Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Gastroenterol ; 24(1): 310, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271994

RESUMEN

BACKGROUND: Esophageal diseases (ED) are a kind of common diseases of upper digestive tract. Previous studies have proved that metabolic disorders are closely related to the occurrence and development of ED. However, there is a lack of evidence for causal relationships between metabolites and ED, as well as between metabolite ratios representing enzyme activities and ED. Herein, we explored the causality of genetically determined metabolites (GDMs) on ED through Mendelian Randomization (MR) study. METHODS: Two-sample Mendelian randomization analysis was used to assess the causal effects of genetically determined metabolites and metabolite ratios on ED. A genome-wide association analysis (GWAS) encompassing 850 individual metabolites along with 309 metabolite ratios served as the exposures. Meanwhile, the outcomes were defined by 10 types of ED phenotypes, including Congenital Malformations of Esophagus (CME), Esophageal Varices (EV), Esophageal Obstructions (EO), Esophageal Ulcers (EU), Esophageal Perforations (EP), Gastroesophageal Reflux Disease (GERD), Esophagitis, Barrett's Esophagus (BE), Benign Esophageal Tumors (BETs), and Malignant Esophageal Neoplasms (MENs). The standard inverse variance weighted (IVW) method was applied to estimate the causal relationship between exposure and outcome. Sensitivity analyses were carried out using multiple methods, including MR-Egger, Weighted Median, MR-PRESSO, Cochran's Q test, and leave-one-out analysis. P < 0.05 was conventionally considered statistically significant. After applying the Bonferroni correction for multiple testing, a threshold of P < 4.3E-05 (0.05/1159) was regarded as indicative of a statistically significant causal relationship. Furthermore, metabolic pathway analysis was performed using the web-based MetaboAnalyst 6.0 software. RESULTS: The findings revealed that initially, a total of 869 candidate causal association pairs ( P ivw < 0.05) were identified, involving 442 metabolites, 145 metabolite ratios and 10 types of ED. However, upon applying the Bonferroni correction for multiple testing, only 36 pairs remained significant, involving 28 metabolites (predominantly lipids and amino acids), 5 metabolite ratios and 6 types of ED. Sensitivity analyses and reverse MR were performed for these 36 causal association pairs, where the results showed that the pair of EV and 1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (p-16:0/18:2) did not withstand the sensitivity tests, and Hexadecenedioate (C16:1-DC) was found to have a reverse causality with GERD. The final 34 robust causal pairs included 26 metabolites, 5 metabolite ratios and 5 types of ED. The involved 26 metabolites predominantly consisted of methylated nucleotides, glycine derivatives, sex hormones, phospholipids, bile acids, fatty acid dicarboxylic acid derivatives, and N-acetylated amino acids. Furthermore, through metabolic pathway analysis, we uncovered 8 significant pathways that played pivotal roles in five types of ED conditions. CONCLUSIONS: This study integrated genomics with metabolomics to assess causal relationships between ED and both metabolites and metabolite ratios, uncovering several key metabolic features in ED pathogenesis. These findings have potential as novel biomarkers for ED and provide insights into the disease's etiology and progression. However, further clinical and experimental validations are necessary.


Asunto(s)
Enfermedades del Esófago , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Enfermedades del Esófago/genética , Enfermedades del Esófago/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Causalidad
2.
JCEM Case Rep ; 2(7): luae095, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38947416

RESUMEN

Although clinical guidelines recommend measuring total plasma 25-hydroxyvitamin D (25[OH]D) to assess vitamin D (VitD) status, this index does not account for 3-fold inter-individual variation in VitD binding protein (VDBP) level. We present 3 individuals with total plasma 25(OH)D levels of 10.8 to 12.3 ng/mL (27-30.7 nmol/L). Because Endocrine Society guidelines define VitD deficiency as 25(OH)D ≤ 20 ng/mL (50 nmol/L), all 3 would be judged to be VitD deficient. VitD3 supplementation increased 25(OH)D to the range of 31.7 to 33.8 ng/mL (79.1-84.4 nmol/L). Patient #1 exhibited secondary hyperparathyroidism; VitD3 supplementation decreased parathyroid hormone (PTH) by 34% without a clinically significant change in PTH levels in the other 2 individuals. Thus, 25(OH)D level did not distinguish between the 1 patient who had secondary hyperparathyroidism and the 2 who did not. We therefore inquired whether VitD metabolite ratios (which are VDBP-independent) might distinguish among these 3 individuals. Of all the assessed ratios, the 1,25(OH)2D/24,25(OH)2D ratio was the most informative, which had a value of 102 pg/ng in the individual with secondary hyperparathyroidism but lower values (41 and 20 pg/ng) in the other 2 individuals. These cases illustrate the value of the 1,25(OH)2D/24,25(OH)2D ratio to provide clinically relevant information about VitD status.

