Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39122599

RESUMEN

The success of disseminating cancer cells (DTCs) at specific metastatic sites is influenced by several metabolic factors. Even before DTCs arrival, metabolic conditioning from the primary tumor participates in creating a favorable premetastatic niche at distant organs. In addition, DTCs adjust their metabolism to better survive along the metastatic journey and successfully colonize their ultimate destination. However, the idea that the environment of the target organs may metabolically impact the metastatic fate is often underestimated. Here, we review the coexistence of two distinct strategies by which cancer cells shape and/or adapt to the metabolic profile of colonized tissues, ultimately creating a proper soil for their seeding and proliferation.

3.
Eur J Cell Biol ; 103(3): 151447, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116620

RESUMEN

In several solid tumors such as breast cancer, prostate cancer, colorectal cancer or melanoma, tumor draining lymph nodes are the earliest tissues where colonization by tumor cells is detected. Lymph nodes act as sentinels of metastatic dissemination, the deadliest phase of tumor progression. Besides hematogenous dissemination, lymphatic spread of tumor cells has been demonstrated, adding more complexity to the mechanisms involved in metastasis. A network of blood and lymphatic vessels surrounds tumors providing routes for tumor soluble factors to mediate regional and long-distance effects. Additionally, extracellular vesicles (EVs), particularly small EVs/exosomes, have been shown to circulate through the blood and lymph, favoring the formation of pre-metastatic niches in the tumor-draining lymph nodes (TDLNs) and distant organs. In this review, we present an overview of the relevance of lymph node metastasis, the structural and immune changes occurring in TDLNs during tumor progression, and how extracellular vesicles contribute to modulating some of these alterations while promoting the formation of lymph node pre-metastatic niches.


Asunto(s)
Vesículas Extracelulares , Metástasis Linfática , Humanos , Metástasis Linfática/patología , Vesículas Extracelulares/metabolismo , Animales , Ganglios Linfáticos/patología , Ganglios Linfáticos/metabolismo , Neoplasias/patología , Neoplasias/metabolismo
4.
Mol Carcinog ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136603

RESUMEN

The regulatory mechanisms underlying bone metastasis in lung adenocarcinoma (LUAD) are not yet fully understood despite the frequent occurrence of bone involvement. This study aimed to examine the involvement and mechanism of integrin subunit beta 3 (ITGB3) in the process of LUAD bone metastasis. Our findings indicate that ITGB3 facilitates the migration and invasion of LUAD cells in vitro and metastasis to the bone in vivo. Furthermore, ITGB3 stimulates osteoclast production and activation, thereby expediting osteolytic lesion progression. Extracellular vesicles (EVs) isolated from the conditioned medium (CM) of LUAD cells overexpressing ITGB3 determined that ITGB3 facilitates osteoclastogenesis and enhances osteoclast activity by utilizing EVs-mediated transport to RAW264.7 cells. Our in vivo findings demonstrated that ITGB3-EVs augmented the population of osteoclasts, thereby establishing an osteoclastic pre-metastatic niche (PMN) conducive to the colonization and subsequent growth of LUAD cells in the bone. ITGB3 is enriched in serum EVs of patients diagnosed with LUAD bone metastasis, potentially facilitating osteoclast differentiation and activation in vitro. Our research illustrates that ITGB3-EVs derived from LUAD cells facilitate osteoclast differentiation and activation by modulating the phosphorylation level of p38 MAPK. This process ultimately leads to the generation of osteolytic PMN and accelerates the progression of bone metastasis.

