellow, Baier yellow, and Shengze 901 chickens, indicating the maximum attribution to the overall flavor (ROAV = 439.57, 289.21, and 422.80). Furthermore, we found that 27 flavor compounds differed significantly among the four Chinese breeds, including 20 (e.g., 1-octen-3-ol), two (e.g., 2-methyl-naphthalene), four (e.g., 2,6-lutidine), and one (benzophenone) flavor components were showed significant enrichment in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens, respectively. The flavor components enriched in each breed were key biomarkers distinguishing breeds and most were significantly correlated with meat quality trait phenotypes. These results provide novel insights into indigenous Chinese chicken meat flavors.

10.
Animals (Basel) ; 13(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37760369

RESUMEN

Meat flavor is an important factor that influences the palatability of chicken meat. Inosine 5'-monophosphate (IMP), inosine, and hypoxanthine are nucleic acids that serve as taste-active compounds, mainly enhancing flavor in muscle tissue. For this study, we performed a genome-wide association study (GWAS) using a mixed linear model to identify single-nucleotide polymorphisms (SNPs) that are significantly associated with changes in the contents of the nucleotide-related compounds of breast meat in the Korean native chicken (KNC) population. The genomic region on chicken chromosome 5 containing an SNP (rs316338889) was significantly (p < 0.05) associated with all three traits. The trait-related candidate genes located in this significant genomic region were investigated through performing a functional enrichment analysis and protein-protein interaction (PPI) database search. We found six candidate genes related to the function that possibly affected the content of nucleotide-related compounds in the muscle, namely, the TNNT3 and TNNT2 genes that regulate muscle contractions; the INS, IGF2, and DUSP8 genes associated with insulin sensitivity; and the C5NT1AL gene that is presumably related to the nucleotide metabolism process. This study is the first of its kind to find candidate genes associated with the content of all three types of nucleotide-related compounds in chicken meat using GWAS. The candidate genes identified in this study can be used for genomic selection to breed better-quality chickens in the future.

11.
Adv Sci (Weinh) ; 10(18): e2300148, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37013465

RESUMEN

Meat is among the most consumed foods worldwide and has a unique flavor and high nutrient density in the human diet. However, the genetic and biochemical bases of meat nutrition and flavor are poorly understood. Here, 3431 metabolites and 702 volatiles in 423 skeletal muscle samples are profiled from a gradient consanguinity segregating population generated by Pekin duck × Liancheng duck crosses using metabolomic approaches. The authors identified 2862 metabolome-based genome-wide association studies (mGWAS) signals and 48 candidate genes potentially modulating metabolite and volatile levels, 79.2% of which are regulated by cis-regulatory elements. The level of plasmalogen is significantly associated with TMEM189 encoding plasmanylethanolamine desaturase 1. The levels of 2-pyrrolidone and glycerophospholipids are regulated by the gene expression of AOX1 and ACBD5, which further affects the levels of volatiles, 2-pyrrolidone and decanal, respectively. Genetic variations in GADL1 and CARNMT2 determine the levels of 49 metabolites including L-carnosine and anserine. This study provides novel insights into the genetic and biochemical basis of skeletal muscle metabolism and constitutes a valuable resource for the precise improvement of meat nutrition and flavor.


Asunto(s)
Carboxiliasas , Estudio de Asociación del Genoma Completo , Animales , Humanos , Patos/genética , Patos/metabolismo , Carne/análisis , Metaboloma/genética , Músculo Esquelético , Carboxiliasas/metabolismo
12.
Foods ; 12(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36900542

RESUMEN

The flavor of chicken meat is influenced by muscle metabolites and regulatory genes and varies with age. In this study, the metabolomic and transcriptomic data of breast muscle at four developmental stages (days 1, 56, 98, and 120) of Beijing-You chickens (BJYs) were integrated and 310 significantly changed metabolites (SCMs) and 7,225 differentially expressed genes (DEGs) were identified. A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SCMs and DEGs were enriched in amino acid, lipid, and inosine monophosphate (IMP) metabolism pathways. Furthermore, genes highly associated with flavor amino acids, lipids, and IMP were identified by a weighted gene co-expression network analysis (WGCNA), including cystathionine ß-synthase (CBS), glycine amidinotransferase (GATM), glutamate decarboxylase 2 (GAD2), patatin-like phospholipasedomain containing 6 (PNPLA6), low-specificity L-threonine aldolase (ItaE), and adenylate monophosphate deaminase 1 (AMPD1) genes. A regulatory network related to the accumulation of key flavor components was constructed. In conclusion, this study provides new perspectives regarding the regulatory mechanisms of flavor metabolites in chicken meat during development.

13.
Food Chem ; 404(Pt A): 134699, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36444028

RESUMEN

Chinese indigenous pig breeds have higher intramuscular fat content (IMF) and better meat quality than Western commercial pigs. The differential metabolites and lipids in the skeletal muscle associated with IMF contents and meat flavor in Laiwu and Yorkshire pigs were investigated in this study. As a result, 113 differential metabolites and 54 differential lipids were discovered. Lipidomics revealed that the Laiwu pig had a fast lipid droplet formation and contained more triglyceride than the Yorkshire pig, which was corresponded to its high IMF contents. Both the lipidomics and metabolomics results indicated that the Laiwu pig had a higher mitochondrial content and aerobic respiration, due to its larger percentage of oxidative fibers. In addition, differential metabolites, such as oxoglutaric acid, fumarate, and l-aspartate, were thought to be important flavor precursors contributing to the Laiwu pig's improved pork taste.