3.
Front Genet ; 15: 1356696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050247

RESUMEN

Background: Metabolic dysregulation represents a defining characteristic of Type 2 diabetes (T2DM). Nevertheless, there remains an absence of substantial evidence establishing a direct causal link between circulating blood metabolites and the promotion or prevention of T2DM. In addressing this gap, we employed Mendelian randomization (MR) analysis to investigate the potential causal association between 1,091 blood metabolites, 309 metabolite ratios, and the occurrence of T2DM. Methods: Data encompassing single-nucleotide polymorphisms (SNPs) for 1,091 blood metabolites and 309 metabolite ratios were extracted from a Canadian Genome-wide association study (GWAS) involving 8,299 participants. To evaluate the causal link between these metabolites and Type 2 diabetes (T2DM), multiple methods including Inverse Variance Weighted (IVW), Weighted Median, MR Egger, Weighted Mode, and Simple Mode were employed. p-values underwent correction utilizing False Discovery Rates (FDR). Sensitivity analyses incorporated Cochran's Q test, MR-Egger intercept test, MR-PRESSO, Steiger test, leave-one-out analysis, and single SNP analysis. The causal effects were visualized via Circos plot, forest plot, and scatter plot. Furthermore, for noteworthy, an independent T2DM GWAS dataset (GCST006867) was utilized for replication analysis. Metabolic pathway analysis of closely correlated metabolites was conducted using MetaboAnalyst 5.0. Results: The IVW analysis method utilized in this study revealed 88 blood metabolites and 37 metabolite ratios demonstrating a significant causal relationship with T2DM (p < 0.05). Notably, strong causal associations with T2DM were observed for specific metabolites: 1-linoleoyl-GPE (18:2) (IVW: OR:0.930, 95% CI: 0.899-0.962, p = 2.16 × 10-5), 1,2-dilinoleoyl-GPE (18:2/18:2) (IVW: OR:0.942, 95% CI: 0.917-0.968, p = 1.64 × 10-5), Mannose (IVW: OR:1.133, 95% CI: 1.072-1.197, p = 1.02 × 10-5), X-21829 (IVW: OR:1.036, 95% CI: 1.036-1.122, p = 9.44 × 10-5), and Phosphate to mannose ratio (IVW: OR:0.870, 95% CI: 0.818-0.926, p = 1.29 × 10-5, FDR = 0.008). Additionally, metabolic pathway analysis highlighted six significant pathways associated with T2DM development: Valine, leucine and isoleucine biosynthesis, Phenylalanine metabolism, Glycerophospholipid metabolism, Alpha-Linolenic acid metabolism, Sphingolipid metabolism, and Alanine, aspartate, and glutamate metabolism. Conclusion: This study identifies both protective and risk-associated metabolites that play a causal role in the development of T2DM. By integrating genomics and metabolomics, it presents novel insights into the pathogenesis of T2DM. These findings hold potential implications for early screening, preventive measures, and treatment strategies for T2DM.

4.
Front Microbiol ; 15: 1356437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860219

RESUMEN

Background: Recent studies have revealed changes in microbiota constitution and metabolites associated with tumor progression, however, no causal relation between microbiota or metabolites and diffuse large B-cell lymphoma (DLBCL) has yet been reported. Methods: We download a microbiota dataset from the MiBioGen study, a metabolites dataset from the Canadian Longitudinal Study on Aging (CLSA) study, and a DLBCL dataset from Integrative Epidemiology Unit Open genome-wide association study (GWAS) project. Mendelian randomization (MR) analysis was conducted using the R packages, TwoSampleMR and MR-PRESSO. Five MR methods were used: MR-Egger, inverse variance weighting (IVW), weighted median, simple mode, and weighted mode. Reverse MR analyses were also conducted to explore the causal effects of DLBCL on the microbiome, metabolites, and metabolite ratios. Pleiotropy was evaluated by MR Egger regression and MR-PRESSO global analyses, heterogeneity was assessed by Cochran's Q-test, and stability analyzed using the leave-one-out method. Results: 119 microorganisms, 1,091 plasma metabolite, and 309 metabolite ratios were analyzed. According to IVW analysis, five microorganisms were associated with risk of DLBCL. The genera Terrisporobacter (OR: 3.431, p = 0.049) andgenera Oscillibacter (OR: 2.406, p = 0.029) were associated with higher risk of DLBCL. Further, 27 plasma metabolites were identified as having a significant causal relationships with DLBCL, among which citrate levels had the most significant protective causal effect against DLBCL (p = 0.006), while glycosyl-N-tricosanoyl-sphingadienine levels was related to higher risk of DLBCL (p = 0.003). In addition, we identified 19 metabolite ratios with significant causal relationships to DLBCL, of which taurine/glutamate ratio had the most significant protective causal effect (p = 0.005), while the phosphoethanolamine/choline ratio was related to higher risk of DLBCL (p = 0.009). Reverse MR analysis did not reveal any significant causal influence of DLBCL on the above microbiota, metabolites, and metabolite ratios (p > 0.05). Sensitivity analyses revealed no significant heterogeneity or pleiotropy (p > 0.05). Conclusion: We present the first elucidation of the causal influence of microbiota and metabolites on DLBCL using MR methods, providing novel insights for potential targeting of specific microbiota or metabolites to prevent, assist in diagnosis, and treat DLBCL.