5.
Mol Cancer ; 23(1): 167, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164756

RESUMEN

Organs of future metastasis are not passive receivers of circulating tumor cells, but are instead selectively and actively modified by the primary tumor before metastatic spread has even occurred. Tumors orchestrate a pre-metastatic program by conditioning distant organs to create microenvironments that foster the survival and proliferation of tumor cells before their arrival, thereby establishing pre-metastatic niches. Primary tumor-derived exosomes modulate these pre-metastatic niches, generating a permissive environment that facilitates the homing and expansion of tumor cells. Moreover, microRNAs have emerged as a key component of exosomal cargo, serving not only to induce the formation of pre-metastatic niches but also to prime these sites for the arrival and colonization of specific secondary tumor populations. Against this backdrop, this review endeavors to elucidate the impact of tumor-derived exosomal microRNAs on the genesis of their individualized pre-metastatic niches, with a view towards identifying novel means of specifying cancer metastasis and exploiting this phenomenon for cancer immunotherapy.


Asunto(s)
Exosomas , MicroARNs , Metástasis de la Neoplasia , Neoplasias , Microambiente Tumoral , Humanos , MicroARNs/genética , Exosomas/metabolismo , Exosomas/genética , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica
6.
J Pathol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072726

RESUMEN

Brain metastases are one of the most serious clinical problems in breast cancer (BC) progression, associated with lower survival rates and a lack of effective therapies. Thus, to dissect the early stages of the brain metastatic process, we studied the impact of brain organotropic BC cells' secretomes on the establishment of the brain pre-metastatic niche (PMN). We found that BC cells with specific tropism to the brain caused significant blood-brain barrier (BBB) disruption, as well as microglial activation, in both in vitro and in vivo models. Further, we searched for a brain-organotropic metastatic signature, as a promising source for the discovery of new biomarkers involved in brain metastatic progression. Of relevance, we identified VGF (nerve growth factor inducible) as a key mediator in this process, also impacting the BBB and microglial functions both in vitro and in vivo. In a series of human breast tumors, VGF was found to be expressed in both cancer cells and the adjacent stroma. Importantly, VGF-positive tumors showed a significantly worse prognosis and were associated with HER2 (human epidermal growth factor receptor 2) overexpression and triple-negative molecular signatures. Further clinical validation in primary tumors from metastatic BC cases showed a significant association between VGF and the brain metastatic location, clearly and significantly impacting on the prognosis of BC patients with brain metastasis. In conclusion, our study reveals a unique secretome signature for BC with a tropism for the brain, highlighting VGF as a crucial mediator in this process. Furthermore, its specific impact as a poor prognostic predictor for BC patients with brain metastasis opens new avenues to target VGF to control the progression of brain metastatic disease. © 2024 The Pathological Society of Great Britain and Ireland.

7.
Dev Cell ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38866011

RESUMEN

A key step for metastatic outgrowth involves the generation of a deeply altered microenvironment (niche) that supports the malignant behavior of cancer cells. The complexity of the metastatic niche has posed a significant challenge in elucidating the underlying programs driving its origin. Here, by focusing on early stages of breast cancer metastasis to the lung in mice, we describe a cancer-dependent chromatin remodeling and activation of developmental programs in alveolar type 2 (AT2) cells within the niche. We show that metastatic cells can prime AT2 cells into a reprogrammed multilineage state. In turn, this cancer-induced reprogramming of AT2 cells promoted stem-like features in cancer cells and enhanced their initiation capacity. In conclusion, we propose the concept of "reflected stemness" as an early phenomenon during metastatic niche initiation, wherein metastatic cells reprogram the local tissue into a stem-like state that enhances intrinsic cancer-initiating potential, creating a positive feedback loop where tumorigenic programs are amplified.