Asunto(s)
Lipidómica , Carne de Cerdo , Porcinos , Animales , Metabolómica , Fumaratos , Triglicéridos
14.
Front Vet Sci ; 10: 1276582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164393

RESUMEN

Background: Inosine monophosphate (IMP) is naturally present in poultry muscle and plays a key role in improving meat flavour. However, IMP deposition is regulated by numerous genes and complex molecular networks. In order to excavate key candidate genes that may regulate IMP synthesis, we performed proteome and metabolome analyses on the leg muscle, compared to the breast muscle control of 180-day-old Jingyuan chickens (hens), which had different IMP content. The key candidate genes identified by a differential analysis were verified to be associated with regulation of IMP-specific deposition. Results: The results showed that the differentially expressed (DE) proteins and metabolites jointly involve 14 metabolic pathways, among which the purine metabolic pathway closely related to IMP synthesis and metabolism is enriched with four DE proteins downregulated (with higher expression in breast muscles than in leg muscles), including adenylate kinase 1 (AK1), adenosine monophosphate deaminase 1 (AMPD1), pyruvate kinase muscle isoenzyme 2 (PKM2) and phosphoglucomutase 1 (PGM1), six DE metabolites, Hypoxanthine, Guanosine, L-Glutamine, AICAR, AMP and Adenylsuccinic acid. Analysis of PGM1 gene showed that the high expression of PGM1 promoted the proliferation and differentiation of myoblasts and inhibited the apoptosis of myoblasts. ELISA tests have shown that PGM1 reduced adenosine triphosphate (ATP) and IMP and uric acid (UA), while enhancing the biosynthesis of hypoxanthine (HX). In addition, up-regulation of PGM1 inhibited the expression of purine metabolism pathway related genes, and promoted the IMP de novo and salvage synthesis pathways. Conclusion: This study preliminarily explored the mechanism of action of PGM1 in regulating the growth and development of myoblasts and specific IMP deposition in Jingyuan chickens, which provided certain theoretical basis for the development and utilization of excellent traits in Jingyuan chickens.

15.
Foods ; 11(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36429166

RESUMEN

Meat flavor is an important aspect of meat quality that also influences consumer demand, and is therefore very important for the meat industry. Volatile organic compounds (VOCs) contribute in large part to the flavor of meat, and while increasing numbers of articles are published on this topic, reviews of these articles are very scarce. Therefore, our aim was to perform a bibliometric analysis of the scientific publications on VOCs in meat over the period 2000-2020. We selected 611 scientific sources from the Scopus database related to VOCs in meat (seafood excluded). The bibliometric information retrieved included journals, authors, countries, institutions, keywords, and citations. From this analysis, we drew up a list of the most important journals, authors, countries, and institutions, and the trends in VOC research on meat. We conducted a social network analysis (SNA) to identify the collaborations among the many authors and countries, and a keyword analysis to generate a network map of the authors' keywords. We also determined which meat species were most frequently chosen as research subjects, traced the evolution of the various methods/instruments used, and explored the research tendencies. Finally, we point out the need for further research in defining meat quality, improving meat flavor, identifying adulterants, and certifying the authenticity of meat.

16.
Food Sci Biotechnol ; 31(13): 1647-1660, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36312991

RESUMEN

In this study, Tenebrio molitor (mealworm) protein and reducing sugar were thermally reacted without (MP-RF) or with amino acids (MPA-RFs, A is then replaced with three-letter abbreviation of amino acid used in the reaction), and their Maillard reaction products (MRPs) and sensory characteristics were compared to explore the amino acids that contributed to desirable meat-related odor attributes in MP-RF. The odor characteristics perceived from MP-RF were changed based on the amino acid that was added to MP-RF and then reacted. Noticeably, a 'dried shrimp-like' attribute, which was the most intense in MP-RF, was weakened in all MPA-RFs. The 'meaty' and 'sulfur-like' odor notes were higher in MP-RF reacted with cysteine (MPCys-RF) than those in MP-RF and most MPA-RFs. In addition, 2-methyl-3-furanthiol and 2-furfurylthiol, which are the most important key odorants in a meat flavoring material, were also found only in MPCys-RF. These results show that the meaty flavoring potential of MP-RF was significantly enhanced when reacted with cysteine.