5.
Int J Cardiol ; 403: 131788, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244893

RESUMEN

BACKGROUND: Clozapine-induced myocarditis and cardiomyopathy are difficult to detect clinically and may be fatal if not detected early. The current/routine biomarkers for clozapine-induced myocarditis are non-specific indicators of inflammation (C-reactive protein) or cardiomyocyte damage (troponins I and T) that lack sensitivity, and for which changes often arise too late to be clinically useful. METHODS: The Clozapine Safety Study was a prospective, longitudinal, observational study to determine what, if any, the plasma concentrations of clozapine, N-desmethylclozapine, and clozapine-N-oxide in patients contribute to cardiotoxicity. Samples were collected and analysed using liquid chromatography mass spectrometry over a 41-month period from patients in the Auckland District Health Board. RESULTS: Sixty-seven patients were included. Six patients were diagnosed with myocarditis; none were diagnosed with cardiomyopathy in the study period. In patients not undergoing dose titration, clozapine biotransformation may shift to the N-oxide pathway rather than the N-desmethyl pathway with increasing dose. During dose titration, the timeframe in which myocarditis occurs, the rate of increase in the plasma concentration of clozapine-N-oxide, as well as the ratio of N-oxidation relative to N-desmethylation, were significantly higher in patients diagnosed with myocarditis. CONCLUSIONS: The assessment of clozapine-N-oxide formation, and N-oxidation relative to N-desmethylation ratios during treatment, may help identify a biomarker to aid the early detection of patients at risk of developing clozapine-induced cardiotoxicity.


Asunto(s)
Antipsicóticos , Cardiomiopatías , Clozapina , Miocarditis , Humanos , Antipsicóticos/efectos adversos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/diagnóstico , Cardiotoxicidad/diagnóstico , Clozapina/efectos adversos , Estudios Longitudinales , Miocarditis/inducido químicamente , Miocarditis/diagnóstico , Óxidos/efectos adversos , Estudios Prospectivos
6.
Clin Chim Acta ; 539: 170-174, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36529270

RESUMEN

BACKGROUND AND AIMS: Cerebrotendinous Xanthomatosis (CTX) is a treatable disorder of bile acid synthesis caused by deficiency of 27-sterol hydroxylase -encoded by CYP27A1- leading to gastrointestinal and progressive neuropsychiatric symptoms. Biochemically, CTX is characterized by accumulation of the bile alcohol cholestanetetrol glucuronide (GlcA-tetrol) and the deficiency of tauro-chenodeoxycholic acid (t-CDCA) and tauro-trihydroxycholestanoic acid (t-THCA). MATERIALS AND METHODS: To ascertain the feasibility of CTX newborn screening (NBS) we performed a study with deidentified Dutch dried blood spots using reagents and equipment that is frequently used in NBS laboratories. 20,076 deidentified newborn blood spots were subjected to flow-injection (FIA)-MS/MS and UPLC-MS/MS analysis to determine the concentration of GlcA-tetrol and calculate the GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios. RESULTS: Using UPLC-MS/MS analysis both GlcA-tetrol concentration and/or metabolite ratios GlcA-tetrol/t-CDCA proved to be informative biomarkers; newborn DBS results did not overlap with those of the CTX patients. For FIA-MS/MS, GlcA-tetrol also was an excellent marker but when using the combination of the GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios also did not yield any screen positives. CONCLUSION: Newborn screening for CTX using only metabolite ratios following the measurement of three CTX biomarkers is possible using either FIA-MS/MS or UPLC-MS/MS, which paves the way for introduction of CTX NBS.


Asunto(s)
Xantomatosis Cerebrotendinosa , Humanos , Recién Nacido , Xantomatosis Cerebrotendinosa/diagnóstico , Xantomatosis Cerebrotendinosa/metabolismo , Espectrometría de Masas en Tándem , Estudios Retrospectivos , Tamizaje Neonatal/métodos , Cromatografía Liquida , Ácido Quenodesoxicólico
7.
Front Psychiatry ; 13: 859772, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479493

RESUMEN

Rationale and Objectives: Pro-inflammatory processes have been argued to play a role in conditions associated with cognitive decline and neurodegeneration, like aging and obesity. Only a limited number of studies have tried to measure both peripheral and central biomarkers of inflammation and examined their interrelationship. The primary aim of this study was to examine the hypothesis that chronic peripheral inflammation would be associated with neurometabolic changes that indicate neuroinflammation (the combined elevation of myoinositol and choline), brain gray matter volume decrease, and lower cognitive functioning in older adults. Materials and Methods: Seventy-four older adults underwent bio-impedance body composition analysis, cognitive testing with the Montreal Cognitive Assessment (MoCA), blood serum analysis of inflammatory markers interleukin-6 (IL-6) and kynurenine, magnetic resonance imaging (MRI), and proton magnetic resonance spectroscopy (1H-MRS) of the brain. Neurometabolic findings from both Tarquin and LCModel 1H-MRS post-processing software packages were compared. The regions of interest for MRI and 1H-MRS measurements were dorsal posterior cingulate cortex (DPCC), left hippocampal cortex (HPC), left medial temporal cortex (MTC), left primary sensorimotor cortex (SM1), and right dorsolateral prefrontal cortex (DLPFC). Results: Elevated serum kynurenine levels were associated with signs of neuroinflammation, specifically in the DPCC, left SM1 and right DLPFC, and signs of neurodegeneration, specifically in the left HPC, left MTC and left SM1, after adjusting for age, sex and fat percentage (fat%). Elevated serum IL-6 levels were associated with increased Glx levels in left HPC, left MTC, and right DLPFC, after processing the 1H-MRS data with Tarquin. Overall, the agreement between Tarquin and LCModel results was moderate-to-strong for tNAA, tCho, mIns, and tCr, but weak to very weak for Glx. Peripheral inflammatory markers (IL-6 and kynurenine) were not associated with older age, higher fat%, decreased brain gray matter volume loss or decreased cognitive functioning within a cohort of older adults. Conclusion: Our results suggest that serum kynurenine may be used as a peripheral inflammatory marker that is associated with neuroinflammation and neurodegeneration, although not linked to cognition. Future studies should consider longitudinal analysis to assess the causal inferences between chronic peripheral and neuroinflammation, brain structural and neurometabolic changes, and cognitive decline in aging.