8.
J Nanobiotechnology ; 22(1): 360, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907233

RESUMEN

Osteosarcoma (OS) derived small extracellular vesicles (OS-sEVs) have been shown to induce the formation of cancer-associated fibroblasts (CAFs), characterized by elevated pro-inflammatory factor expression and enhanced migratory and contractile abilities. These CAFs play a crucial role in priming lung metastasis by orchestrating the pre-metastatic niche (PMN) in the lung. Disrupting the communication between OS-sEVs and lung fibroblasts (LFs) emerges as a potent strategy to hinder OS pulmonary metastasis. Our previously established saponin-mediated cargo-elimination strategy effectively reduces the cancer-promoting ability of tumor-derived small extracellular vesicles (TsEVs) while preserving their inherent targeting capability. In this study, we observed that cargo-eliminated OS-sEVs (CE-sEVs) display minimal pro-tumoral and LFs activation potential, yet retain their ability to target LFs. The uptake of OS-sEVs by LFs can be concentration-dependently suppressed by CE-sEVs, preventing the conversion of LFs into CAFs and thus inhibiting PMN formation and pulmonary metastasis of OS. In summary, this study proposes a potential strategy to prevent LFs activation, PMN formation in the lung, and OS pulmonary metastasis through competitive inhibition of OS-sEVs' function by CE-sEVs.


Asunto(s)
Vesículas Extracelulares , Neoplasias Pulmonares , Osteosarcoma , Osteosarcoma/patología , Osteosarcoma/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Ratones Endogámicos BALB C , Saponinas/farmacología , Ratones Desnudos , Movimiento Celular/efectos de los fármacos , Pulmón/patología
9.
Phytomedicine ; 132: 155831, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908193

RESUMEN

BACKGROUND: Based on the proposed lung-intestinal axis, there is a significant correlation between the microbiota and lung metastasis. Targeting the microbial composition is valuable in modulating the host response to cancer therapeutics. As a traditional Chinese medicine (TCM) formula, Shuangshen granules (SSG) are clinically useful in delaying lung metastasis, but its underlying mechanisms remain unknown. METHODS: The C57BL/6N mice were chosen to establish the Lewis lung cancer models. The broad-spectrum antibiotics (ABX) group was set up to estimate the effect of microbiota composition on metastasis. The therapeutic effects of different doses of SSG in treating lung metastasis were investigated through histopathology, immunohistochemistry, and Western blot analysis methods. Additionally, the phenotype of tumor-associated macrophages (TAMs) in the lung and blood was evaluated by flow cytometry. The fecal microbiota transplantation (FMT) and negative control (ABX plus high dose SSG group) experiments were also designed to assess intestinal microbiota's role in SSG intervention's outcome in lung metastasis. The 16S rRNA amplicon sequencing and Untargeted metabolomic analysis were used to analyze intestinal microbiota and metabolite changes mediated by SSG in tumor-bearing mice with lung metastasis. RESULT: ABX could observably lead to intestinal microbiota dysbiosis and enhance metastasis. SSG showed a significant chemopreventive effect in lung metastasis, reduced metastatic nodules and the expression levels of pre-metastatic niche biomarkers, and enriched the ratio of CD86+F4/80+CD11b+ cells, while FMT delayed metastasis similarly. The analysis of microbiota and metabolites revealed that SSG significantly enriched probiotics in feces, including Akkermansia muciniphila, Lachnoclostridium sp YL32, Limosilactobacillus reuteri, and potential anti-cancer serum metabolites, including Ginsenoside Rb1, Isoquinoline, Betulin and so on. We also investigated the mechanism of SSG protection against lung metastasis and showed that SSG regulated microbiota, improved TAMs polarization, and inhibited the expression of the NF-κB pathway. CONCLUSION: The results presented in our article demonstrated that SSG improved TAMs polarization and inhibited the NF-κB pathway by alleviating intestinal microbiota imbalance and metabolic disorders in tumor-bearing mice, resulting in delayed lung metastasis.


Asunto(s)
Carcinoma Pulmonar de Lewis , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Neoplasias Pulmonares , Ratones Endogámicos C57BL , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Macrófagos Asociados a Tumores/efectos de los fármacos , Masculino , Trasplante de Microbiota Fecal , Pulmón/efectos de los fármacos , Pulmón/patología
10.
Acta Biomater ; 182: 288-300, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729547

