Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.149
Filtrar
1.
Angew Chem Int Ed Engl ; : e202415997, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305188

RESUMEN

The pressing demand for large-scale energy storage solutions has propelled the development of advanced battery technologies, among which zinc-ion batteries (ZIBs) are prominent due to their resource abundance, high capacity, and safety in aqueous environments. However, the use of manganese oxide cathodes in ZIBs is challenged by their poor electrical conductivity and structural stability, stemming from the intrinsic properties of MnO2 and the destabilizing effects of ion intercalation. To overcome these limitations, our research delves into atomic-level engineering, emphasizing quantum spin exchange interactions (QSEI). These essential for modifying electronic characteristics, can significantly influence material efficiency and functionality. We demonstrate through density functional theory (DFT) calculations that enhanced QSEI in manganese oxides broadens the O p band, narrows the bandgap, and improves both proton adsorption and electron transport. Empirical evidence is provided through the synthesis of Ru-MnO2 nanosheets, which display a marked increase in energy storage capacity, achieving 314.4 mAh g-1 at 0.2 A g-1 and maintaining high capacity after 2000 cycles. Our findings underscore the potential of QSEI to enhance the performance of TMO cathodes in ZIBs, pointing to new avenues for advancing battery technology.

2.
J Colloid Interface Sci ; 678(Pt C): 608-618, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39305628

RESUMEN

Unstable cathode/electrolyte interphase and severe interfacial side reaction have long been identified as the main cause for the failure of layered oxide cathode during fast charging and long-term cycling for rechargeable sodium-ion batteries. Here, we report a superionic conductor (Na3V2(PO4)3, NVP) bonding surface strategy for O3-type layered NaNi1/3Fe1/3Mn1/3O2 (NFM) cathode to suppress electrolyte corrosion and near-surface structure deconstruction, especially at high operating potential. The strong bonding affinity at the NVP/NFM contact interface stabilizes the crystal structure by inhibiting surface parasitic reactions and transition metal dissolution, thus significantly improving the phase change reversibility at high desodiation state and prolonging the lifespan of NFM cathode. Due to the high-electron-conductivity of NFM, the redox activity of NVP is also enhanced to provide additional capacity. Therefore, benefiting from the fast ion transport kinetics and electrochemical Na+-storage activity of NVP, the composite NFM@NVP electrode displays a high initial coulombic efficiency of 95.5 % at 0.1 C and excellent rate capability (100 mAh g-1 at 20 C) within high cutoff voltage of 4.2 V. The optimized cathode also delivers preeminent cyclic stability with ∼80 % capacity retention after 500 cycles at 2 C. This work sheds light on a facile and universal strategy on improving interphase stability to develop fast-charging and sustainable batteries.

3.
Natl Sci Rev ; 11(10): nwad296, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39301067

RESUMEN

Spin texture in k-space is a consequence of spin splitting due to strong spin-orbit coupling and inversion symmetry breaking. It underlies fertile spin transport phenomena and is of crucial importance for spintronics. Here, we observe the spin texture in k-space of nominally centrosymmetric SrIrO3 grown on NdGaO3 (110) substrates, using non-linear magnetotransport measurements. We demonstrate that the spin texture is not only induced by the interface, which inherently breaks the inversion symmetry in strong spin-orbit coupled SrIrO3 films, but also originates from the film bulk. Structural analysis reveals that thicker SrIrO3 films exhibit a strain gradient, which could be considered as a continuous change in the lattice constant across different layers and breaks the inversion symmetry throughout the entire SrIrO3 films, giving rise to the spin texture in k-space. First-principles calculations reveal that the strain gradient creates large spin-splitting bands, inducing the spin texture with anisotropy, which is consistent with our experimental observations. Our results offer an efficient method for inducing the spin textures in k-space.