8.
Sci Total Environ ; 827: 154171, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35231503

RESUMEN

Consumption of antibiotics leads to the dissemination of antimicrobial resistance worldwide. Better knowledge of temporal and spatial consumption of antibiotics helps public health authorities to control their usage and combat antimicrobial resistance. However, measuring antibiotic consumption with population surveys, sales data, and production statistics remains challenging due to the complexity of prescription preference, patient compliance, and direct disposal of unused drugs. With the approach of wastewater-based epidemiology (WBE), this study aims to evaluate the consumption of eight commonly-used antibiotics between developed urban and developing sub-urban catchments in China and to characterise the ratios of parent drugs to metabolites in studying the consumption. Seven parent antibiotics were detected in all the wastewater samples (n = 56), whereas some metabolites were detected sporadically. The ratios of parent chemicals to metabolites varied among locations and were often higher than the ratios in pharmacokinetic studies. Estimated consumption of antibiotics ranged from 3.2 ± 2.0 mg/day/1000 inhabitants for trimethoprim to 28,400 ± 7800 mg/day/1000 inhabitants for roxithromycin in the studied catchments. Higher consumption of sulfapyridine, sulfadiazine and roxithromycin was observed in urban than suburban catchments, while consumption of sulfamethoxazole, norfloxacin, and trimethoprim was higher in suburban than in urban catchments. Using the literature data, we found more than 95% reduction of antibiotic use in an urban catchment. Our study revealed the geographical pattern in antibiotic use across different urban and suburban catchments via WBE, and the potential of monitoring parent-to-metabolite ratios for WBE in estimating antibiotic use. These results provide a basis for health authorities to plan different drug-specific control policies between urban and suburban catchments, and for future WBE studies to be aware of other sources, such as animal husbandry and disposals of unused drugs, that can influence the estimated consumption.


Asunto(s)
Roxitromicina , Contaminantes Químicos del Agua , Animales , Antibacterianos , Trimetoprim , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua/análisis
9.
Nutrients ; 13(11)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34836003

RESUMEN

The most representative indicator of vitamin D status in clinical practice is 25(OH)D3, but new biomarkers could improve the assessment of vitamin D status and metabolism. The objective of this study is to investigate the association of serum vitamin D metabolites and vitamin D metabolite ratios (VMRs) with potentially influential factors in premenopausal women. This is a cross-sectional study based on 1422 women, aged 39-50, recruited from a Madrid Medical Diagnostic Center. Participants answered an epidemiological and a food frequency questionnaire. Serum vitamin D metabolites were determined using an SPE-LC-MS/MS platform. The association between participant's characteristics, vitamin D metabolites, and VMRs was quantified by multiple linear regression models. Mean 25(OH)D3 concentration was 49.2 + 18.9 nmol/L, with greater deficits among obese, nulliparous, dark-skinned women, and with less sun exposure. A lower R2 ratio (1,25(OH)2D3/25(OH)D3) and a higher R4 (24,25(OH)2D3/1,25(OH)2D3) were observed in nulliparous women, with high sun exposure, and those with low caloric intake or high consumption of calcium, vitamin D supplements, or alcohol. Nulliparous women had lower R1 (25(OH)D3/Vit D3) and R3 (24,25(OH)2D3/25(OH)D3), and older women showed lower R3 and R4. Vitamin D status modified the association of the VMRs with seasons. VMRs can be complementary indicators of vitamin D status and its endogenous metabolism, and reveal the influence of certain individual characteristics on the expression of hydroxylase enzymes.


Asunto(s)
Metaboloma , Premenopausia/sangre , Vitamina D/sangre , Adulto , Femenino , Humanos , Persona de Mediana Edad
10.
Metabolites ; 11(8)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34436497

RESUMEN

In morphine intoxication cases, forensic toxicologists are frequently confronted with the question of if the individual was opioid-tolerant or opioid-naïve, which can be investigated by hair analysis. However, interpretation of results can be challenging. Here, we report on hair testing for morphine and its metabolite hydromorphone following morphine intoxication without tolerance and upon chronic use. Two consecutive hair samples were collected after a non-fatal intoxication. Analysis comprised short hair segments and their initial wash water solutions. In the intoxications, morphine and hydromorphone levels were 3.3 to 56 pg/mg and at maximum 9.8 pg/mg, respectively. Both levels and hydromorphone to morphine ratios were significantly lower compared to chronic morphine use. In the non-fatal intoxication, the highest hydromorphone to morphine ratio was obtained in the segment corresponding to the time of intoxication. Morphine ratios of wash to hair were significantly higher in the intoxications compared to chronic use, being indicative of sweat/sebum contamination. We recommend including the analysis of hydromorphone and the initial wash solution in cases of morphine intoxications. Our study demonstrates that hydromorphone to morphine ratios can help in distinguishing single from chronic morphine use and in estimating the period of exposure when a consecutive hair sample can be collected in survived intoxications.

