Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(6): e0045324, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38752746

RESUMEN

Metals are essential for all living organisms, but the type of metal and its concentration determines its action. Even low concentrations of metals may have toxic effects on organisms and therefore exhibit antimicrobial activities. In this study, we investigate the evolutionary adaptation processes of Staphylococcus aureus to metals and common genes for metal tolerance. Laboratory and clinical isolates were treated with manganese, cobalt, zinc, or nickel metal salts to generate growth-adapted mutants. After growth in medium supplemented with zinc, whole-genome sequencing identified, among others, two genes, mgtE (SAUSA300_0910), a putative magnesium transporter and spoVG (SAUSA300_0475), a global transcriptional regulator, as hot spots for stress-induced single-nucleotide polymorphisms (SNPs). SNPs in mgtE were also detected in mutants treated with high levels of cobalt or nickel salts. To investigate the effect of these genes on metal tolerance, deletion mutants and complementation strains in an S. aureus USA300 LAC* laboratory strain were generated. Both, the mgtE and spoVG deletion strains were more tolerant to cobalt, manganese, and zinc. The mgtE mutant was also more tolerant to nickel exposure. Inductively coupled plasma mass spectrometry analysis demonstrated that the mgtE deletion mutant accumulated less intracellular zinc than the wild type, explaining increased tolerance. From these results, we conclude that mgtE gene inactivation increases zinc tolerance presumably due to reduced uptake of zinc. For the SpoVG mutant, no direct effect on the intracellular zinc concentration was detected, indicating toward different pathways to increase tolerance. Importantly, inactivation of these genes offers a growth advantage in environments containing certain metals, pointing toward a common tolerance mechanism. IMPORTANCE: Staphylococcus aureus is an opportunistic pathogen causing tremendous public health burden and high mortality in invasive infections. Treatment is becoming increasingly difficult due to antimicrobial resistances. The use of metals in animal husbandry and aquaculture to reduce bacterial growth and subsequent acquisition of metal resistances has been shown to co-select for antimicrobial resistance. Therefore, understanding adaptive mechanisms that help S. aureus to survive metal exposure is essential. Using a screening approach, we were able to identify two genes encoding the transporter MgtE and the transcriptional regulator SpoVG, which conferred increased tolerance to specific metals such as zinc when inactivated. Further testing showed that the deletion of mgtE leads to reduced intracellular zinc levels, suggesting a role in zinc uptake. The accumulation of mutations in these genes when exposed to other metals suggests that inactivation of these genes could be a common mechanism for intrinsic tolerance to certain metals.


Asunto(s)
Proteínas Bacterianas , Staphylococcus aureus , Zinc , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Zinc/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Infecciones Estafilocócicas/microbiología
2.
J Pharmacol Sci ; 151(2): 88-92, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36707183

RESUMEN

Magnesium (Mg2+) plays an important role in various cellular functions such as protein synthesis, DNA stability, energy metabolism, enzyme and channel activities, and muscle contractility. Therefore, intracellular Mg2+ concentration is tightly regulated by multiple Mg2+ transporters and channels. So far, various candidate genes of Mg2+ transporters have been identified, and the research on their structure and function is currently in progress. The Solute Carrier 41 (SLC41) family, which is related to the bacterial Mg2+ transporter/channel MgtE, comprises three isoforms of SLC41A1, SLC41A2, and SLC41A3. Based on recent studies, SLC41A1 is thought to mediate Mg2+ influx or Na+-dependent Mg2+ efflux across the plasma membrane, whereas SLC41A2 and SLC41A3 may mediate Mg2+ fluxes across either the plasma membrane or organellar membranes. Intriguingly, SLC41A1 variants have been identified in patients with Parkinson's disease (PD) and nephronophthisis-related ciliopathies. Further genetic analyses reveal the association of SLC41A1 polymorphisms with PD risks. This review highlights the recent advances in the understanding of the molecular and functional characteristics of SLC41 family towards its therapeutic and diagnostic applications.


Asunto(s)
Magnesio , Proteínas de Transporte de Membrana , Humanos , Proteínas de Transporte de Membrana/metabolismo , Magnesio/metabolismo , Membrana Celular/metabolismo , Transporte Biológico
3.
Annu Rev Phys Chem ; 71: 461-484, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32155383

RESUMEN

Ions transiting biomembranes might pass readily from water through ion-specific membrane proteins if these protein channels provide environments similar to the aqueous solution hydration environment. Indeed, bulk aqueous solution is an important reference condition for the ion permeation process. Assessment of this hydration mimicry concept depends on understanding the hydration structure and free energies of metal ions in water in order to provide a comparison for the membrane channel environment. To refine these considerations, we review local hydration structures of ions in bulk water and the molecular quasi-chemical theory that provides hydration free energies. In doing so, we note some current views of ion binding to membrane channels and suggest new physical chemical calculations and experiments that might further clarify the hydration mimicry concept.