4.
Adv Mater ; : e2409322, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300859

RESUMEN

Heterogeneous catalysts are essential for thermocatalytic CO2 hydrogenation to methanol, a key route for sustainable production of this vital platform chemical and energy carrier. The primary catalyst families studied include copper-based, indium oxide-based, and mixed zinc-zirconium oxides-based materials. Despite significant progress in their design, research is often compartmentalized, lacking a holistic overview needed to surpass current performance limits. This perspective introduces generalized design principles for catalytic materials in CO2-to-methanol conversion, illustrating how complex architectures with improved functionality can be assembled from simple components (e.g., active phases, supports, and promoters). After reviewing basic concepts in CO2-based methanol synthesis, engineering principles are explored, building in complexity from single to binary and ternary systems. As active nanostructures are complex and strongly depend on their reaction environment, recent progress in operando characterization techniques and machine learning approaches is examined. Finally, common design rules centered around symbiotic interfaces integrating acid-base and redox functions and their role in performance optimization are identified, pinpointing important future directions in catalyst design for CO2 hydrogenation to methanol.

5.
J Phys Condens Matter ; 36(50)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39270721

RESUMEN

We report on the CrFeTi2O7(CFTO) system using a combination of x-ray diffraction, dc magnetization, ac susceptibility, specific heat and neutron diffraction measurements. CFTO is seen to crystallize in a monoclinicP21/asymmetry. It shows a glassy freezing atTf∼22 K, characterized by the observation of bifurcation between ZFC and FCχ(T) curves, frequency dispersion acrossTfin ac susceptibility, and follows Vogel-Fulcher and power law type critical dynamics, very slow relaxation of iso-thermal remanent magnetization with time and a linear temperature dependence of magnetic contribution to specific heatCmbelowTf. The microscopic neutron diffraction analysis of CFTO not only confirms the absence of long-range antiferromagnetic (AFM) ordering but also exhibits diffuse scattering due to the presence of short-range ordered AFM correlated spin clusters.

6.
Chemosphere ; 364: 143280, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243899

RESUMEN

This paper addresses the influence of bubbling flow and service life of the Ti|Ti-Ru-Ir-oxides anode during the electrosynthesis of HClO in a laboratory-scale filter-press-type electrolyzer. The electrolyzer was assembled in a flow plant in recirculation mode. Polarization curves in rotating disk electrode (RDE) revealed the coexistence of the oxygen evolution reaction (OER) during HClO electrosynthesis in diluted chloride solutions (containing 35 mM NaCl at pH 3). CFD simulations of the two-phase (O2-H2O) flow were obtained by solving simultaneously the Navier-Stokes and charge conservation equations using a finite element method code. The O2-H2O simulations show the efficient gas release in the electrolyzer provoked by the continuous phase (H2O) inertia and the well-engineered cell design. The moderated O2 dispersion caused a quasi-homogeneous current distribution along the anode. However, the current efficiency during HClO electrosynthesis gave values of ∼32% provoked by the OER on the anode. The HClO accumulations (from 3.02 to 6.64 mM) showed excellent agreement with CFD simulations. The accelerated life tests revealed that the Ti | Ti-Ru-Ir-oxides anode has a lifetime of at least 26 years during the HClO electrosynthesis in diluted chloride solutions.


Asunto(s)
Electrodos , Ácido Hipocloroso , Oxígeno , Titanio , Ácido Hipocloroso/química , Titanio/química , Oxígeno/química , Óxidos/química , Electrólisis
7.
ACS Sens ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321551

RESUMEN

Disease diagnosis of Helicobacter pylori (Hp) through human exhaled breath analysis has attracted considerable attention. However, conventional methods, such as carbon 13 (13C) breath test and infrared spectrometers, are facing the challenge of achieving portability and reliability synchronously. Herein, we report a portable and hand-held Hp analyzer using a bimetallic PtRu@SnO2-based gas sensor for the prediagnosis of Hp infection, which is based on detecting ammonia (NH3) as a potential biomarker in exhaled breath. Owing to the surface functionalization through highly catalytically active bimetallic PtRu nanoparticles (NPs) prepared by a photochemical reduction strategy, the PtRu@SnO2-based sensor exhibits high sensitivity and selectivity toward trace-level (200 ppb) NH3 even at high-humidity surroundings (80% RH). Consequently, the designed portable and hand-held Hp analyzer makes the accurate determination of NH3 at 800 ppb in exhaled breath. The tuning of energy band structure and electrical characteristics and the catalytic modulation of NH3 oxidation by PtRu NPs are proposed to be the reasons behind the enhanced NH3 gas-sensing performance, as confirmed by in situ analysis using an online MKS MultiGas 2030 FTIR gas analyzer. This work paves the way for the prediagnosis of Hp infection using a metal oxide gas sensor.

