Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 570
Filtrar
1.
Microb Genom ; 10(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39351905

RESUMEN

Climate warming has led to glacier retreat worldwide. Studies on the taxonomy and functions of glacier microbiomes help us better predict their response to glacier melting. Here, we used shotgun metagenomic sequencing to study the microbial functional potential in different cryospheric habitats, i.e. surface snow, supraglacial and subglacial sediments, subglacial ice, proglacial stream water and recently deglaciated soils. The functional gene structure varied greatly among habitats, especially for snow, which differed significantly from all other habitats. Differential abundance analysis revealed that genes related to stress responses (e.g. chaperones) were enriched in ice habitat, supporting the fact that glaciers are a harsh environment for microbes. The microbial metabolic capabilities related to carbon and nitrogen cycling vary among cryospheric habitats. Genes related to auxiliary activities were overrepresented in the subglacial sediment, suggesting a higher genetic potential for the degradation of recalcitrant carbon (e.g., lignin). As for nitrogen cycling, genes related to nitrogen fixation were more abundant in barren proglacial soils, possibly due to the presence of Cyanobacteriota in this habitat. Our results deepen our understanding of microbial processes in glacial ecosystems, which are vulnerable to ongoing global warming, and they have implications for downstream ecosystems.


Asunto(s)
Ecosistema , Cubierta de Hielo , Cubierta de Hielo/microbiología , Microbiología del Suelo , Fijación del Nitrógeno/genética , Microbiota/genética , Metagenómica , Sedimentos Geológicos/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Metagenoma , Ciclo del Nitrógeno/genética
2.
J Med Microbiol ; 73(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39378072

RESUMEN

Background. Bacteria significantly influence human health and disease, with bacterial biosynthetic gene clusters (BGCs) being crucial in the microbiome-host and microbe-microbe interactions.Gap statement. Despite extensive research into BGCs within the human gut microbiome, their roles in the oral microbiome are less understood.Aim. This pilot study utilizes high-throughput shotgun metagenomic sequencing to examine the oral microbiota in different niches, particularly focusing on the association of BGCs with periodontitis.Methodology. We analysed saliva, subgingival plaque and supragingival plaque samples from periodontitis patients (n=23) and controls (n=16). DNA was extracted from these samples using standardized protocols. The high-throughput shotgun metagenomic sequencing was then performed to obtain comprehensive genetic information from the microbial communities present in the samples.Results. Our study identified 10 742 BGCs, with certain clusters being niche-specific. Notably, aryl polyenes and bacteriocins were the most prevalent BGCs identified. We discovered several 'novel' BGCs that are widely represented across various bacterial phyla and identified BGCs that had different distributions between periodontitis and control subjects. Our systematic approach unveiled the previously unexplored biosynthetic pathways that may be key players in periodontitis.Conclusions. Our research expands the current metagenomic knowledge of the oral microbiota in both healthy and periodontally diseased states. These findings highlight the presence of novel biosynthetic pathways in the oral cavity and suggest a complex network of host-microbe and microbe-microbe interactions, potentially influencing periodontal disease. The BGCs identified in this study pave the way for future investigations into the role of small-molecule-mediated interactions within the human oral microbiota and their impact on periodontitis.


Asunto(s)
Bacterias , Microbiota , Boca , Familia de Multigenes , Periodontitis , Humanos , Periodontitis/microbiología , Boca/microbiología , Microbiota/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proyectos Piloto , Metagenómica/métodos , Saliva/microbiología , Adulto , Masculino , Vías Biosintéticas/genética , Femenino , Persona de Mediana Edad , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma
3.
Microbiol Spectr ; : e0113024, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365058