RESUMEN

The formation of pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor requires the communication between the tumor cells and the host environment. Pyruvate is a fundamental nutrient by which the tumor cells metabolically reshape the extracellular matrix in the lung to facilitate their own metastatic development. Here we report a combination regimen by integrating the photo-sensitizer and the mitochondrial pyruvate carrier (MPC) inhibitor in a dendritic polycarbonate core-hyaluronic acid shell nano-platform with multivalent reversible crosslinker embedded in it (DOH-NI+L) to reinforce photodynamic therapy (PDT) toward the primary tumor and interrupt PMN formation in the lung via impeding pyruvate uptake. We show that DOH-NI+L mediates tumor-specific MPC inhibitor liberation, inhibiting the aerobic respiration for facilitated PDT and restraining ATP generation for paralyzing cell invasion. Remarkably, DOH-NI+L is demonstrated to block the metabolic crosstalk of tumor cell-host environment by dampening pyruvate metabolism, provoking a series of metabolic responses and resulting in the pulmonary PMN interruption. Consequently, DOH-NI+L realizes a significant primary tumor inhibition and an efficient pulmonary metastasis prevention. Our research extends nano-based anti-metastatic strategies aiming at PMN intervention and such a dendritic core-shell nano-inhibitor provides an innovative paradigm to inhibit tumor growth and prevent metastasis efficiently. STATEMENT OF SIGNIFICANCE: In the progression of cancer metastasis, the formation of a pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor is one of the rate-limiting stages. The current nano-based anti-metastatic modalities mainly focus on targeted killing of tumor cells and specific inhibition of tumor cell invasion, while nanomedicine-mediated interruption of PMN formation has been rarely reported. Here we report a combination regimen by integrating a photo-sensitizer and an inhibitor of mitochondrial pyruvate carrier in a dendritic core-shell nano-platform with a reversible crosslinker embedded in it to reinforce PDT toward the primary tumor and interrupt PMN formation via impeding the uptake of pyruvate that is a fundamental nutrient facilitating aerobic respiration and PMN formation. Our research proposed a nano-based anti-metastatic strategy aiming at PMN intervention.


Asunto(s)
Fotoquimioterapia , Ácido Pirúvico , Especies Reactivas de Oxígeno , Fotoquimioterapia/métodos , Animales , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacología , Ratones , Humanos , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Nanopartículas/química , Nanopartículas/uso terapéutico , Ratones Endogámicos BALB C , Femenino , Metástasis de la Neoplasia , Microambiente Tumoral/efectos de los fármacos
11.
Front Oncol ; 14: 1358786, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725618

RESUMEN

Organotropism has been known since 1889, yet this vital component of metastasis has predominantly stayed elusive. This mini-review gives an overview of the current understanding of the underlying mechanisms of organotropism and metastases development by focusing on the formation of the pre-metastatic niche, immune defenses against metastases, and genomic alterations associated with organotropism. The particular case of brain metastases is also addressed, as well as the impact of organotropism in cancer therapy. The limited comprehension of the factors behind organotropism underscores the necessity for efficient strategies and treatments to manage metastases.

12.
FASEB J ; 38(10): e23670, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38747803

RESUMEN

HPSE2, the gene-encoding heparanase 2 (Hpa2), is mutated in urofacial syndrome (UFS), a rare autosomal recessive congenital disease attributed to peripheral neuropathy. Hpa2 lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase (Hpa1), yet it exhibits a high affinity toward HS, thereby inhibiting Hpa1 enzymatic activity. Hpa2 regulates selected genes that promote normal differentiation, tissue homeostasis, and endoplasmic reticulum (ER) stress, resulting in antitumor, antiangiogenic, and anti-inflammatory effects. Importantly, stress conditions induce the expression of Hpa2, thus establishing a feedback loop, where Hpa2 enhances ER stress which, in turn, induces Hpa2 expression. In most cases, cancer patients who retain high levels of Hpa2 survive longer than patients bearing Hpa2-low tumors. Experimentally, overexpression of Hpa2 attenuates the growth of tumor xenografts, whereas Hpa2 gene silencing results in aggressive tumors. Studies applying conditional Hpa2 knockout (cHpa2-KO) mice revealed an essential involvement of Hpa2 contributed by the host in protecting against cancer and inflammation. This was best reflected by the distorted morphology of the Hpa2-null pancreas, including massive infiltration of immune cells, acinar to adipocyte trans-differentiation, and acinar to ductal metaplasia. Moreover, orthotopic inoculation of pancreatic ductal adenocarcinoma (PDAC) cells into the pancreas of Hpa2-null vs. wild-type mice yielded tumors that were by far more aggressive. Likewise, intravenous inoculation of cancer cells into cHpa2-KO mice resulted in a dramatically increased lung colonization reflecting the involvement of Hpa2 in restricting the formation of a premetastatic niche. Elucidating Hpa2 structure-activity-relationships is expected to support the development of Hpa2-based therapies against cancer and inflammation.