11.
Forensic Sci Int Genet ; 53: 102510, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33799050

RESUMEN

Genetic disposition can cause variation in oxycodone pharmacokinetic characteristics and decrease or increase the expected clinical response. In forensic medicine, determination of cause of death or assessing time between drug intake and death can be facilitated by knowledge of parent and metabolite concentrations. In this study, the aim was to investigate if CYP2D6 genotyping can facilitate interpretation by investigating the frequency of the four CYP2D6 phenotypes, poor metabolizer, intermediate metabolizer, extensive metabolizer, and ultra-rapid metabolizer in postmortem cases, and to study if the CYP2D6 activity was associated with a certain cause of death, concentration, or metabolic ratio. Cases positive for oxycodone in femoral blood (n = 174) were genotyped by pyrosequencing for CYP2D6*3, *4, and *6 and concentrations of oxycodone, noroxycodone, oxymorphone, and noroxymorphone were determined by LC-MS/MS (LLOQ 0.005 µg/g). Digital droplet PCR was used to determine the copy number variation for CYP2D6*5. Cases were categorized by cause of death. It was found that poor and intermediate CYP2D6 metabolizers had significantly higher oxycodone and noroxycodone concentrations compared to extensive and ultra-rapid metabolizers. CYP2D6 phenotype were equally distributed between cause of death groups, showing that no phenotype was overrepresented in any of the cause of death groups. We also found that the concentration ratio between oxymorphone and oxycodone depended on the CYP2D6 activity when death was unrelated to intoxication. In general, a low metabolite to parent ratio indicate an acute intake. By using receiver operating characteristic (ROC) analysis, we conclude that an oxymorphone/oxycodone ratio lower than 0.075 has a high sensitivity for separating intoxications with oxycodone from other intoxications and non-intoxications. However, the phenotype needs to be known to reach a high specificity. Therefore, the ratio should not be used as a biomarker on its own to distinguish between different causes of death but needs to be complemented by genotyping.


Asunto(s)
Analgésicos Opioides/sangre , Citocromo P-450 CYP2D6/genética , Oxicodona/sangre , Pruebas de Farmacogenómica , Adolescente , Adulto , Anciano , Analgésicos Opioides/farmacocinética , Variaciones en el Número de Copia de ADN , Femenino , Genética Forense , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Morfinanos/sangre , Oxicodona/farmacocinética , Fenotipo , Polimorfismo de Nucleótido Simple , Adulto Joven
12.
Artículo en Inglés | MEDLINE | ID: mdl-31778759

RESUMEN

BACKGROUND: Previous studies have demonstrated that copper and zinc metabolism are associated with the development of major depressive disorder (MDD). Abnormal copper and zinc levels may be related to neurotransmission and biochemical metabolism in the brains of MDD patients, especially in the prefrontal cortex (PFC) and lentiform nucleus (LN). However, the mechanism of how copper and zinc levels contribute to neural metabolism in MDD patients remains to be deciphered. This study aimed to correlate copper and zinc levels with biochemical metabolite ratios in the PFC and LN of MDD patients. METHOD: Twenty-nine MDD patients and thirty-two healthy control (HC) volunteers were enrolled in this study. Proton magnetic resonance spectroscopy (1H-MRS) was used to determine the levels of the N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) in the brain, and specifically in the PFC and LN regions. Serum copper and zinc levels were measured using atomic emission spectrometry (AES). Afterwards, copper and zinc levels were correlated with biochemical metabolite ratios in the PFC and LN regions of the brain. RESULTS: Higher serum copper and lower serum zinc levels with higher copper/zinc ratios were observed in MDD patients. NAA/Cr ratios in the PFC of MDD patients were lower compared to HC volunteers. In MDD patients, serum copper levels were negatively correlated with NAA/Cr ratios in the right PFC and right LN, while copper/zinc ratios were negatively correlated with NAA/Cr ratios in the right LN. No significant differences in serum copper and zinc levels with NAA/Cr ratios in the left PFC and left LN were observed in MDD patients. CONCLUSION: Our findings suggest that higher serum copper and lower serum zinc levels may contribute to neuronal impairment by affecting neuronal biochemical metabolite ratios in the right PFC and right LN of MDD patients. Abnormal copper and zinc levels may play an important role in the pathophysiology of MDD.