8.
Micromachines (Basel) ; 15(9)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39337821

RESUMEN

Semiconducting metal oxides are widely used for solar cells, photo-catalysis, bio-active materials and gas sensors. Besides the material properties of the semiconductor being used, the specific surface topology of the sensors determines device performance. This study presents different approaches for increasing the sensing area of semiconducting metal oxide gas sensors. Micro- and nanopatterned laser-induced periodic surface structures (LIPSSs) are generated on silicon, Si/SiO2 and glass substrates. The surface morphologies of the fabricated samples are examined by FE SEM. We selected the nanostructuring and characterization of nanostructured source Ni/Au and Ti/Au films prepared on glass using laser ablation as the most suitable of the investigated approaches. Surface structures produced on glass by backside ablation provide 100 nm features with a high surface area; they are also transparent and have high resistivity. The value of the hydrogen sensitivity in the range concentrations from 100 to 500 ppm was recorded using transmittance measurements to be twice as great for the nanostructured target TiO2/Au as compared to the NiO/Au. It was found that such transparent materials present additional possibilities for producing optical gas sensors.

9.
J Colloid Interface Sci ; 678(Pt B): 763-771, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39265346

RESUMEN

The integration of ternary metal oxides into carbon materials is anticipated to significantly boost the electrochemical performance of supercapacitor electrodes. This article synthesized carbon nanotubes (CNT)/(NiMn)Co2O4 composite materials using a straightforward hydrothermal method and subsequently prepared composite thin films of CNT/P-(NiMn)Co2O4@NGQD by phosphating and incorporating nitrogen-doped graphene quantum dots (NGQD). These films served as the functional electrode material for supercapacitors, enhancing their performance capabilities. The specific capacity of CNT/P-(NiMn)Co2O4@NGQD was measured at 2172.0 F g-1 at a current density of 1 A g-1, maintaining a capacitance of 1954.0 F g-1 at 10 A g-1, thus demonstrating excellent rate performance. Electrochemical impedance spectroscopy (EIS) further revealed enhancements in electrolyte flow dynamics and capacitance behavior post-NGQD introduction. The energy density of the composite material reached 94.4 Wh kg-1 at power density of 800 W kg-1, demonstrating superior electrochemical performance. The enhancement in these electrochemical properties is attributed to the high specific surface area and active sites of CNT/P-(NiMn)Co2O4@NGQD films, along with the synergistic effects of NGQD and metal ions facilitating rapid electrons and charge transfer. This work provides new insights into developing high-performance supercapacitors.

10.
Small ; : e2407177, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291902

RESUMEN

Defect engineering is a promising approach to improve the conductivity and increase the active sites of transition metal oxides used as catalysts for the oxygen evolution reaction (OER). However, when metal defects and oxygen defects coexist closely within the same crystal, their compensating charges can diminish the benefits of both defect structures on the catalyst's local electronic structure. To address this limitation, a novel strategy that employs the heterostructure interface of ZnFe2O4-NiCo2O4 to spatially separate the metal defects from the oxygen defects is proposed. This configuration positions the two types of defects on opposite sides of the heterojunction interface, creating a unique structure termed the "metal-defect/oxygen-defect junction". Physical characterization and simulations reveal that this configuration enhances electron transfer at the heterostructure interface, increases the oxidation state of Fe on the catalyst surface, and boosts bulk charge carrier concentration. These improvements enhance active site performance, facilitating hydroxyl adsorption and deprotonation, thereby reducing the overpotential required for the OER.

11.
Nano Lett ; 24(33): 10251-10257, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39133560

RESUMEN

Charge-spin interconversion processes underpin the generation of spin-orbit torques in magnetic/nonmagnetic bilayers. However, efficient sources of spin currents such as 5d metals are also efficient spin sinks, resulting in a large increase of magnetic damping. Here we show that a partially oxidized 3d metal can generate a strong orbital torque without a significant increase in damping. Measurements of the torque efficiency ξ and Gilbert damping α in CoFe/CuOx and CoFe/Pt indicate that ξ is comparable in the two systems. The increase in damping relative to a single CoFe layer is Δα < 0.002 in CoFe/CuOx and Δα ≈ 0.005-0.02 in CoFe/Pt, depending on CoFe thickness. We ascribe the nonreciprocal relationship between Δα and ξ in CoFe/CuOx to the small orbital-spin current ratio generated by magnetic resonance in CoFe and the lack of an efficient spin sink in CuOx. Our findings provide new perspectives on the efficient excitation of magnetization dynamics via the orbital torque.