17.
Front Nutr ; 9: 910519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938115

RESUMEN

This study aimed to evaluate the effects of dietary protein level on the production performance, slaughter performance, meat quality, and flavor of finishing pigs. Twenty-seven Duroc♂ × Bamei♀ binary cross-bred pigs (60.86 ± 2.52 kg body weight) were randomly assigned to three groups, each group has three replicates, and each replicate has three pigs. Three groups of finishing pigs were fed 16.0, 14.0, and 12.0% crude protein levels diets, and these low-protein diets were supplemented with four limiting amino acids (lysine, methionine, threonine and tryptophan). The results showed that the pigs fed low-protein diets increased (P < 0.05) loin eye muscle area, and reduced (P < 0.05) heart weight, lung weight. The feed-weight ratio of the 14.0% protein group was reduced (P > 0.05); Dietary protein levels significantly affected the luminance (L24h), yellowness (b45min and b24h) (P < 0.05), reduced shear stress, muscle water loss, drip loss, the levels of crude fat (P < 0.05), and increased marbling score (P < 0.05) in the muscle of finishing pigs; The low-protein diets improved PUFA/TFA, PUFA/SFA (P > 0.05), and increased hexanal, E-2-heptenal, 1-octen-3-ol, EAA/TAA in the muscle of finishing pigs (P < 0.05); The results indicated that reduced the crude protein levels of dietary by 2.0-4.0%, and supplementation with four balanced limiting amino acids had no significant effects on the production performance and slaughter performance of finishing pigs, and could effectively improve meat quality and flavor.

18.
Foods ; 11(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35885289

RESUMEN

This study investigated the effects of dietary energy density in rice straw and cassava pulp fermented total mixed ration on pH, cooking loss, Warner−Bratzler shear force (WBSF), and collagen content of 2- or 14-d-aged native Thai cattle (NTC) Longissimus thoracic (LT) muscles and fatty acids and ribonucleotides of 2-d-aged LT. Eighteen yearling NTC (Bos indicus) were randomly divided into three dietary treatments (T1 = 8.9, T2 = 9.7, and T3 = 10.5 MJ ME/kg), with six bulls per treatment. The results showed that T1 had the highest WBSF (p < 0.05). However, T2 had similar WBSF to T3 (p > 0.05). With aging, cooking loss increased (p < 0.01), while WBSF decreased (p < 0.01). Insoluble and total collagen decreased with aging (p < 0.05). Dietary energy density had no effect (p > 0.05) on collagen content, ribonucleotides and most fatty acids. However, T1 had more (p < 0.05) decanoic (C10:0), vaccenic (C18:1n9t), trans-linolelaidic (C18:2n6t), eicosatrienoic (C20:3n6), and docosadienoic (C22:2) acids than T2 and T3. In terms of lowest feed cost with comparable tenderness to T2 and highest energy density, T3 may be well suited for feeding NTC. Aging for 14 days improves LT tenderness, but its cooking loss may affect yield and juiciness.

19.
Food Res Int ; 157: 111385, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761641

RESUMEN

Early reviews focused on volatile compounds in cooked meat or meat products by GC-MS analysis. However, actually only a small number of odor-active activities, i.e., odorants, play roles in meat aroma. This review summarized in total 332 odorants identified in thermally cooked meat species (e.g., stewed pork) in the recent 40 years by GC-O through the search of relevant literatures. They included l57 compounds from the lipid degradation, 98 compounds from the Maillard reaction, 18 compounds from the interaction of the lipid degradation and the Maillard reaction (lipid-Maillard interaction), and 59 compounds from other sources, while the formation mechanisms are discussed based on the recent developments. Overall, the aliphatic aldehydes had the greatest number, followed by sulfur-containing compounds, nitrogen-containing heterocyclic compounds, oxygen-containing heterocyclic compounds, ketones, alcohols, etc. The frequently potent odorants in different cooked meat species are the short-chain aliphatic aldehydes of C6-C10 carbons and 1-oceten-3-ol (or 1-octen-3-one) and sulfur-containing or nitrogen-containing heterocyclic compounds. PLS-DA analysis suggested variation of odorants among the cooked beef, pork, poultry, and sheep was more due to the lipid degradation than the Maillard reaction, and marginally due to the lipid-Maillard interaction. This review can be used as guidance in improving flavor of cooked meat and meat flavorings.


Asunto(s)
Carne , Odorantes , Aldehídos , Animales , Bovinos , Lípidos , Carne/análisis , Ovinos , Azufre
20.
Food Res Int ; 151: 110823, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980374

RESUMEN

Plant-based meat analogues (PBMA) are promising foods to address the global imbalance between the supply and demand for meat products caused by the increasing environmental pressures and growing human population. Given that the flavor of PBMA plays a crucial role in consumer acceptance, imparting meat-like flavor is of great significance. As a natural approach to generate meat-like flavor, the Maillard reaction involving food-derived peptides could contribute to the required flavor compounds, which has promising applications in PBMA formulations. In this review, the precursors of meat-like flavor are summarized followed by a discussion of the reactions and mechanisms responsible for generation of the flavor compounds. The preparation and analysis techniques for food-derived Maillard reacted peptides (MRPs) as well as their taste and aroma properties are discussed. In addition, the MRPs as meat flavor precursors and their potential application in the formulation of PBMA are also discussed. The present review provides a fundamental scientific information useful for the production and application of MRPs as meat flavor precursors in PBMA.


Asunto(s)
Reacción de Maillard , Gusto , Aromatizantes , Humanos , Carne , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...