Asunto(s)
Cobre/sangre , Cuerpo Estriado/diagnóstico por imagen , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Adulto , Biomarcadores/sangre , Biomarcadores/metabolismo , Estudios de Cohortes , Cobre/metabolismo , Cuerpo Estriado/metabolismo , Estudios Transversales , Trastorno Depresivo Mayor/metabolismo , Femenino , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Corteza Prefrontal/metabolismo , Adulto Joven , Zinc/sangre , Zinc/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-29413357

RESUMEN

Long-chain polyunsaturated fatty acids (LC-PUFAs) are rapidly accumulated in brain during pre- and neonatal life, which is important for the development and function of central nervous system. Deficiency of biologically important n-3 PUFA docosahexaenoic acid (C22:6n-3, DHA) is associated with impaired visual, attention and cognition, and would precipitate psychiatric symptoms. However, clinical studies of the potential mechanism on the effect of dietary DHA deficiency on neural development remain unclear. In addition, the effects of n-6 PUFAs and n-3 PUFAs ingestion on the dynamic process of the cell proliferation in neurogenesis of offspring were investigated using immunefluorescence. And GC-MS was used to determine the fatty acid content in the liver of offspring. To further investigate the neurochemical influence on maternal PUFAs levels, we assessed the functioning of various neurotransmitter systems including glutamatergic, dopaminergic, norepinephrinergic and serotoninergic systems in the brain of female rats at weaning by HPLC-MS/MS. Lastly, we analyzed the turnover rates and between-metabolite ratios (the ratios between metabolites of monoamine neurotransmitters) to seek potential links between the neurotransmitters and dietary fatty acids compositions. There were significant differences between the deficiency group and the control or supplementary group in liver fatty acids compositions, showing that n-3 PUFAs were largely replaced by n-6 PUFAs. The generation of n-3 PUFAs deficiency rats exhibited abnormal neurogenesis and neurochemical. Altered dopamine or norepinephrine transmission and between-metabolite ratios in brain areas may be a key neuronal mechanism that contributes to the potential detrimental effects of n-3 PUFAs deficiency for mental health.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Ácidos Grasos/análisis , Neurogénesis/fisiología , Animales , Proliferación Celular , Femenino , Hipocampo/química , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hígado/química , Fenómenos Fisiologicos Nutricionales Maternos , Neuronas/fisiología , Neurotransmisores/metabolismo , Corteza Prefrontal/química , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Ratas Sprague-Dawley , Destete
14.
Am J Clin Nutr ; 105(4): 897-904, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28275126

RESUMEN

Background: Higher plasma concentrations of the vitamin B-6 marker pyridoxal 5'-phosphate (PLP) have been associated with reduced colorectal cancer (CRC) risk. Inflammatory processes, including vitamin B-6 catabolism, could explain such findings.Objective: We investigated 3 biomarkers of vitamin B-6 status in relation to CRC risk.Design: This was a prospective case-control study of 613 CRC cases and 1190 matched controls nested within the Northern Sweden Health and Disease Study (n = 114,679). Participants were followed from 1985 to 2009, and the median follow-up from baseline to CRC diagnosis was 8.2 y. PLP, pyridoxal, pyridoxic acid (PA), 3-hydroxykynurenine, and xanthurenic acids (XAs) were measured in plasma with the use of liquid chromatography-tandem mass spectrometry. We calculated relative and absolute risks of CRC for PLP and the ratios 3-hydroxykynurenine:XA (HK:XA), an inverse marker of functional vitamin B-6 status, and PA:(PLP + pyridoxal) (PAr), a marker of inflammation and oxidative stress and an inverse marker of vitamin B-6 status.Results: Plasma PLP concentrations were associated with a reduced CRC risk for the third compared with the first quartile and for PLP sufficiency compared with deficiency [OR: 0.60 (95% CI: 0.44, 0.81) and OR: 0.55 (95% CI: 0.37, 0.81), respectively]. HK:XA and PAr were both associated with increased CRC risk [OR: 1.48 (95% CI: 1.08, 2.02) and OR: 1.50 (95% CI: 1.10, 2.04), respectively] for the fourth compared with the first quartile. For HK:XA and PAr, the findings were mainly observed in study participants with <10.5 y of follow-up between sampling and diagnosis.Conclusions: Vitamin B-6 deficiency as measured by plasma PLP is associated with a clear increase in CRC risk. Furthermore, our analyses of novel markers of functional vitamin B-6 status and vitamin B-6-associated oxidative stress and inflammation suggest a role in tumor progression rather than initiation.


Asunto(s)
Neoplasias Colorrectales/etiología , Quinurenina/análogos & derivados , Estado Nutricional , Deficiencia de Vitamina B 6/complicaciones , Vitamina B 6/sangre , Xanturenatos/sangre , Adulto , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/prevención & control , Femenino , Humanos , Inflamación/sangre , Inflamación/etiología , Quinurenina/sangre , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Estrés Oxidativo , Estudios Prospectivos , Piridoxal/sangre , Fosfato de Piridoxal/sangre , Ácido Piridóxico/sangre , Suecia , Deficiencia de Vitamina B 6/sangre
15.
NMR Biomed ; 30(7)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28272763

RESUMEN

Metabolite levels measured using magnetic resonance spectroscopy (MRS) are often expressed as ratios rather than absolute concentrations. However, the inter-subject variability of the denominator metabolite can introduce uncertainty into a metabolite ratio. In a clinical setting, there are no guidelines on whether ratios or absolute quantification should be used for a more accurate classification of normal versus abnormal results based on their statistical properties. In a research setting, the choice of one over the other can have significant implications on sample size, which must be factored in at the study design stage. Herein, we derive the probability distribution function for the ratio of two normally distributed random variables, and present analytical expressions for the comparison of ratios with absolute quantification in terms of both sample size and area under the receiver operator characteristic curve. The two approaches are compared for typical metabolite values found in the literature, and their respective merits are illustrated using previously acquired clinical MRS data in two pathologies: mild traumatic brain injury and multiple sclerosis. Our analysis shows that the decision between ratios and absolute quantification is non-trivial: in some cases, ratios might offer a reduction in sample size, whereas, in others, absolute quantification might prove more desirable for individual (i.e. clinical) use. The decision is straightforward and exact guidelines are provided in the text, given that population means and standard deviations of numerator and denominator can be reliably estimated.