12.
Mikrochim Acta ; 191(9): 542, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153097

RESUMEN

As an ideal transition metal oxide, Co3O4 is a P-type semiconductor with excellent electrical conductivity, non-toxicity and low cost. This work reports the successful construction of Co3O4 materials derived from metal-organic frameworks (MOFs) using a surfactant micelle template-solvothermal method. The modified electrodes are investigated for their ability to electrochemically detect Pb2+ and Cu2+ in aqueous environments. By adjusting the mass ratios of alkaline modifiers, the morphological microstructures of Co3O4-X exhibit a transition from distinctive microspheres composed of fiber stacks to rods. The results indicate that Co3O4-1(NH4F/CO(NH2)2 = 1:0) has a distinctive microsphere structure composed of stacked fibers, unlike the other two materials. Co3O4-1/GCE is used as the active material of the modified electrode, it shows the largest peak response currents to Pb2+ and Cu2+, and efficiently detects Pb2+ and Cu2+ in the aqueous environment individually and simultaneously. The linear response range of Co3O4-1/GCE for the simultaneous detection of Pb2+ and Cu2+ is 0.5-1.5 µM, with the limits of detection (LOD, S/N = 3) are 9.77 nM and 14.97 nM, respectively. The material exhibits a favorable electrochemical response, via a distinctive Co3O4-1 microsphere structure composed of stacked fibers. This structure enhances the number of active adsorption sites on the material, thereby facilitating the adsorption of heavy metal ions (HMIs). The presence of oxygen vacancies (OV) can also facilitate the adsorption of ions. The Co3O4-1/GCE electrode also exhibits excellent anti-interference ability, stability, and repeatability. This is of great practical significance for detecting Pb2+ and Cu2+ in real water samples and provides a new approach for developing high-performance metal oxide electrochemical sensors derived from MOFs.

13.
ACS Appl Mater Interfaces ; 16(35): 46461-46472, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39163521

RESUMEN

We develop a framework for controlling and investigating reversible ionic transfer between two solid metal oxides layers by examining field-driven changes in electrical properties of the thin film bilayer oxide system Pr0.1Ce0.9O2/La1.85Ce0.15CuO4 (PCO/LCCO). We show that we can reversibly redistribute oxygen ions by applied voltage in a highly controlled and reversible fashion near ambient temperatures over large oxygen ion activity limits, which, for the first time, is directly interpretable by defect chemical models. This allowed us to determine how defect concentrations in each layer systematically varied with voltage and the subsequent impact on each film's conductance. These results showcase the relevance and applicability of defect chemical models, traditionally considered only at elevated temperatures, to the development of bilayer devices of importance to neuromorphic memory applications. This allows for a more systematic approach for studying and understanding the solid-solid exchange process in electrochemically controlled microelectronic devices. Moreover, our work sets the foundation for the development of large-area field-driven defect-controlled bilayer switching devices with potential application to a broad array of functionally modulated devices.

14.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39126084

RESUMEN

Nowadays, owing to the new technological and industrial requirements for equipment, such as flexibility or multifunctionally, the development of all-solid-state supercapacitors and Li-ion batteries has become a goal for researchers. For these purposes, the composite material approach has been widely proposed due to the promising features of woven carbon fiber as a substrate material for this type of material. Carbon fiber displays excellent mechanical properties, flexibility, and high electrical conductivity, allowing it to act as a substrate and a collector at the same time. However, carbon fiber's energy-storage capability is limited. Several coatings have been proposed for this, with nanostructured transition metal oxides being one of the most popular due to their high theoretical capacity and surface area. In this overview, the main techniques used to achieve these coatings-such as solvothermal synthesis, MOF-derived obtention, and electrochemical deposition-are summarized, as well as the main strategies for alleviating the low electrical conductivity of transition metal oxides, which is the main drawback of these materials.