RESUMEN

The vaginal microbiome is a key player in the etiology of spontaneous preterm birth. This study aimed to illustrate maternal environmental factors associated with vaginal microbiota composition and function in pregnancy. Women in healthy pregnancy had vaginal microbial sampling from the posterior vaginal fornix performed at 16 weeks gestation. After shotgun metagenomic sequencing, heatmaps of relative abundance data were generated. Community state type (CST) was assigned, and alpha diversity was calculated. Demography, obstetric history, well-being, exercise, and diet using food frequency questionnaires were collected and compared against microbial parameters. A total of 119 pregnant participants had vaginal metagenomic sequencing performed. Factors with strongest association with beta diversity were dietary lysine (adj-R2 0.113, P = 0.002), valine (adj-R2 0.096, P = 0.004), leucine (adj-R2 0.086, P = 0.003), and phenylalanine (adj-R2 0.085, P = 0.005, Fig. 2D). Previous vaginal delivery and breastfeeding were associated with vaginal beta diversity (adj-R2 0.048, P = 0.003; adj-R2 0.045, P = 0.004), accounting for 8.5% of taxonomy variation on redundancy analysis. Dietary fat, starch, and maltose were positively correlated with alpha diversity (fat +0.002 SD/g, P = 0.025; starch +0.002 SD/g, P = 0.043; maltose +0.440 SD/g, P = 0.013), particularly in secretor-positive women. Functional signature was associated with CST, maternal smoking, and dietary phenylalanine, accounting for 8.9%-11% of the variation in vaginal microbiome functional signature. Dietary amino acids, previous vaginal delivery, and breastfeeding history were associated with vaginal beta diversity. Functional signature of the vaginal microbiome differed with community state type, smoking, dietary phenylalanine, and vitamin K. Increased alpha diversity correlated with dietary fat and starch. These data provide a novel snapshot into the associations between maternal environment, nutrition, and the vaginal microbiome. IMPORTANCE: This secondary analysis of the MicrobeMom randomized controlled trial reveals that dietary amino acids, macronutrients, previous vaginal birth, and breastfeeding have the strongest associations with vaginal taxonomy in early pregnancy. Function of the vaginal niche is associated mainly by species composition, but smoking, vitamin K, and phenylalanine also play a role. These associations provide an intriguing and novel insight into the association between host factors and diet on the vaginal microbiome in pregnancy and highlight the need for further investigation into the complex interactions between the diet, human gut, and vaginal microbiome.

4.
BMC Microbiol ; 24(1): 337, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256682

RESUMEN

BACKGROUND: The fall armyworm (FAW, Spodoptera frugiperda) is a polyphagous pest known for causing significant crop damage. The gut microbiota plays a pivotal role in influencing the biology, physiology and adaptation of the host. However, understanding of the taxonomic composition and functional characteristics of the gut microbiota in FAW larvae fed on different host plants remains limited. METHODS: This study utilized metagenomic sequencing to explore the structure, function and antibiotic resistance genes (ARGs) of the gut microbiota in FAW larvae transferred from an artificial diet to four distinct host plants: maize, sorghum, tomato and pepper. RESULTS: The results demonstrated significant variations in gut microbiota structure among FAW larvae fed on different host plants. Firmicutes emerged as the dominant phylum, with Enterococcaceae as the dominant family and Enterococcus as the prominent genus. Notably, Enterococcus casseliflavus was frequently observed in the gut microbiota of FAW larvae across host plants. Metabolism pathways, particularly those related to carbohydrate and amino acid metabolism, played a crucial role in the adaptation of the FAW gut microbiota to different host plants. KEGG orthologs associated with the regulation of the peptide/nickel transport system permease protein in sorghum-fed larvae and the 6-phospho-ß-glucosidase gene linked to glycolysis/gluconeogenesis as well as starch and sucrose metabolism in pepper-fed larvae were identified. Moreover, the study identified the top 20 ARGs in the gut microbiota of FAW larvae fed on different host plants, with the maize-fed group exhibiting the highest abundance of vanRC. CONCLUSIONS: Our metagenomic sequencing study reveals significant variations in the gut microbiota composition and function of FAW larvae across diverse host plants. These findings underscore the intricate co-evolutionary relationship between hosts and their gut microbiota, suggesting that host transfer profoundly influences the gut microbiota and, consequently, the adaptability and pest management strategies for FAW.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Larva , Metagenómica , Sorghum , Spodoptera , Zea mays , Animales , Spodoptera/microbiología , Spodoptera/genética , Larva/microbiología , Microbioma Gastrointestinal/genética , Zea mays/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Sorghum/microbiología , Solanum lycopersicum/microbiología , Capsicum/microbiología , Metagenoma
5.
Front Microbiol ; 15: 1453162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228385

RESUMEN

The surge in global energy demand mandates a significant expansion of electric power substations. Nevertheless, the ecological consequences of electric power substation operation, particularly concerning the electromagnetic field, on soil microbial communities and nitrogen enrichment remain unexplored. In this study, we collected soil samples from six distinct sites at varying distances from an electric power substation in Xintang village, southeastern China, and investigated the impacts of electromagnetic field on the microbial diversity and community structures employing metagenomic sequencing technique. Our results showed discernible dissimilarities in the fungal community across the six distinct sites, each characterized by unique magnetic and electric intensities, whereas comparable variations were not evident within bacterial communities. Correlation analysis revealed a diminished nitrogen fixation capacity at the site nearest to the substation, characterized by low moisture content, elevated pH, and robust magnetic induction intensity and electric field intensity. Conversely, heightened nitrification processes were observed at this location compared to others. These findings were substantiated by the relative abundance of key genes associated with ammonium nitrogen and nitrate nitrogen production. This study provides insights into the relationships between soil microbial communities and the enduring operation of electric power substations, thereby contributing fundamental information essential for the rigorous environmental impact assessments of these facilities.