Asunto(s)
Algoritmos , Ácido Aspártico/análogos & derivados , Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Colina/metabolismo , Interpretación Estadística de Datos , Espectroscopía de Resonancia Magnética/métodos , Adulto , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Análisis de Flujos Metabólicos/métodos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Forensic Sci Int ; 266: 170-177, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27289433

RESUMEN

A fatal case of butyrfentanyl poisoning was investigated at the Zurich Institute of Forensic Medicine. At admission at the institute approx. 9h after death (first time point, t1), femoral and heart blood (right ventricle) was collected, as well as samples from the lung, liver, kidney, spleen, muscle and adipose tissue using computed tomography (CT)-guided biopsy sampling. At autopsy (t2), samples from the same body regions were collected manually. Additionally, urine, heart blood (left ventricle), gastric content, brain samples and hair were collected. Butyrfentanyl concentrations and relative concentrations of the metabolites carboxy-, hydroxy-, nor-, and desbutyrfentanyl were determined by LC-MS/MS and LC-QTOF. At t1, butyrfentanyl concentrations were 66ng/mL in femoral blood, 39ng/mL in heart blood, 110ng/g in muscle, 57ng/g in liver, 160ng/g in kidney, 3100ng/g in lung, 590ng/g in spleen and 550ng/g in adipose tissue. At t2, butyrfentanyl concentration in urine was 1100ng/mL, in gastric content 2000ng/mL, in hair 11,000pg/mg and brain concentrations ranged between 200-340ng/g. Carboxy- and hydroxybutyrfentanyl were identified as most abundant metabolites. Comparison of t1 and t2 showed a concentration increase of butyrfentanyl in femoral blood of 120%, in heart blood of 55% and a decrease in lung of 30% within 19h. No clear concentration changes could be observed in the other matrices. Postmortem concentration changes were also observed for the metabolites. In conclusion, butyrfentanyl seems to be prone to postmortem redistribution processes and concentrations in forensic death cases should be interpreted with caution.


Asunto(s)
Fentanilo/análogos & derivados , Autopsia , Cromatografía Liquida , Fentanilo/sangre , Fentanilo/metabolismo , Fentanilo/envenenamiento , Humanos , Cambios Post Mortem , Factores de Tiempo , Distribución Tisular
17.
Rheumatology (Oxford) ; 55(9): 1566-74, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27160277

RESUMEN

OBJECTIVE: To identify novel biomarker(s) for predicting advanced knee OA. METHODS: Study participants were derived from the Newfoundland Osteoarthritis Study and the Tasmania Older Adult Cohort Study. All knee OA cases were patients who underwent total knee replacement (TKR) due to primary OA. Metabolic profiling was performed on fasting plasma. Four thousand and eighteen plasma metabolite ratios that were highly correlated with that in SF in our previous study were generated as surrogates for joint metabolism. RESULTS: The discovery cohort included 64 TKR cases and 45 controls and the replication cohorts included a cross-sectional cohort of 72 TKR cases and 76 controls and a longitudinal cohort of 158 subjects, of whom 36 underwent TKR during the 10-year follow-up period. We confirmed the previously reported association of the branched chain amino acids to histidine ratio with advanced knee OA (P = 9.3 × 10(-7)) and identified a novel metabolic marker-the lysophosphatidylcholines (lysoPCs) to phosphatidylcholines (PCs) ratio-that was associated with advanced knee OA (P = 1.5 × 10(-7)) after adjustment for age, sex and BMI. When the subjects of the longitudinal cohort were categorized into two groups based on the optimal cut-off of the ratio of 0.09, we found the subjects with the ratio ⩾0.09 were 2.3 times more likely to undergo TKR than those with the ratio <0.09 during the 10-year follow-up (95% CI: 1.2, 4.3, P = 0.02). CONCLUSION: We identified the ratio of lysoPCs to PCs as a novel metabolic marker for predicting advanced knee OA. Further studies are required to examine whether this ratio can predict early OA change.