Asunto(s)
Fibra de Carbono , Capacidad Eléctrica , Suministros de Energía Eléctrica , Electrodos , Litio , Nanoestructuras , Óxidos , Litio/química , Fibra de Carbono/química , Óxidos/química , Nanoestructuras/química , Elementos de Transición/química , Conductividad Eléctrica , Metales/química
15.
Nano Lett ; 24(32): 9793-9800, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087649

RESUMEN

O3-type layered oxides have been extensively studied as cathode materials for sodium-ion batteries due to their high reversible capacity and high initial sodium content, but they suffer from complex phase transitions and an unstable structure during sodium intercalation/deintercalation. Herein, we synthesize a high-entropy O3-type layered transition metal oxide, NaNi0.3Cu0.05Fe0.1Mn0.3Mg0.05Ti0.2O2 (NCFMMT), by simultaneously doping Cu, Mg, and Ti into its transition metal layers, which greatly increase structural entropy, thereby reducing formation energy and enhancing structural stability. The high-entropy NCFMMT cathode exhibits significantly improved cycling stability (capacity retention of 81.4% at 1C after 250 cycles and 86.8% at 5C after 500 cycles) compared to pristine NaNi0.3Fe0.4Mn0.3O2 (71% after 100 cycles at 1C), as well as remarkable air stability. Finally, the NCFMMT//hard carbon full-cell batteries deliver a high initial capacity of 103 mAh g-1 at 1C, with 83.8 mAh g-1 maintained after 300 cycles (capacity retention of 81.4%).

16.
J Colloid Interface Sci ; 678(Pt A): 186-200, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39186898

RESUMEN

Peroxymonosulfate (PMS) based on heterogeneous catalytic reaction was a promising advanced oxidation process (AOP) to remove refractory contaminants. However, the contaminant degradation efficiency was challenged by the limited number of catalytic active site and low capacity for durable electron transfer. In this study, cobalt-doped manganese-iron oxides (CoxMn1-xFe2O4) rich in oxygen vacancy (Ov) were synthesized using a microwaved hydrothermal method and applied to activate PMS for bisphenol A (BPA) degradation, which achieved the complete removal of BPA within 30 min. In all samples, Co0.5Mn0.5Fe2O4 exhibited good catalytic activity for PMS, which was approximately 21.10 times higher than that of MnFe2O4. The results of density functional theory calculations and in-situ characterization demonstrated that the enhanced performance was ascribed to the generation of Ov and the enrichment of active site, which significantly accelerated the cycling of redox pairs and improved the PMS adsorption, which was more favorable to the formation of active specie in the electron transport process. The oxidation process involved both free radical and non-radical mechanisms, with main reactive species of O2-, and 1O2 being responsible for BPA degradation. In addition, the effects of different aqueous matrices, the results of reusability experiments, and ecotoxicity assessment experiments demonstrated the viability of the Co0.5Mn0.5Fe2O4/PMS system for real sewage purification. This research revealed a structural regulation method to enhance the catalytic activity of the material and offered new perspectives on the engineering of rich Ov.

17.
Molecules ; 29(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39202896

RESUMEN

Efficient hydrogen storage and transportation are crucial for the sustainable development of human society. Ammonia, with a hydrogen storage density of up to 17.6 wt%, is considered an ideal energy carrier for large-scale hydrogen storage and has great potential for development and application in the "hydrogen economy". However, achieving ammonia decomposition to hydrogen under mild conditions is challenging, and therefore, the development of suitable catalysts is essential. Metal oxide-based catalysts are commonly used in the industry. This paper presents a comprehensive review of single and composite metal oxide catalysts for ammonia decomposition catalysis. The focus is on analyzing the conformational relationships and interactions between metal oxide carriers and active metal sites. The aim is to develop new and efficient metal oxide-based catalysts for large-scale green ammonia decomposition.

