Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.155
Filtrar
1.
J Environ Sci (China) ; 147: 487-497, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003064

RESUMEN

Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate (PMS) activation, however, neither Cu(II) nor Fe(III) shows efficient catalytic performance because of the slow rates of Cu(II)/Cu(I) and Fe(III)/Fe(II) cycles. Innovatively, we observed a significant enhancement on the degradation of organic contaminants when Cu(II) and Fe(III) were coupled to activate PMS in borate (BA) buffer. The degradation efficiency of Rhodamine B (RhB, 20 µmol/L) reached up to 96.3% within 10 min, which was higher than the sum of individual Cu(II)- and Fe(III)- activated PMS process. Sulfate radical, hydroxyl radical and high-valent metal ions (i.e., Cu(III) and Fe(IV)) were identified as the working reactive species for RhB removal in Cu(II)/Fe(III)/PMS/BA system, while the last played a predominated role. The presence of BA dramatically facilitated the reduction of Cu(II) to Cu(I) via chelating with Cu(II) followed by Fe(III) reduction by Cu(I), resulting in enhanced PMS activation by Cu(I) and Fe(II) as well as accelerated generation of reactive species. Additionally, the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(II) and Fe(III). In a word, this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.


Asunto(s)
Cobre , Peróxidos , Contaminantes Químicos del Agua , Cobre/química , Contaminantes Químicos del Agua/química , Peróxidos/química , Catálisis , Hierro/química , Rodaminas/química , Oxidación-Reducción
2.
J Environ Sci (China) ; 148: 230-242, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095160

RESUMEN

Fish constitutes the main protein source for the Amazonian population. However, the impact of different anthropogenic activities on trace element and metal accumulation in fish and their risks for human health at a regional scale remain largely unexplored. Here we assessed exposure levels of 10 trace elements and metals (Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Pb, and Hg) in 56 samples belonging to 11 different species of fish from the Brazilian Amazon. We studied the relationship between exposure levels, fish origin, and fish feeding habits, and assessed toxicological and carcinogenic risks for the Amazonian population. No significant correlation was found between sampling site and exposure levels to the studied elements, but a significant difference was found between the accumulation of some metals and the position of the fish species in the food chain. The concentrations of Cr and Hg in fish flesh were found to exceed the Brazilian limits for human consumption. This study shows that current fish consumption patterns can lead to estimated daily intakes of Hg, As and Cr that exceed the oral reference dose, thus posing a toxicological concern. Furthermore, carcinogenic risks may be expected due to the continued exposure to Cr and As. The results of this study show that the consumption of wild caught fish in the Amazon region should be controlled. Moreover, continued monitoring of trace element and metal contamination in fish and on the health of the Amazonian population is recommended, particularly for riverine and indigenous communities.


Asunto(s)
Peces , Contaminación de Alimentos , Metales , Oligoelementos , Contaminantes Químicos del Agua , Animales , Brasil , Humanos , Contaminantes Químicos del Agua/análisis , Oligoelementos/análisis , Contaminación de Alimentos/análisis , Medición de Riesgo , Metales/análisis , Monitoreo del Ambiente
3.
J Environ Sci (China) ; 149: 1-20, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181626

RESUMEN

Controlling heavy metal pollution in agricultural soil has been a significant challenge. These heavy metals seriously threaten the surrounding ecological environment and human health. The effective assessment and remediation of heavy metals in agricultural soils are crucial. These two aspects support each other, forming a close and complete decision-making chain. Therefore, this review systematically summarizes the distribution characteristics of soil heavy metal pollution, the correlation between soil and crop heavy metal contents, the presence pattern and migration and transformation mode of heavy metals in the soil-crop system. The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined, which provides important guidance for an in-depth understanding of the characteristics of heavy metal pollution in farmland soils and the assessment of the environmental risk. Soil remediation strategies involve multiple physical, chemical, biological and even combined technologies, and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils. Finally, the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected. This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Restauración y Remediación Ambiental/métodos , Agricultura/métodos , Medición de Riesgo , Suelo/química , Contaminación Ambiental
4.
Sci Total Environ ; 952: 175950, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218098