6.
Indian J Med Microbiol ; 52: 100730, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39233139

RESUMEN

BACKGROUND: Paediatric community-acquired pneumonia (CAP) is a major public health challenge in children, requiring accurate and timely diagnosis of causative pathogens for effective antibiotic treatment. We aimed to explore the utility of next-generation sequencing (NGS) in precise diagnosis of pediatric CAP and its effect on treatment outcome of these children. METHODS: A systematic review and meta-analysis was conducted to compare NGS-guided antibiotic therapy with conventional methods in pediatric CAP. The study followed PRISMA guidelines and searched for electronic databases including PubMed/MEDLINE, Embase, Scopus, and Web of Sciences from 2012 to 2023. Studies on pediatric CAP (<18 years) using NGS alongside conventional diagnostics, were included. RESULTS: Database search identified 721 studies and 6 were finally included for review, published between 2019 and 2023. Meta-analysis revealed an overall odds ratio of 2.39 (95 % CI 1.22, 3.56) for NGS vs conventional methods. Detection rates using NGS ranged from 86% to 100 %, surpassing conventional methods (26%-78.51 %). Five out of selected 6 studies (83.33 %) have documented that change in treatment based on NGS finding resulted in clinical improvement of patients. There was no significant heterogeneity and potential bias among the studies. Nearly 80 % of the studies were of good quality. CONCLUSION: The NGS (particularly metagenomic sequencing) is a promising tool for diagnosing paediatric CAP with high accuracy. It can improve antibiotic usage practices and patient outcomes, potentially reducing antibiotic resistance. Based on meta-analysis, training of healthcare professionals in NGS methodologies and result interpretation is highly recommended.

7.
Microbiome ; 12(1): 178, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300575

RESUMEN

BACKGROUND: Microbial pdu and cob-cbi-hem gene clusters encode the key enzyme glycerol/diol dehydratase (PduCDE), which mediates the transformation of dietary nutrients glycerol and 1,2-propanediol (1,2-PD) to a variety of metabolites, and enzymes for cobalamin synthesis, a co-factor and shared good of microbial communities. It was the aim of this study to relate pdu as a multipurpose functional trait to environmental conditions and microbial community composition. We collected fecal samples from wild animal species living in captivity with different gut physiology and diet (n = 55, in total 104 samples), determined occurrence and diversity of pdu and cob-cbi-hem using a novel approach combining metagenomics with quantification of metabolic and genetic biomarkers, and conducted in vitro fermentations to test for trait-based activity. RESULTS: Fecal levels of the glycerol transformation product 1,3-propanediol (1,3-PD) were higher in hindgut than foregut fermenters. Gene-based analyses indicated that pduC harboring taxa are common feature of captive wild animal fecal microbiota that occur more frequently and at higher abundance in hindgut fermenters. Phylogenetic analysis of genomes reconstructed from metagenomic sequences identified captive wild animal fecal microbiota as taxonomically rich with a total of 4150 species and > 1800 novel species but pointed at only 56 species that at least partially harbored pdu and cbi-cob-hem. While taxonomic diversity was highest in fecal samples of foregut-fermenting herbivores, higher pduC abundance and higher diversity of pdu/cbi-cob-hem related to higher potential for glycerol and 1,2-PD utilization of the less diverse microbiota of hindgut-fermenting carnivores in vitro. CONCLUSION: Our approach combining metabolite and gene biomarker analysis with metagenomics and phenotypic characterization identified Pdu as a common function of fecal microbiota of captive wild animals shared by few taxa and stratified the potential of fecal microbiota for glycerol/1,2-PD utilization and cobalamin synthesis depending on diet and physiology of the host. This trait-based study suggests that the ability to utilize glycerol/1,2-PD is a key function of hindgut-fermenting carnivores, which does not relate to overall community diversity but links to the potential for cobalamin formation. Video Abstract.