Asunto(s)
Glucuronidasa , Inflamación , Neoplasias , Humanos , Animales , Inflamación/metabolismo , Inflamación/patología , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Glucuronidasa/metabolismo , Glucuronidasa/genética , Ratones , Estrés del Retículo Endoplásmico
13.
Front Immunol ; 15: 1385875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660306

RESUMEN

Neuroblastoma (NB) is the most common extracranial solid pediatric cancer, and is one of the leading causes of cancer-related deaths in children. Despite the current multi-modal treatment regimens, majority of patients with advanced-stage NBs develop therapeutic resistance and relapse, leading to poor disease outcomes. There is a large body of knowledge on pathophysiological role of small extracellular vesicles (EVs) in progression and metastasis of multiple cancer types, however, the importance of EVs in NB was until recently not well understood. Studies emerging in the last few years have demonstrated the involvement of EVs in various aspects of NB pathogenesis. In this review we summarize these recent findings and advances on the role EVs play in NB progression, such as tumor growth, metastasis and therapeutic resistance, that could be helpful for future investigations in NB EV research. We also discuss different strategies for therapeutic targeting of NB-EVs as well as utilization of NB-EVs as potential biomarkers.


Asunto(s)
Biomarcadores de Tumor , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Vesículas Extracelulares , Neuroblastoma , Humanos , Neuroblastoma/terapia , Neuroblastoma/metabolismo , Neuroblastoma/patología , Vesículas Extracelulares/metabolismo , Biomarcadores de Tumor/metabolismo , Animales
14.
Pharmaceutics ; 16(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675210

RESUMEN

Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support the colonization and growth of circulating tumor cells, a key component of which is the myeloid-derived suppressor cell (MDSC). Therefore, the MDSC has been identified as a potential biomarker for PMN formation, the detection of which would enable clinicians to proactively treat metastases. However, there is currently no technology capable of the in situ detection of MDSCs available in the clinic. Here, we propose the use of shortwave infrared-emitting nanoprobes for the tracking of MDSCs and identification of the PMN. Our rare-earth albumin nanocomposites (ReANCs) are engineered to bind the Gr-1 surface marker of murine MDSCs. When delivered intravenously in murine models of breast cancer with high rates of metastasis, the targeted ReANCs demonstrated an increase in localization to the lungs in comparison to control ReANCs. However, no difference was seen in the model with slower rates of metastasis. This highlights the potential utility of MDSC-targeted nanoprobes to assess PMN development and prognosticate disease progression.