RESUMEN

Information on the emission of coal combustion-sourced magnetite nanoparticles (MNPs) is lacking, which is critical for their health-related risks. In this study, MNPs in coal fly ashes (CFAs) from various coal-fired power plants (CFPPs) in China equipped with various dust removal devices were extracted and quantified using single particle ICP-MS. The number concentrations of MNPs in CFAs captured by dust removal increased with stage, while their size decreased. Among all the dust removal devices, electrostatic-fabric-integrated precipitators showed the best removal of MNPs. Furthermore, throughout all the coal combustion by-products in a typical CFPP, MNPs in EFA (fly ash escaped from the stack) showed the highest number concentration (1.2 × 107 particles/mg) and lowest size (78 nm). Although the mass of CFA escaping through the stack is extremely low, it still had an emission rate of 1.9 × 1015 particles/h, contributing 3.56 % of the total emissions of MNPs in number. In addition, the purity of MNPs and their associated toxic metals showed a size-dependent variation pattern. As the particle size of MNPs decreased, the proportion of Fe in MNPs increased from 43 % in bottom ash (BA) to 84 % in EFA, while the abundance of trace toxic metals in EFA was 3.3 times higher than that of BA. These MNPs with the highest purity can adsorb elevated concentrations of toxic metals, and can be discharged directly into the atmosphere, posing a risk of synergistic toxicity.

5.
Toxicol Rep ; 13: 101708, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39224457

RESUMEN

Exposure to air pollution poses significant risks to human health, including detrimental effects on the reproductive system, affecting both men and women. Our prospective clinical study aimed to assess the impact of prolonged air pollution exposure on sperm quality in male patients attending a fertility clinic. The current study was conducted at Sri Narayani Hospital and Research Centre in Vellore, Tamil Nadu, India, and the study examined sperm samples obtained from individuals with extended exposure to air pollution. Microscopic analysis, including scanning electron microscopy (SEM), was conducted to evaluate sperm morphology. At the same time, atomic absorption spectroscopy (AAS) determined the presence of heavy metals, including Zinc (Zn), Magnesium (Mg), Lead (Pb) and Cadmium (Cd), known to affect sperm production. Our findings revealed that long-term exposure to air pollution adversely affects sperm quality, manifesting in alterations during the spermatogenesis cycle, morphological abnormalities observed through SEM, and impaired sperm motility. Additionally, epidemiological evidence suggests that elevated levels of cadmium and lead in the environment induce oxidative stress, leading to sperm DNA damage and reduced sperm concentrations. These results underscore the urgent need for environmental interventions to mitigate air pollution and protect reproductive health.

6.
Environ Geochem Health ; 46(10): 414, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230752

RESUMEN

Angqu, positioned in the eastern expanse of the Tibet Plateau, claims the title of the largest tributary to the Lancang River. In October and December of 2018, in the sediment of Angqu, a comprehensive investigation was conducted on nine heavy metals-arsenic (As), manganese (Mn), chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), copper (Cu), zinc (Zn), and nickel (Ni). This investigation aimed to scrutinize the spatial and temporal distribution patterns of these metals, assess the pollution status and ecological risks associated with the sediments, and delve into the sources contributing to their presence. The research results indicate that the average concentrations of As, Hg, and Cd in Angqu sediments exceed the soil background values of Tibet, while the concentrations of other heavy metals are below the soil background values of Tibet. Notably, arsenic poses potential ecological risks. In Angqu sediments, the concentrations of Mn, Cu, Ni, and Pb are generally higher in the wet season, but the seasonal variations of heavy metals in Angqu sediments are not significant. The sediments in the Angqu Basin are predominantly affected by mercury Hg, Cd, and As, with varying degrees of pollution at different sampling points. In the main stream of Angqu (City section), Hg pollution has reached above a moderate level, whereas As pollution near the tributary is only slightly polluted. The analysis of heavy metal sources reveals that there are five primary contributors to heavy metals in surface sediments of Angqu: parent material, agricultural activities, groundwater, atmospheric deposition, and other unidentified sources. Mn, Cr, Pb, and Ni are mainly derived from soil parent material, accounting for more than 50%. About 60.82% of As comes primarily from groundwater. Zn and Cd are mainly sourced from agricultural activities, accounting for 41.25% and 34.33%, respectively. Additionally, 20.6% of Hg originates from atmospheric deposition.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados , Ríos , Contaminantes Químicos del Agua , Metales Pesados/análisis , Sedimentos Geológicos/química , Medición de Riesgo , Tibet , Contaminantes Químicos del Agua/análisis , Ríos/química , Monitoreo del Ambiente/métodos
7.
AIMS Microbiol ; 10(3): 674-693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219755