Asunto(s)
Heces , Fermentación , Microbioma Gastrointestinal , Glicerol , Metagenómica , Animales , Heces/microbiología , Glicerol/metabolismo , Metagenómica/métodos , Hidroliasas/genética , Hidroliasas/metabolismo , Glicoles de Propileno/metabolismo , Vitamina B 12/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/enzimología , Filogenia , Animales Salvajes/microbiología
8.
Ecol Evol ; 14(9): e70302, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39290662

RESUMEN

Despite a surge in microbiota-focused studies in teleosts, few have reported functional data on whole metagenomes as it has proven difficult to extract high biomass microbial DNA from fish intestinal samples. The zebrafish is a promising model organism in functional microbiota research, yet studies on the functional landscape of the zebrafish gut microbiota through shotgun based metagenomics remain scarce. Thus, a consensus on an appropriate sampling method accurately representing the zebrafish gut microbiota, or any fish species is lacking. Addressing this, we systematically tested four methods of sampling the zebrafish gut microbiota: collection of faeces from the tank, the whole gut, intestinal content, and the application of ventral pressure to facilitate extrusion of gut material. Additionally, we included water samples as an environmental control to address the potential influence of the environmental microbiota on each sample type. To compare these sampling methods, we employed a combination of genome-resolved metagenomics and 16S metabarcoding techniques. We observed differences among sample types on all levels including sampling, bioinformatic processing, metagenome co-assemblies, generation of metagenome-assembled genomes (MAGs), functional potential, MAG coverage, and population level microdiversity. Comparison to the environmental control highlighted the potential impact of the environmental contamination on data interpretation. While all sample types tested are informative about the zebrafish gut microbiota, the results show that optimal sample type for studying fish microbiomes depends on the specific objectives of the study, and here we provide a guide on what factors to consider for designing functional metagenome-based studies on teleost microbiomes.

9.
Water Res ; 267: 122478, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39316963

RESUMEN

Pyridine and quinoline are typical nitrogenous heterocyclic compounds with different structures that are found in coking wastewater. However, neither the corresponding mechanism nor its effect on the degradation of NH4+-N under phenol stress is known. In this study, the effects of pyridine and quinoline degradation on NH4+-N removal under phenol stress were evaluated using three lab-scale sequencing batch reactors. The average NH4+-N removal efficiencies of the reactors were 99.46 %, 88.86 %, and 98.64 %. With the increased concentration of pyridine and quinoline, NH4+-N and NO3--N accumulated to 58.37 mg/L and 141.37 mg/L, respectively, due to the lack of an electron donor and anaerobic environment. The addition of pyridine and quinoline significantly improved antioxidant response and altered the nitrification pathway. The nitrification process shifted from the mediation of amo and hao to the mediation of Ncd2 due to oxidative stress induced by pyridine and quinoline. Furthermore, oxidative stress interferes with the metabolism of carbon sources, resulting in decreased biomass. These results provide a new perspective for coking wastewater treatment processes.

10.
Diagnostics (Basel) ; 14(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39335716

RESUMEN

Vaginitis is a widespread issue for women worldwide, yet current diagnostic tools are lacking. Bacterial vaginosis (BV) is the most prevalent type of vaginitis, found in 10-50% of reproductive-aged women. Current diagnostic methods for BV rely on clinical criteria, microscopy, or the detection of a few microbes by qPCR. However, many vaginal infections lack a single etiological agent and are characterized by changes in the vaginal microbiome community structure (e.g., BV is defined as a loss of protective lactobacilli resulting in an overgrowth of anaerobic bacteria). Shotgun metagenomic sequencing provides a comprehensive view of all the organisms present in the vaginal microbiome (VMB), allowing for a better understanding of all potential etiologies. Here, we describe a robust VMB metagenomics sequencing test with a sensitivity of 93.1%, a specificity of 90%, a negative predictive value of 93.4%, and a positive predictive value of 89.6% certified by Clinical Laboratory Improvement Amendments (CLIA), the College of American Pathologist (CAP), and the Clinical Laboratory Evaluation Program (CLEP). We sequenced over 7000 human vaginal samples with this pipeline and described general findings and comparisons to US census data.