18.
Molecules ; 29(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39202992

RESUMEN

Transition metal oxides (TMOs) are important anode materials in sodium-ion batteries (SIBs) due to their high theoretical capacities, abundant resources, and cost-effectiveness. However, issues such as the low conductivity and large volume variation of TMO bulk materials during the cycling process result in poor electrochemical performance. Nanosizing and compositing with carbon materials are two effective strategies to overcome these issues. In this study, spherical MnFe2O4@xC nanocomposites composed of MnFe2O4 inner cores and tunable carbon shell thicknesses were successfully prepared and utilized as anode materials for SIBs. It was found that the property of the carbon shell plays a crucial role in tuning the electrochemical performance of MnFe2O4@xC nanocomposites and an appropriate carbon shell thickness (content) leads to the optimal battery performance. Thus, compared to MnFe2O4@1C and MnFe2O4@8C, MnFe2O4@4C nanocomposite exhibits optimal electrochemical performance by releasing a reversible specific capacity of around 308 mAh·g-1 at 0.1 A·g-1 with 93% capacity retention after 100 cycles, 250 mAh·g-1 at 1.0 A g-1 with 73% capacity retention after 300 cycles in a half cell, and around 111 mAh·g-1 at 1.0 C when coupled with a Na3V2(PO4)3 (NVP) cathode in a full SIB cell.

19.
Heliyon ; 10(14): e34435, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39104481

RESUMEN

Metal oxides as catalysts alter the properties of the pyrolysis vapor secondary reactions during the thermal decomposition of several biomass leading to high-value bio-oils. This study aimed to investigate the thermal decomposition characteristics of Canarium Schweinfurthii (CS) shells that were treated with various metal oxides (ZnO, CuO, Fe2O3/FeO, and Fe2O3) using pyrolysis. The study also sought to identify pyrolysis reaction parameters (kinetics and thermodynamics parameters) that are not widely documented. Thermogravimetric pyrolysis was carried out at different heating rates, and the undocumented pyrolysis kinetic parameters were determined using the Flynn-Wall Ozawa method (FWO) according to American Standard Testing and Materials (ASTM) 6441 guidelines for assessing biomass decomposition. The metal oxide-treated CS shells lost significant weight between 62 and 67 wt% during the thermogravimetric pyrolysis, lower than 75 wt% of the CS shell. The average activation energies (Eα) for pyrolysis of the ZnO, CuO, Fe2O3/FeO, and Fe2O3 treated CS shells were 203.04, 155.35, 338.85, and 219.92 kJ/mol, respectively in contrast to that of the untreated CS-shell. The Bayesian Information Criteria revealed that the diffusion kinetics of the Gistling-Brounshtein model best describes the pyrolysis of the shell mixed with metal oxides. The metal oxides affected the CS shells' pyrolysis kinetic parameter (Eα), which can promote pyrolysis vapor upgrading to encourage the widespread use of metal oxides in pyrolysis for bioenergy and chemical recovery.

20.
J Colloid Interface Sci ; 677(Pt B): 49-58, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39137562

RESUMEN

To improve the electrochemical performance of positive electrode materials, constructing graded nanostructures is a worthwhile approach. This study successfully synthesized nitrogen-doped graphene quantum dots (NGQD) modified (Ni0.5Co0.5)3V2O8 on a carbon nanotube (CNT) substrate to construct self-supporting electrodes for high-performance supercapacitors. The (Ni0.5Co0.5)3V2O8 nanosheets were successfully wrapped onto the CNT surface through a solution impregnation process, which increased the specific surface area and interlayer spacing of the material. Furthermore, the electrochemical properties of the electrode material underwent significant enhancement due to the synergistic interplay between metal ions and the numerous redox centers. The embedding of the NGQD enriched the materials with active sites and further improved its specific capacity without compromising the structure intergrity of the layer configuration. Using CNT as the substrate ensured the self-supporting nature of the electrode. Consequently, the (Ni0.5Co0.5)3V2O8/NGQD@CNT composite exhibits an ultra-high specific capacitance of 3018.2 F g-1 at 1 A g-1 and 2332 F g-1 at 10 A g-1. The asymmetric supercapacitor constructed with (Ni0.5Co0.5)3V2O8/NGQD@CNT and activated carbon (AC) presented an impressive energy density of 160.2 Wh kg-1 at a power density of 800 W kg-1. After 8000 charge-discharge cycles, the capacity retention rate was 78.5 %, with a Coulo mbic efficiency consistently above 98 %.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...