RESUMEN

Climate change enhances stress in food crops. Recently, abiotic stress such as metalloid toxicity, salinity, and drought have increased in food crops. Mycorrhizal fungi can accumulate several nutrients within their hyphae through a symbiotic relationship and release them to cells in the root of the food crops under stress conditions. We have studied arbuscular mycorrhizal fungi (AMF)-enriched biofertilizers as a climate-smart technology option to increase safe and healthy food production under abiotic stress. AMF such as Glomus sp., Rhizophagus sp., Acaulospora morrowiae, Paraglomus occultum, Funneliformis mosseae, and Claroideoglomus etunicatum enhance growth and yield in food crops grown in soils under abiotic stress. AMF also works as a bioremediation material in food crops grown in soil. More precisely, the arsenic concentrations in grains decrease by 57% with AMF application. In addition, AMF increases mineral contents, and antioxidant activities under drought and salinity stress in food crops. Catalase (CAT) and ascorbate peroxidase (APX) increased by 45% and 70% in AMF-treated plants under drought stress. AMF-enriched biofertilizers are used in crop fields like precision agriculture to reduce the demand for chemical fertilizers. Subsequently, AMF-enriched climate-smart biofertilizers increase nutritional quality by reducing abiotic stress in food crops grown in soils. Consequently, a climate resilience environment might be developed using AMF-enriched biofertilizers for sustainable livelihood.

8.
Environ Res ; : 119878, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222734

RESUMEN

Sodium alginate (SA) emerges as a promising adsorbent for the remediation of heavy metal-polluted wastewater. However, the systematic investigations on how and the extent to which the various compositions in real water matrices impact its performance were essential but rare when considering its use. Here, we explored the effect of common environmental factors on Cu(II) adsorption by an as-synthesized SA-based hydrogel (SAH). The result showed that high concentration of organics (above 10 mg·L-1) had a negative influence on heavy metal removal (decreased by 9.45 % at least), while inorganic ion, turbidity and antibiotics at relatively low concentrations exhibited a negligible even promoting effect (increased by 9.8 % with the presence of 5 mg·L-1 Nor). Based on above results and corresponding mechanism analyses, the possible applicable and unsuitable scenarios of SAH can be predicted. SAH could be a great candidate for treating heavy metal-polluted water such as river and lake water, while it is not a good option for electroplating or livestock wastewater which contains high concentration of organic matters. Besides, the operating conditions including pH (5.0 for Cu(II), 6.0 for Ni(II)), contact time (24 h), temperature (298 K), et al. were also determined. Overall, this work provides theoretical guidance and operational strategies for promoting the practical application of SA adsorbent in water treatment.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39223079

RESUMEN

Correlated transparent conducting oxides (TCOs) have gained great attention, because of their unique combination of transparency and metallic character. SrVO3 (SVO) was identified as a high-performance TCO in the visible range. Few studies have investigated band structure engineering through chemical doping to enhance the optical properties of SVO. Here, we use two different strategies by exploiting the band-filling and width of the bands derived from Vanadium to tune the screened plasma frequency ωp* and the interband transition Ep-d energy, corresponding to the optical transparency window edges. For control of the band-filling strategy, it is found that Titanium doped SVO has a wide transparency window, but such a composition does not maintain the high electrical conductivity required for TCO applications. Concerning the bandwidth strategy, the doping of SrVO3 by Calcium shows that ωp* remains located in the IR range (1.12 eV), while Ep-d is blue-shifted into the UV region (3.43 eV) due to reinforced electronic correlations. By an appropriate choice of dopant, we successfully increased the size of the transparency window by around 11% from 1.94 eV (SVO) to 2.30 eV (Calcium-doped SVO), while retaining high conductivity of around 2.30 × 104 (S·cm-1) and high charge carrier density of 2.93 × 1022 cm-3.