11.
Viruses ; 16(9)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39339905

RESUMEN

Avian influenza virus (AIV) is a significant threat to the poultry industry, necessitating rapid and accurate diagnosis. The current AIV diagnostic process relies on virus identification via real-time reverse transcription-polymerase chain reaction (rRT-PCR). Subsequently, the virus is further characterized using genome sequencing. This two-step diagnostic process takes days to weeks, but it can be expedited by using novel sequencing technologies. We aim to optimize and validate nucleic acid extraction as the first step to establishing Oxford Nanopore Technologies (ONT) as a rapid diagnostic tool for identifying and characterizing AIV from clinical samples. This study compared four commercially available RNA extraction protocols using AIV-known-positive clinical samples. The extracted RNA was evaluated using total RNA concentration, viral copies as measured by rRT-PCR, and purity as measured by a 260/280 absorbance ratio. After NGS testing, the number of total and influenza-specific reads and quality scores of the generated sequences were assessed. The results showed that no protocol outperformed the others on all parameters measured; however, the magnetic particle-based method was the most consistent regarding CT value, purity, total yield, and AIV reads, and it was less error-prone. This study highlights how different RNA extraction protocols influence ONT sequencing performance.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Metagenómica , Secuenciación de Nanoporos , ARN Viral , Animales , Gripe Aviar/virología , Gripe Aviar/diagnóstico , ARN Viral/genética , ARN Viral/aislamiento & purificación , Secuenciación de Nanoporos/métodos , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/clasificación , Metagenómica/métodos , Aves/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Aves de Corral/virología , Pollos/virología , Nanoporos
12.
Vet Res ; 55(1): 118, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334245

RESUMEN

Honey bees are rapidly declining, which poses a significant threat to our environment and agriculture industry. These vital insects face a disease complex believed to be caused by a combination of parasites, viruses, pesticides, and nutritional deficiencies. However, the real aetiology is still enigmatic. Due to the conventional analysis methods, we still lack complete insights into the honey bee virome and the presence of pathogenic bacteria. To fill this knowledge gap, we employed third-generation nanopore metagenomic sequencing on honey bee haemolymph to monitor the presence of pathogens over almost a year. This study provides valuable insights into the changes in bacterial and viral loads within honey bee colonies. We identified different pathogens in the honey bee haemolymph, which are not included in honey bee screenings. These pathogens comprise the Apis mellifera filamentous virus, Apis rhabdoviruses, and various bacteria such as Frischella sp. and Arsenophonus sp. Furthermore, a sharp contrast was observed between young and old bees. Our research proposes that transgenerational immune priming may play a role in shaping infection patterns in honey bees. We observed a significant increase in pathogen loads in the spring, followed by a notable decrease in pathogen presence during the summer and autumn months. However, certain pathogens seem to be able to evade this priming effect, making them particularly intriguing as potential factors contributing to mortality. In the future, we aim to expand our research on honey bee transgenerational immune priming and investigate its potential in natural settings. This knowledge will ultimately enhance honey bee health and decrease colony mortality.


Asunto(s)
Hemolinfa , Estaciones del Año , Animales , Abejas/virología , Abejas/microbiología , Hemolinfa/virología , Hemolinfa/microbiología , Secuenciación de Nanoporos/métodos , Secuenciación de Nanoporos/veterinaria , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Viroma
13.
Front Cell Infect Microbiol ; 14: 1369192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185088

RESUMEN

Objective: This study aimed to explore the correlation between microbiota dysbiosis and hypothyroidism in early pregnancy by 16S rRNA amplicon sequencing combined with metagenomic sequencing. Methods: Sixty pregnant women (30 with hypothyroidism and 30 normal controls) were recruited for 16S rRNA amplicon sequencing, and 6 patients from each group were randomly selected for metagenomic sequencing to assess the gut microbiome profile. Results: The 16S rRNA results showed that beta-diversity in the hypothyroidism group was decreased. The relative abundances of the Prevotella and Paraprevotella genera increased in the hypothyroidism group, and Blautia predominated in the controls. The metagenomics results revealed that Prevotella_stercorea_CAG_629, Prevotella_hominis, Prevotella_sp_AM34_19LB, etc. were enriched in the hypothyroidism group at the species level. Functional analysis revealed that the pyridoxal 5'-phosphate synthase pdxT subunit module was decreased, and the short-chain fatty acid (SCFA) transporter and phospholipase/carboxylesterase modules were strongly enriched in the hypothyroidism group. Hypothyroidism patients had increased C-reactive protein (CRP), interleukin-2 (IL-2), IL-4, IL-10, and tumor necrosis factor (TNF)-α levels. The pyridoxal 5'-phosphate synthase pdxT subunit, the SCFA transporter, and the phospholipase/carboxylesterase module were associated with different Prevotella species. Conclusion: In early pregnancy, women with hypothyroidism exhibit microbiota dysbiosis, and Prevotella may affect the metabolism of glutamate, SCFA, and phospholipases, which could be involved in the development of hypothyroidism during pregnancy.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Hipotiroidismo , Metagenómica , ARN Ribosómico 16S , Humanos , Femenino , Embarazo , Hipotiroidismo/microbiología , ARN Ribosómico 16S/genética , Microbioma Gastrointestinal/genética , Metagenómica/métodos , Adulto , Disbiosis/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Complicaciones del Embarazo/microbiología , Metagenoma , Heces/microbiología
14.
Microorganisms ; 12(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203557