15.
Front Cell Dev Biol ; 12: 1354606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455075

RESUMEN

Prostate cancer (PCa) is a leading male malignancy worldwide, often progressing to bone metastasis, with limited curative options. Extracellular vesicles (EVs) have emerged as key players in cancer communication and metastasis, promoting the formation of supportive microenvironments in distant sites. Our previous studies have highlighted the role of PCa EVs in modulating osteoblasts and facilitating tumor progression. However, the early pre-metastatic changes induced by PCa EVs within the bone microenvironment remain poorly understood. To investigate the early effects of repeated exposure to PCa EVs in vivo, mimicking EVs being shed from the primary tumor, PCa EVs isolated from cell line PC3MLuc2a were fluorescently labelled and repeatedly administered via tail vein injection to adult CD1 NuNu male mice for a period of 4 weeks. In vivo imagining, histological analysis and gene expression profiling were performed to assess the impact of PCa EVs on the bone microenvironment. We demonstrate for the first time that PCa EVs home to both bone and lymph nodes following repeated exposures. Furthermore, the accumulation of EVs within the bone leads to distinct molecular changes indicative of disrupted bone homeostasis (e.g., changes to signaling pathways such as Paxillin p = 0.0163, Estrogen Receptor p = 0.0271, RHOA p = 0.0287, Ribonucleotide reductase p = 0.0307 and ERK/MAPK p = 0.0299). Changes in key regulators of these pathways were confirmed in vitro on human osteoblasts. In addition, our data compares the known gene signature of osteocytes and demonstrates a high proportion of overlap (52.2%), suggesting a potential role for this cell type in response to PCa EV exposure. No changes in bone histology or immunohistochemistry were detected, indicating that PCa EV mediated changes were induced at the molecular level. This study provides novel insights into the alterations induced by PCa EVs on the bone microenvironment. The observed molecular changes indicate changes in key pathways and suggest a role for osteocytes in these EV mediated early changes to bone. Further research to understand these early events may aid in the development of targeted interventions to disrupt the metastatic cascade in PCa.

16.
Cancer Cell ; 42(3): 474-486.e12, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38402610

RESUMEN

Chronic stress is associated with increased risk of metastasis and poor survival in cancer patients, yet the reasons are unclear. We show that chronic stress increases lung metastasis from disseminated cancer cells 2- to 4-fold in mice. Chronic stress significantly alters the lung microenvironment, with fibronectin accumulation, reduced T cell infiltration, and increased neutrophil infiltration. Depleting neutrophils abolishes stress-induced metastasis. Chronic stress shifts normal circadian rhythm of neutrophils and causes increased neutrophil extracellular trap (NET) formation via glucocorticoid release. In mice with neutrophil-specific glucocorticoid receptor deletion, chronic stress fails to increase NETs and metastasis. Furthermore, digesting NETs with DNase I prevents chronic stress-induced metastasis. Together, our data show that glucocorticoids released during chronic stress cause NET formation and establish a metastasis-promoting microenvironment. Therefore, NETs could be targets for preventing metastatic recurrence in cancer patients, many of whom will experience chronic stress due to their disease.


Asunto(s)
Trampas Extracelulares , Neoplasias Pulmonares , Humanos , Animales , Ratones , Neutrófilos/patología , Neoplasias Pulmonares/patología , Pulmón/patología , Microambiente Tumoral
17.
Cell Cycle ; 23(2): 131-149, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38341861

RESUMEN

Colorectal cancer (CRC) ranks among the most prevalent global malignancies, posing significant threats to human life and health due to its high recurrence and metastatic potential. Small extracellular vesicles (sEVs) released by CRC play a pivotal role in the formation of the pre-metastatic niche (PMN) through various mechanisms, preparing the groundwork for accelerated metastatic invasion. This review systematically describes how sEVs promote CRC metastasis by upregulating inflammatory factors, promoting immunosuppression, enhancing angiogenesis and vascular permeability, promoting lymphangiogenesis and lymphatic network remodeling, determining organophilicity, promoting stromal cell activation and remodeling and inducing the epithelial-to-mesenchymal transition (EMT). Furthermore, we explore potential mechanisms by which sEVs contribute to PMN formation in CRC and propose novel insights for CRC diagnosis, treatment, and prognosis.


Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Vesículas Extracelulares , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Animales , Metástasis de la Neoplasia , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Linfangiogénesis
18.
Curr Osteoporos Rep ; 22(1): 105-114, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38198034

RESUMEN

PURPOSE OF REVIEW: The formation of a pre-metastatic niche (PMN), in which primary cancer cells prime the distant site to be favorable to their engraftment and survival, may help explain the strong osteotropism observed in multiple cancers, such as breast and prostate. PMN formation, which includes extracellular matrix remodeling, increased angiogenesis and vascular permeability, enhanced bone marrow-derived cell recruitment and immune suppression, has mostly been described in soft tissues. In this review, we summarize current literature of PMN formation in bone. We also present evidence of a potential role for osteocytes to be the primary mediators of PMN development. RECENT FINDINGS: Osteocytes regulate the bone microenvironment in myriad ways beyond canonical bone tissue remodeling, including changes that contribute to PMN formation. Perilacunar tissue remodeling, which has been observed in both bone and non-bone metastatic cancers, is a potential mechanism by which osteocyte-cancer cell signaling stimulates changes to the bone microenvironment. Osteocytes also protect against endothelial permeability, including that induced by cancer cells, in a loading-mediated process. Finally, osteocytes are potent regulators of cells within the bone marrow, including progenitors and immune cells, and might be involved in this aspect of PMN formation. Osteocytes should be examined for their role in PMN formation.


Asunto(s)
Neoplasias , Osteocitos , Masculino , Humanos , Osteocitos/patología , Remodelación Ósea , Neoplasias/patología , Huesos , Transducción de Señal , Microambiente Tumoral
19.
Curr Med Chem ; 31(28): 4495-4509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38251694

RESUMEN

Cancer metastasis is the deadliest event in tumorigenesis. Despite extensive research, there are still unsolved challenges regarding early metastasis detection and targeting strategies. Extracellular vesicles (EVs) and their impact on tumorigenic-related events are in the eye of current investigations. EVs represent a plethora of biomarkers and information, and they are considered key determinants in tumor progression and for tumor prognosis and monitoring. EVs are one of the key mediators for inter-cellular communications between tumor cells and their nearby stroma. They are involved in different steps of metastasis from invasion toward formation of pre-metastatic niches (PMNs), and final growth and colonization of tumor cells in desired organ/s of the target. Membrane components of EVs and their cargo can be traced for the identification of tumor metastasis, and their targeting is a promising strategy in cancer therapy. In this review, we aimed to discuss the current understanding of EV-based metastatic predilection in cancer, providing updated information about EV involvement in different metastatic steps and suggesting some strategies to hamper this devastating condition.


Asunto(s)
Vesículas Extracelulares , Metástasis de la Neoplasia , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias/patología , Neoplasias/metabolismo , Animales
20.
Nanotheranostics ; 8(1): 1-11, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164505

RESUMEN

In vitro metastatic models are foreseen to introduce a breakthrough in the field of preclinical screening of more functional small-molecule pharmaceuticals and biologics. To achieve this goal, the complexity of current in vitro systems requests an appropriate upgrade to approach the three-dimensional (3D) in vivo metastatic disease. Here, we explored the potential of our 3D ß-tricalcium phosphate (ß-TCP) model of neuroblastoma bone metastasis for drug toxicity assessment. Tailor-made scaffolds with interconnected channels were produced by combining 3D printing and slip casting method. The organization of neuroblastoma cells into a mesenchymal stromal cell (MSC) network, cultured under bioactive conditions provided by ß-TCP, was monitored by two-photon microscopy. Deposition of extracellular matrix protein Collagen I by MSCs and persistent growth of tumor cells confirmed the cell-supportive performance of our 3D model. When different neuroblastoma cells were treated with conventional chemotherapeutics, the ß-TCP model provided the necessary reproducibility and accuracy of experimental readouts. Drug efficacy evaluation was done for 3D and 2D cell cultures, highlighting the need for a higher dose of chemotherapeutics under 3D conditions to achieve the expected cytotoxicity in tumor cells. Our results confirm the importance of 3D geometry in driving native connectivity between nonmalignant and tumor cells and sustain ß-TCP scaffolds as a reliable and affordable drug screening platform for use in the early stages of drug discovery.


Asunto(s)
Neuroblastoma , Andamios del Tejido , Humanos , Osteogénesis , Reproducibilidad de los Resultados , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...