10.
ACS Nano ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223090

RESUMEN

Phosphates within tumors function as key biomolecules, playing a significant role in sustaining the viability of tumors. To disturb the homeostasis of cancer cells, regulating phosphate within the organism proves to be an effective strategy. Herein, we report single-atom Ce-doped Pt hydrides (Ce/Pt-H) with high phosphatase-like activity for phosphate hydrolysis. The resultant Ce/Pt-H exhibits a 26.90- and 6.25-fold increase in phosphatase-like activity in comparison to Ce/Pt and Pt-H, respectively. Mechanism investigations elucidate that the Ce Lewis acid site facilitates the coordination with phosphate groups, while the surface hydrides enhance the electron density of Pt for promoting catalytic ability in H2O cleavage and subsequent nucleophilic attack of hydroxyl groups. Finally, by leveraging its phosphatase-like activity, Ce/Pt-H can effectively regulate intracellular phosphates to disrupt redox homeostasis and amplify oxidative stress within cancer cells, ultimately leading to tumor apoptosis. This work provides fresh insights into noble-metal-based phosphatase mimics for inducing tumor apoptosis.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39223413

RESUMEN

Lithium (Li) exploitation promotes socioeconomic advances but may result in harmful environmental impacts. Thus, species selection for recovering environments degraded by Li mining is essential. We investigated the tolerance and early growth of four tree species to Li ore tailings (LOT), Enterolobium contortisiliquum and Handroanthus impetiginosus with wide geographic distribution and Hymenaea courbaril and H. stigonocarpa with restricted geographic distribution. The plants grew in LOT and soil for 255 days to evaluate photosynthesis, growth, and mineral nutrition. LOT negatively affected species growth, reducing the length of stems, roots, and biomass through structural and nutritional impoverishment. LOT favored the accumulation of Mg and decreased the absorption of K. The species presented a reduction in potential quantum efficiency and the chlorophyll index (b and total). E. contortisiliquum was the least tolerant species to LOT, and H. courbaril and H. stigonocarpa maintained their mass production in LOT, indicating greater tolerance to tailings. Furthermore, H. courbaril presented a translocation factor > 1 for Li and Mn, indicating the potential for phytoextraction of these metals. Our results offer first-time insights into the impacts of LOT on the early development of tree species with different geographic distribution ranges. This study may help in the tree species selection with a phytoremediation role, aiming at the recovery of areas affected by Li's mining activity.

12.
Environ Geochem Health ; 46(10): 411, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222283

RESUMEN

The increase in heavy metal concentration in water bodies due to rapid industrial and socio-economic development significantly threatens ecological and human health. This study evaluated metal pollution and related risks to ecology and human health in the Maroon-Jarahi river sub-basin in the Persian Gulf and Oman Sea basin, southwest Iran, using various indicators. A total of 70 water samples were taken from the sampling sites in the Maroon, Allah, and Jarahi sub-basins and analyzed for nine heavy metals. According to the results, the mean concentration of metals in the sampling locations across the entire sub-basin of Maroon-Jarahi was observed as follows Iron (528.22 µg/L), zinc (292.62 µg/L), manganese (56.47 µg/L), copper (36.23 µg/L), chromium (11.78 µg/L), arsenic (7.09 µg/L), lead (3.43 µg/L), nickel (3.23 µg/L), and cadmium (1.38 µg/L). Most of the metals were detected at the highest concentration in the sub-basin of the Jarahi River. The Water Quality Index (WQI) index in the basin varied from 18.74 to 22.88, indicating well to excellent quality. However, the investigation of the pollution status at the monitoring stations, based on the classification of Degree of Contamination (CD) and Heavy Metal Pollution Index (HPI) indices, revealed that they are in the category of relatively high pollution (16 < CD < 32) to very high (32 ≤ CD), and in the low pollution category (HPI < 15) to high pollution (HPI < 30), respectively. According to the three sub-basins, the highest amount of WQI, HPI, and Cd was observed in the stations located in the sub-basins of the Jarahi River. The calculation of Heavy Metal Evaluation Index (HEI) also indicated that only 10% of the monitoring stations are in moderate pollution (10 < HEI < 20), while in other monitoring stations the HEI level is less than 10. The Potential ecological risk factors ( E r i ) of an individual metal was obtained as follows: Cd (173.70) > As (131.99) > Zn (57.52) > Cu (55.39) > Ni (48.98) > Cr (21.57) > Pb (0.71), revealing that Cd and As are the main elements responsible for creating ecological risk in the studied area. The Maroon-Jarahi watershed included areas with ecological risks that ranged from low (PERI ≤ 150) to very high (PERI ≥ 600). HI and ILCR health indicators indicated that consumption and long-term contact with river water in the study area can cause potential risks to human health, especially children. Moreover, the findings, the highest level of pollution and health risk for both children and adults, considering both exposure routes, occurred in the Jarahi River sub-basin, suggesting that those who live in the vicinity of the Jarahi River are likely to face more adverse health effects. In addition, the findings of the evaluation of the relationship between land use patterns and water quality in the studied basin showed that agricultural lands acts as a main source of pollutants, but forest lands play an important role in the deposition of pollutants and the protection of water quality at the basin scale. In general, the results of pollution indicators, risk assessment, and statistical techniques suggest that the lower sub-basin, the Jarahi area, and the Shadegan wetland are the most polluted areas in the investigated sub-basin due to excessive discharge of agricultural runoff, industrialization, and rapid urbanization. Thus, special measures should be considered to reduce the risks of HMs pollution in the sub-basin of the Maroon-Jarahi watershed, especially its downstream and the impact of agricultural land use on water quality should be taken into consideration in basin management plans.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Irán , Medición de Riesgo , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , Humanos , Océano Índico , Ríos/química
13.
Nano Lett ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225553