RESUMEN

The transition towards a sustainable society involves the utilization of lignocellulosic biomass as a renewable feedstock for materials, fuel, and base chemicals. Lignocellulose consists of cellulose, hemicellulose, and lignin, forming a complex, recalcitrant matrix where efficient enzymatic saccharification is pivotal for accessing its valuable components. This study investigated microbial communities from brackish Lauwersmeer Lake, in The Netherlands, as a potential source of xylan-degrading enzymes. Environmental sediment samples were enriched with wheat arabinoxylan (WAX) and beechwood glucuronoxylan (BEX), with enrichment on WAX showing higher bacterial growth and complete xylan degradation compared to BEX. Metagenomic sequencing revealed communities consisting almost entirely of bacteria (>99%) and substantial shifts in composition during the enrichment. The first generation of seven-day enrichments on both xylans led to a high accumulation of Gammaproteobacteria (49% WAX, 84% BEX), which were largely replaced by Alphaproteobacteria (42% WAX, 69% BEX) in the fourth generation. Analysis of the protein function within the sequenced genomes showed elevated levels of genes associated with the carbohydrate catabolic process, specifically targeting arabinose, xylose, and xylan, indicating an adaptation to the primary monosaccharides present in the carbon source. The data open up the possibility of discovering novel xylan-degrading proteins from other sources aside from the thoroughly studied Bacteroidota.

15.
BMC Microbiol ; 24(1): 285, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090559

RESUMEN

BACKGROUND: The global over-reliance on non-renewable fossil fuels has led to the emission of greenhouse gases, creating a critical global environmental challenge. There is an urgent need for alternative solutions like biofuels. Advanced biofuel is a renewable sustainable energy generated from lignocellulosic plant materials, which can significantly contribute to mitigating CO2 emissions. Microbial Carbohydrate Active Enzymes (CAZymes) are the most crucial enzymes for the generation of sustainable biofuel energy. The present study designed shotgun metagenomics approaches to assemble, predict, and annotate, aiming to gain an insight into the taxonomic diversity, annotate CAZymes, and identify carbohydrate hydrolyzing CAZymes from microbiomes in Menagesha suba forest soil for the first time. RESULTS: The microbial diversity based on small subunit (SSU) rRNA analysis revealed the dominance of the bacterial domain representing 81.82% and 92.31% in the studied samples. Furthermore, the phylum composition result indicated the dominance of the phyla Proteobacteria (23.08%, 27.27%), Actinobacteria (11.36%, 20.51%), and Acidobacteria (10.26%, 15.91%). The study also identified unassigned bacteria which might have a unique potential for biopolymer hydrolysis. The metagenomic study revealed that 100,244 and 65,356 genes were predicted from the two distinct samples. A total number of 1806 CAZyme genes were identified, among annotated CAZymes, 758 had a known enzyme assigned to CAZymes. Glycoside hydrolases (GHs) CAZyme family contained most of the CAZyme genes with known enzymes such as ß-glucosidase, endo-ß-1,4-mannanase, exo-ß-1,4-glucanase, α-L-arabinofuranosidase and oligoxyloglucan reducing end-specific cellobiohydrolase. On the other hand, 1048 of the identified CAZyme genes were putative CAZyme genes with unknown enzymatical activity and the majority of which belong to the GHs family. CONCLUSIONS: In general, the identified putative CAZymes genes open up an opportunity for the discovery of new enzymes responsible for hydrolyzing biopolymers utilized for biofuel energy generation. This finding is used as a first-hand piece of evidence to serve as a benchmark for further and comprehensive studies to unveil novel classes of bio-economically valuable genes and their encoded products.