Asunto(s)
Lisofosfatidilcolinas/metabolismo , Osteoartritis de la Rodilla/etiología , Fosfatidilcolinas/metabolismo , Anciano , Artroplastia de Reemplazo de Rodilla/estadística & datos numéricos , Biomarcadores/metabolismo , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Terranova y Labrador/epidemiología , Osteoartritis de la Rodilla/epidemiología , Osteoartritis de la Rodilla/cirugía , Estudios Prospectivos , Tasmania/epidemiología
18.
Bioanalysis ; 8(9): 953-64, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27067523

RESUMEN

BACKGROUND: Identification of external contamination is a challenge in hair analysis. This study investigates metabolite ratios of hydromorphone to morphine and hydrocodone to codeine as indicators to distinguish contamination from heroin use provided that hydromorphone/hydrocodone intake is excluded. RESULTS: Hair samples after external contamination with street heroin proved to be negative for hydromorphone/hydrocodone. Hair samples from individuals with suspected street heroin use/contamination or opiate medication were analyzed for 6-monoacetylmorphine, morphine, acetylcodeine, codeine, hydromorphone and hydrocodone, and metabolite ratios of hydromorphone to morphine and hydrocodone to codeine were assessed. Hair samples from individuals with medicinal heroin/morphine/codeine use displayed significantly higher metabolite ratios than those with suspected street heroin use/contamination. CONCLUSION: Hydromorphone/hydrocodone are solely formed during body passage. Thus, metabolite ratios can be used to distinguish morphine/heroin use from external contamination.


Asunto(s)
Analgésicos Opioides/análisis , Cabello/química , Heroína/análisis , Hidrocodona/análisis , Hidromorfona/análisis , Alcaloides Opiáceos/análisis , Detección de Abuso de Sustancias/métodos , Cromatografía Liquida/métodos , Femenino , Dependencia de Heroína/diagnóstico , Humanos , Masculino , Morfina/análisis , Derivados de la Morfina/análisis , Espectrometría de Masas en Tándem/métodos
19.
Magn Reson Med ; 73(1): 1-12, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24488656

RESUMEN

In (1)H MR spectroscopic imaging ((1)H-MRSI) of the prostate the spatial distribution of the signal levels of the metabolites choline, creatine, polyamines, and citrate are assessed. The ratio of choline (plus spermine as the main polyamine) plus creatine over citrate [(Cho+(Spm+)Cr)/Cit] is derived from these metabolites and is used as a marker for the presence of prostate cancer. In this review, the factors that are of importance for the metabolite ratio are discussed. This is relevant, because the appearance of the metabolites in the spectrum depends not only on the underlying anatomy, metabolism, and physiology of the tissue, but also on acquisition parameters. These parameters influence especially the spectral shapes of citrate and spermine resonances, and consequently, the (Cho+(Spm+)Cr)/Cit ratio. Both qualitative and quantitative approaches can be used for the evaluation of (1)H-MRSI spectra of the prostate. For the quantitative approach, the (Cho+(Spm+)Cr)/Cit ratio can be determined by integration or by a fit based on model signals. Using the latter, the influence of the acquisition parameters on citrate can be taken into account. The strong overlap between the choline, creatine, and spermine resonances complicates fitting of the individual metabolites. This overlap and (unknown, possibly tissue-related) variations in T1, T2, and J-modulation hamper the application of corrections needed for a "normalized" (Cho+(Spm+)Cr)/Cit ratio that would enable comparison of spectra measured with different prostate MR spectroscopy protocols. Quantitative (Cho+(Spm+)Cr)/Cit thresholds for the evaluation of prostate cancer are therefore commonly established per institution or per protocol. However, if the same acquisition and postprocessing protocol were used, the ratio and the thresholds would be institution-independent, promoting the clinical usability of prostate (1)H-MRSI.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/metabolismo , Espectroscopía de Protones por Resonancia Magnética/métodos , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Magn Reson Med ; 70(4): 1117-24, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23086864

RESUMEN

PURPOSE: Commonly used anesthetic agents such as isoflurane are known to be potent cerebral vasodilators, with reported dose-dependent increase in cerebral blood flow and cerebral blood volume. Despite the widespread use of isoflurane in hyperpolarized (13)C preclinical research studies, a quantitative assessment of its effect on metabolic measurements is limited. This work investigates the effect of isoflurane anesthesia dose on hyperpolarized (13)C MR metabolic measurements in rat brain for [1-(13)C]pyruvate and 2-keto[1-(13)C]isocaproate. METHODS: Dynamic 2D and 3D spiral chemical shift imaging was used to acquire metabolic images of rat brain as well as kidney and liver following bolus injections of hyperpolarized [1-(13)C]pyruvate or 2-keto[1-(13)C]isocaproate. The impact of a "low dose" vs. a "high dose" of isoflurane on cerebral metabolite levels and apparent conversion rates was examined. RESULTS: The cerebral substrate signal levels, and hence the metabolite-to-substrate ratios and apparent conversion rates, were found to depend markedly on isoflurane dose, while signal levels of metabolic products and their ratios, e.g. bicarbonate/lactate, were largely insensitive to isoflurane levels. No obvious dependence on isoflurane was observed in kidney or liver for pyruvate. CONCLUSION: This study highlights the importance of careful attention to the effects of anesthesia on the metabolic measures for hyperpolarized (13)C metabolic imaging in brain.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Caproatos/metabolismo , Isoflurano/administración & dosificación , Espectroscopía de Resonancia Magnética/métodos , Ácido Pirúvico/metabolismo , Administración por Inhalación , Anestésicos por Inhalación/administración & dosificación , Animales , Artefactos , Isótopos de Carbono/farmacocinética , Relación Dosis-Respuesta a Droga , Masculino , Tasa de Depuración Metabólica/efectos de los fármacos , Ratas , Ratas Wistar , Distribución Tisular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...