RESUMEN

Beyond noble metals and semiconductors, quasi-metals have recently been shown to be noteworthy substrates for surface enhanced Raman spectroscopy, and their excellent quasi-metal surface-enhanced Raman spectroscopy (SERS) sensing has demonstrated a wider range of application scenarios. However, the underlying mechanism behind the enhanced Raman activity is still unclear. Here, we demonstrate that surface hydroxyls play a crucial role in the enhancement of the SERS activity of quasi-metal nanostructures. As a demonstration material, quasi-metallic MoO2 single-crystal frameworks rich in surface hydroxyls have been shown to have 100 times higher SERS activity than MoO2 single-crystal frameworks without hydroxyl functionalization, with a Raman enhancement factor of up to 7.6 × 107. Experimental and first-principles density-functional theory calculation results show that the enhanced Raman activity can be attributed to an effective interfacial charge transfer within the MoO2/OH/molecule system.

14.
Bull Environ Contam Toxicol ; 113(3): 36, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225850

RESUMEN

The massive influx of Sargassum natans and S. fluitans to the shores of the Mexican Caribbean has raised concerns regarding their potential impact on soil quality and health in coastal and agroecosystems. The effects of Sargassum accumulation remain largely unexplored. This study aimed to assess the impact of Sargassum on soil ecosystems by examining the behavior and survival of the epigean earthworm Eisenia fetida. The earthworm was exposed to varying concentrations of Sargassum (0, 25, 50, 75, and 100%) in two toxicological tests. Results from the avoidance test demonstrated that E. fetida exhibited strong aversion (> 80%) to a diet containing 100% Sargassum. Conversely, the acute test revealed minimal mortality, but growth decreased with increasing Sargassum concentrations. These findings can serve as early warning bioindicators for assessing the environmental risk posed by Sargassum in soil ecosystems.


Asunto(s)
Oligoquetos , Sargassum , Contaminantes del Suelo , Animales , Oligoquetos/fisiología , Oligoquetos/efectos de los fármacos , Sargassum/fisiología , Contaminantes del Suelo/toxicidad , Suelo/química , Conducta Animal/efectos de los fármacos , México , Monitoreo del Ambiente
15.
Mar Pollut Bull ; 207: 116929, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236489

RESUMEN

Coastlines are susceptible to plastic and heavy metal pollution, which can accumulate from both marine and terrestrial sources. Shorebirds, top-level predators in these fragile ecosystems are considered as indicators of environmental health. Here, we tested the occurrence of microplastics and heavy metals in the droppings of ten regular wintering migrant shorebird species in Kadalundi-Vallikkunnu Community Reserve and adjoining sand beaches during November, December and January, each year, between 2019 and 2021. Heavy metals were analysed by Flame Atomic Absorption Spectrophotometer and the microplastic polymer compositions were identified using ATR-FTIR spectroscopy. We detected high concentrations of heavy metals such as Zinc, Copper, Cobalt, Chromium, Lead and Cadmium in droppings. Polyethylene, Polypropylene, Polystyrene, Poly Vinyl Chloride, Nitrile and Polyethylene terephthalate were the polymers identified. Polystyrene (42.6 %) and chromium (ranges between 7.83 and 88.45 mg/kg) were found to be the most abundant contaminants in most of the species.