Asunto(s)
Bacterias , Bosques , Metagenómica , Filogenia , Microbiología del Suelo , Metagenómica/métodos , Bacterias/genética , Bacterias/enzimología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Etiopía , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Microbiota/genética , Biodiversidad , Suelo/química , Metagenoma , Biocombustibles , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Metabolismo de los Hidratos de Carbono
16.
Front Microbiol ; 15: 1439652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144222

RESUMEN

Objective: This study aimed to investigate the effect of selenium on gut microbiota in mice with breast cancer under a high-fat diet. Methods: A total of 12 female BALB/c mice were randomly divided into two groups: 4 T1 + selenium+ high-fat diet group and 4 T1 + high-fat diet group. Mice were injected with 4 T1 cells on the right 4th mammary fat pad and kept on a high-fat diet. Fecal samples were collected, and DNA was extracted for metagenomic sequencing and bioinformatics analysis. Relevant target genes and pathways were annotated and metabolically analyzed to explore the intervention effect of selenium on breast cancer in the high-fat diet state. Results: Selenium supplementation in the high-fat diet altered the composition and diversity of gut microbiota in mice with breast cancer. The gut microbial composition was significantly different in the selenium intervention group, with an increased abundance of Proteobacteria, Actinobacteria, and Verrucomicrobia phyla and species such as Helicobacter ganmani, Helicobacter japonicus, and Akkermansia muciniphila, while phyla, such as Bacteroidetes, Firmicutes, Deferribacteres, and Spirochaetes, and species, such as Prevotella sp. MGM2, Muribaculum intestinale, Lactobacillus murinus, and Prevotella sp. MGM1, were decreased. Functional analysis revealed differential expression of genes related to carbohydrate-active enzymes, pathogen-host interactions, cell communication, cell auto-induction, membrane transporters, and virulence factors. Furthermore, 37 COGs and 48 metabolites with rising metabolic potential in the selenium intervention group were predicted. Conclusion: Selenium alters the homeostasis of gut microbiota in mice with breast cancer on a high-fat diet, affecting their composition, abundance, and associated metabolism. These findings suggest that the mechanism involves interfering with gut microbiota homeostasis, leading to altered synthesis of tumor-associated proteins and fatty acids and inducing tumor cell apoptosis and pyroptosis.

17.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-39101782

RESUMEN

BACKGROUND: Mobilization typing (MOB) is a classification scheme for plasmid genomes based on their relaxase gene. The host ranges of plasmids of different MOB categories are diverse, and MOB is crucial for investigating plasmid mobilization, especially the transmission of resistance genes and virulence factors. However, MOB typing of plasmid metagenomic data is challenging due to the highly fragmented characteristics of metagenomic contigs. RESULTS: We developed MOBFinder, an 11-class classifier, for categorizing plasmid fragments into 10 MOB types and a nonmobilizable category. We first performed MOB typing to classify complete plasmid genomes according to relaxase information and then constructed an artificial benchmark dataset of plasmid metagenomic fragments (PMFs) from those complete plasmid genomes whose MOB types are well annotated. Next, based on natural language models, we used word vectors to characterize the PMFs. Several random forest classification models were trained and integrated to predict fragments of different lengths. Evaluating the tool using the benchmark dataset, we found that MOBFinder outperforms previous tools such as MOBscan and MOB-suite, with an overall accuracy approximately 59% higher than that of MOB-suite. Moreover, the balanced accuracy, harmonic mean, and F1-score reached up to 99% for some MOB types. When applied to a cohort of patients with type 2 diabetes (T2D), MOBFinder offered insights suggesting that the MOBF type plasmid, which is widely present in Escherichia and Klebsiella, and the MOBQ type plasmid might accelerate antibiotic resistance transmission in patients with T2D. CONCLUSIONS: To the best of our knowledge, MOBFinder is the first tool for MOB typing of PMFs. The tool is freely available at https://github.com/FengTaoSMU/MOBFinder.


Asunto(s)
Metagenómica , Plásmidos , Plásmidos/genética , Metagenómica/métodos , Humanos , Programas Informáticos , Metagenoma
18.
Environ Res ; 262(Pt 1): 119788, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159777

RESUMEN

Research on the microbiome and resistome in polar environments, such as the Arctic, is crucial for understanding the emergence and spread of antibiotic resistance genes (ARGs) in the environment. In this study, soil and reindeer faeces samples collected from Ny-Ålesund (Svalbard, High Arctic) were examined to analyze the microbiome, ARGs, and biocide/metal resistance genes (BMRGs). The dominant phyla in both soil and faeces were Pseudomonadota, Actinomycetota, and Bacteroidota. A total of 2618 predicted Open Reading Frames (ORFs) containing antibiotic resistance genes (ARGs) were detected. These ARGs belong to 162 different genes across 17 antibiotic classes, with rifamycin and multidrug resistance genes being the most prevalent. We focused on investigating antibiotic resistance mechanisms in the Ny-Ålesund environment by analyzing the resistance genes and their biological pathways. Procrustes analysis demonstrated a significant correlation between bacterial communities and ARG/BMRG profiles in soil and faeces samples. Correlation analysis revealed that Pseudomonadota contributed most to multidrug and triclosan resistance, while Actinomycetota were predominant contributors to rifamycin and aminoglycoside resistance. The geochemical factors, SiO42- and NH4+, were found to significantly influence the microbial composition and ARG distribution in the soil samples. Analysis of ARGs, BMRGs, virulence factors (VFs), and pathogens identified potential health risks associated with certain bacteria, such as Cryobacterium and Pseudomonas, due to the presence of different genetic elements. This study provided valuable insights into the molecular mechanisms and geochemical factors contributing to antibiotic resistance and enhanced our understanding of the evolution of antibiotic resistance genes in the environment.

19.
Genome Med ; 16(1): 105, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180058

RESUMEN

BACKGROUND: Colonic diverticulosis, the most common lesion found in routine colonoscopy, affects more than 50% of individuals aged ≥ 60 years. Emerging evidence suggest that dysbiosis of gut microbiota may play an important role in the pathophysiology of diverticular disease. However, specific changes in microbial species and metabolic functions in asymptomatic diverticulosis remain unknown. METHODS: In a cohort of US adults undergoing screening colonoscopy, we analyzed the gut microbiota using shotgun metagenomic sequencing. Demographic factors, lifestyle, and medication use were assessed using a baseline questionnaire administered prior to colonoscopy. Taxonomic structures and metabolic pathway abundances were determined using MetaPhlAn3 and HUMAnN3. We used multivariate association with linear models to identify microbial species and metabolic pathways that were significantly different between asymptomatic diverticulosis and controls, while adjusting for confounders selected a priori including age at colonoscopy, sex, body mass index (BMI), and dietary pattern. RESULTS: Among 684 individuals undergoing a screening colonoscopy, 284 (42%) had diverticulosis. Gut microbiome composition explained 1.9% variation in the disease status of asymptomatic diverticulosis. We observed no significant differences in the overall diversity of gut microbiome between asymptomatic diverticulosis and controls. However, microbial species Bifidobacterium pseudocatenulatum and Prevotella copri were significantly enriched in controls (q value = 0.19 and 0.14, respectively), whereas Roseburia intestinalis, Dorea sp. CAG:317, and Clostridium sp. CAG: 299 were more abundant in those with diverticulosis (q values = 0.17, 0.24, and 0.10, respectively). We observed that the relationship between BMI and diverticulosis appeared to be limited to carriers of Bifidobacterium pseudocatenulatum and Roseburia intestinalis (Pinteraction = 0.09). CONCLUSIONS: Our study provides the first large-scale evidence supporting taxonomic and functional shifts of the gut microbiome in individuals with asymptomatic diverticulosis. The suggestive interaction between gut microbiota and BMI on prevalent diverticulosis deserves future investigations.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Metagenómica/métodos , Colonoscopía , Metagenoma , Bacterias/clasificación , Bacterias/genética
20.
Sci Rep ; 14(1): 18945, 2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147851

RESUMEN

Hyalomma marginatum, a vector for the high-consequence pathogen, the Crimean-Congo hemorrhagic fever virus (CCHFV), needs particular attention due to its impact on public health. Although it is a known vector for CCHFV, its general virome is largely unexplored. Here, we report findings from a citizen science monitoring program aimed to understand the prevalence and diversity of tick-borne pathogens, particularly focusing on Hyalomma ticks in Hungary. In 2021, we identified one adult specimen of Hyalomma marginatum and subjected it to Illumina-based viral metagenomic sequencing. Our analysis revealed sequences of the uncharacterized Volzhskoe tick virus, an unclassified member of the class Bunyaviricetes. The in silico analysis uncovered key genetic regions, including the glycoprotein and the RNA-dependent RNA polymerase (RdRp) coding regions. Phylogenetic analysis indicated a close relationship between our Volzhskoe tick virus sequences and other unclassified Bunyaviricetes species. These related species of unclassified Bunyaviricetes were detected in vastly different geolocations. These findings highlight the remarkable diversity of tick specific viruses and emphasize the need for further research to understand the transmissibility, seroreactivity or the potential pathogenicity of Volzhskoe tick virus and related species.


Asunto(s)
Genoma Viral , Filogenia , Animales , Hungría , Ixodidae/virología , Garrapatas/virología , Genómica/métodos , Metagenómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...