16.
Sci Rep ; 14(1): 20661, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237603

RESUMEN

Considering the toxicological effects of some heavy metals (HMs) in which directly related to mortality and carcinogenicity in the population by their entrance from plants through livestock grazing, and medical skin cream, the rehabilitation of contaminated sites through phytoremediation by native plants might be quite challenging. Diplotaenia damavandica Mozaff. ex-Hedge & Lamond, is used as medical skin creams due to the existence of specific ingredients, which can be effective in treating skin disease. In the present study, the plant and associated soil sampling were performed around the boundary of D. damavandica. The concentration was measured using the Inductively coupled plasma mass spectrometry (ICP-MS). The results revealed the effect of existing endemic plants on reducing the average concentration of lead and zinc in soil by 40 and 60%, respectively, due to phytoremediation. EDX confirmed the presence of Pb and Zn in root and shoot tissues. Based on the results of this study, D. damavandica is an endemic perennial herbaceous plant with 60% biomass and prosperous root systems, which can grow in low contaminated areas of Pb in the southeast of Damavand Mt. Hence, the HMs pattern indicated less often in the aerial parts except for lead, which should be examined more carefully for skin cream uses.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Metales Pesados/análisis , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Irán , Suelo/química , Plomo/toxicidad , Plomo/análisis , Plomo/metabolismo , Humanos , Zinc/análisis , Zinc/metabolismo , Zinc/toxicidad , Monitoreo del Ambiente/métodos , Raíces de Plantas/metabolismo , Raíces de Plantas/química
17.
Front Microbiol ; 15: 1457909, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238890

RESUMEN

Optimizing the fermentation process of microorganisms with exceptional bioflocculant-producing capabilities is crucial for the production of bioflocculants. The application of bioflocculants to various pollutants highlights their significant advantages in water treatment. Therefore, the culture conditions of Bacillus subtilis 35A with exceptional bioflocculant-producing capabilities were optimized. The bioflocculant (MBF) was obtained by alcohol percipitation from the fermentation supernatant, and its physicochemical properties were analyzed to explore its application in the treatment of dyes, heavy metal ions, and organic wastewater. The results indicate that, using cyclodextrin and yeast extract as carbon and nitrogen sources, after 48 h of fermentation at the initial pH, the bioflocculant (MBF-35A) yielded 10.47 g/L with a flocculation rate of 96.57% for kaolin suspension. The chemical analysis demonstrated that MBF-35A is mainly composed of polysaccharide (81.74%) and protein (16.42%). FITR and XPS analysis indicated that MBF-35A mainly contains major elements such as carbon, nitrogen, and oxygen, with functional groups (-OH, C-O, C-H, and C-O-C) that are beneficial for flocculation. MBF-35A exhibited a dye decolorization efficiency exceeding 95% and removed 41.05 and 48.93% of Cr6+ and Cu2+ ions, respectively. In meat wastewater treatment, the effective removal rates of ammonia nitrogen (26.87%), COD (51.16%), total nitrogen (37.76%), and total phosphorus (55.81%) highlight its potential in organic waste treatment. In brief, not only does MBF-35A exhibit efficient production and excellent flocculation performance as a bioflocculant, but it also shows significant biological and environmental benefits in dye, heavy metal ions, and organic wastewater treatment.

18.
Environ Monit Assess ; 196(10): 902, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240423

RESUMEN

The extraction of copper and cobalt from mines has led to the contamination of agricultural soils by trace metal elements (TMEs) (e.g. Cu: 204 to 1355 mg/kg). The mining industry is one of the sources of metal discharges into the environment, contributing to water, soil, and air contamination and causing metabolic disorders in the inhabitants of the city of Lubumbashi (R.D. Congo). This study assessed the effectiveness of organocalcareous soil improvers applied to TME-contaminated soils to reduce their transfer to plants. Following a factorial design, increasing doses of organic soil improvers (chicken droppings and sawdust) and agricultural lime were applied to the soils of three market gardens (high, medium, and low Cu contamination). The experiment was monitored for 60 days. Soil physicochemical properties (pH, TOC, and total and available copper, cobalt, lead, cadmium, and zinc (mg/kg)) were determined for the three gardens and in the vegetable biomass. The daily consumption index of the vegetables was determined based on total TME content. The results show that organocalcareous soil improvers did not promote plant growth and survival on soils with high and medium levels of copper contamination. However, on soils with low copper content, organocalcareous soil improvers improved germination and plant survival and reduced the transfer of metals from the soil to the plants. The best germination and plant survival rates were obtained with the lightly contaminated market garden. In addition, the organo-limestone amendments applied to the soils slightly increased the soil pH from acidic to slightly acidic, with pH values ranging from (5.43 ± 0.07 to 7.26 ± 0.33). The daily vegetable consumption index obtained for cobalt in the low-contaminated garden ranged from (0.029 to 0.465 mg/60 kg/day), i.e. from 0.5 to 8.45 times higher than the FAO/WHO limit, unlike the other trace metals (Cd, Cu and Pb) for which the daily consumption index found was lower than the FAO/WHO limit. Organocalcareous soil improvers can only be applied to soils with low levels of TME contamination, but for soils with medium to high levels of metal contamination, new soilless production techniques such as hydroponics or bioponics are needed.


Asunto(s)
Contaminantes del Suelo , Suelo , Oligoelementos , Verduras , Contaminantes del Suelo/análisis , República Democrática del Congo , Verduras/química , Suelo/química , Oligoelementos/análisis , Restauración y Remediación Ambiental/métodos , Monitoreo del Ambiente , Cobre/análisis , Metales Pesados/análisis
19.
Artículo en Inglés | MEDLINE | ID: mdl-39240435

RESUMEN

Studying the links between environmental pollution and the levels of contamination in food is an important challenge to ensure human health. Matched samples of eggs from free-range hens and vegetables were analysed to investigate the bioaccumulation of PCDD/Fs, PCBs, metals and rare earth elements. Only two egg samples resulted above the limit fixed for PCDD/Fs and the action level set for DL-PCBs. The highest concentrations were found in the eggs from an area situated in a big city affected by strong urbanisation. Although eggs and vegetables were subjected to the same environmental pollution, the PCDD/F and PCB bioaccumulation that occurred in the eggs was much higher than those in vegetables (p < 0.01). In vegetables, the highest PCDD/F and PCB concentrations were found in lettuce and potatoes grown on contaminated soil. Higher bioaccumulation of Fe and Zn occurred in eggs compared to vegetables; La, Pr, Nd, Sm and Eu were found only in lettuce samples. The results of this study may provide important data useful in the risk assessment of human exposure through diet in accidents involving dangerous chemicals. Furthermore, the estimated weekly intakes calculated for PCDD/Fs and PCBs highlighted that, although vegetables accumulate very low concentrations of these contaminants, they contribute more than eggs to human exposure.

20.
Front Physiol ; 15: 1437042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234311

RESUMEN

This study investigated the impact of sweeteners on the release of heavy metals during the heating and atomization processes in electronic cigarettes. Based on a PG/VG base e-liquid with the addition of 2% and 5% neotame or sucralose, we quantitatively analyzed the impact of sweetener content on the levels of heavy metals such as Ni, Cr, and Fe in the e-liquid and aerosol after heating and atomization. Additionally, the heated e-liquid samples were used to culture SH-SY-5Y and Beas-2B cells, and their cytotoxic effects were assessed using the CCK-8 assay. The results indicated that the e-liquid with 5% sucralose had the highest average levels of heavy metals after heating and atomization, particularly nickel (13.36 ± 2.50 mg/kg in the e-liquid and 12,109 ± 3,229 ng/200 puffs in the aerosol), whereas the e-liquid with neotame had significantly lower average heavy metal content in comparison. Additionally, it was measured that the chloride ion concentration in the e-liquid with 5% sucralose reached 191 mg/kg after heating at 200°C for 1 h, indicating that heating sucralose generated chloride ions, Which might corrode metal parts components leading to heavy metal release. Cytotoxicity tests revealed that the base e-liquid without sweeteners exhibited the highest average cell viability after heating, at 64.80% ± 2.84% in SH-SY-5Y cells and 63.24% ± 0.86% in Beas-2B cells. Conversely, the e-liquid variant with 5% sucralose showed a significant reduction in average cell viability, reducing it to 50.74% ± 0.88% in SH-SY-5Y cells and 53.03% ± 0.76% in Beas-2B cells, highlighting its more pronounced cytotoxic effects compared to other tested e-liquids. In conclusion, sucralose in e-liquids should be limited preferably less than 2%, or replaced with neotame, a safer alternative, to minimize health risks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...