4.
Microbiology (Reading) ; 165(5): 572-584, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30942689

RESUMEN

The gold standard method for the creation of gene deletions in Staphylococcus aureus is homologous recombination using allelic exchange plasmids with a temperature-sensitive origin of replication. A knockout vector that contains regions of homology is first integrated into the chromosome of S. aureus by a single crossover event selected for at high temperatures (non-permissive for plasmid replication) and antibiotic selection. Next, the second crossover event is encouraged by growth without antibiotic selection at low temperature, leading at a certain frequency to the excision of the plasmid and the deletion of the gene of interest. To detect or encourage plasmid loss, either a beta-galactosidase screening method or, more typically, a counterselection step is used. We present here the adaptation of the counter-selectable marker pheS*, coding for a mutated subunit of the phenylalanine tRNA synthetase, for use in S. aureus. The PheS* protein variant allows for the incorporation of the toxic phenylalanine amino acid analogue para-chlorophenylalanine (PCPA) into proteins and the addition of 20-40 mM PCPA to rich media leads to drastic growth reduction for S. aureus and supplementing chemically defined medium with 2.5-5 mM PCPA leads to complete growth inhibition. Using the new allelic exchange plasmid pIMAY*, we delete the magnesium transporter gene mgtE in S. aureus USA300 LAC* (SAUSA300_0910/SAUSA300_RS04895) and RN4220 (SAOUHSC_00945) and demonstrate that cobalt toxicity in S. aureus is mainly mediated by the presence of MgtE. This new plasmid will aid the efficient and easy creation of gene knockouts in S. aureus.


Asunto(s)
Proteínas Bacterianas/genética , Ingeniería Genética , Fenilalanina-ARNt Ligasa/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Técnicas de Inactivación de Genes , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Genoma Bacteriano , Humanos , Fenilalanina-ARNt Ligasa/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo
5.
Protein Expr Purif ; 161: 8-16, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31028884

RESUMEN

Although magnesium is the second most abundant cation present in the cell, the transport mechanism of Mg2+ across membranes is poorly understood. Importantly, the prokaryotic MgtE Mg2+ channel is related to mammalian SLC41A1 transporters and, therefore, biochemical and biophysical characterization of MgtE and its orthologs assumes significance. To date, the purification and structure determination of MgtE from Thermus thermophilus has been carried out using the widely used nonionic detergent, n-dodecyl-ß-d-maltopyranoside (DDM). However, DDM is an expensive detergent and alternative methods to produce high-quality proteins in stable and functional form will be practically advantageous to carry out structural studies in a cost-effective manner. In this work, we have utilized 'dual-detergent strategy' to successfully purify MgtE channel in a stable and functional form by employing relatively inexpensive detergents (Triton X-100 and Anzergent 3-14) for membrane solubilization and subsequently changed to DDM during purification. Our results show that Triton X-100 and Anzergent 3-14 extract MgtE well and the quality of purified protein is comparable to DDM-extracted MgtE. Interestingly, addition of high concentration of salt and glycerol during solubilization does not significantly affect the quantity and quality of MgtE. Importantly, limited proteolysis assay, circular dichroism spectroscopy and ensemble tryptophan fluorescence strongly support the use of Triton X-100, in particular, as an inexpensive, alternative detergent for the purification of MgtE without compromising the structural integrity of the channel and Mg2+-induced gating-related conformational dynamics. Overall, these results are relevant for the cost-effective purification of stable and functional membrane proteins in general, and magnesium channels, in particular.


Asunto(s)
Antiportadores/química , Antiportadores/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Fraccionamiento Químico/métodos , Cromatografía en Gel/métodos , Thermus thermophilus/química , Thermus thermophilus/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fraccionamiento Químico/instrumentación , Cromatografía en Gel/economía , Cromatografía en Gel/instrumentación , Detergentes/química , Magnesio/metabolismo , Modelos Moleculares , Thermus thermophilus/genética
6.
Biol Chem ; 400(10): 1289-1301, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30913030

RESUMEN

Magnesium cation (Mg2+) is the most abundant divalent cation in living cells, where it is required for various intracellular functions. In chloroplasts and cyanobacteria, established photosynthetic model systems, Mg2+ is the central ion in chlorophylls, and Mg2+ flux across the thylakoid membrane is required for counterbalancing the light-induced generation of a ΔpH across the thylakoid membrane. Yet, not much is known about Mg2+ homoeostasis, transport and distribution within cyanobacteria. However, Mg2+ transport across membranes has been studied in non-photosynthetic bacteria, and first observations and findings are reported for chloroplasts. Cyanobacterial cytoplasmic membranes appear to contain the well-characterized Mg2+ channels CorA and/or MgtE, which both facilitate transmembrane Mg2+ flux down the electrochemical gradient. Both Mg2+ channels are typical for non-photosynthetic bacteria. Furthermore, Mg2+ transporters of the MgtA/B family are also present in the cytoplasmic membrane to mediate active Mg2+ import into the bacterial cell. While the cytoplasmic membrane of cyanobacteria resembles a 'classical' bacterial membrane, essentially nothing is known about Mg2+ channels and/or transporters in thylakoid membranes of cyanobacteria or chloroplasts. As discussed here, at least one Mg2+ channelling protein must be localized within thylakoid membranes. Thus, either one of the 'typical' bacterial Mg2+ channels has a dual localization in the cytoplasmic plus the thylakoid membrane, or another, yet unidentified channel is present in cyanobacterial thylakoid membranes.


Asunto(s)
Bacterias/metabolismo , Cloroplastos/metabolismo , Cianobacterias/metabolismo , Homeostasis , Magnesio/metabolismo , Transporte Iónico , Proteínas de Transporte de Membrana/metabolismo
7.
Elife ; 72018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29611805

RESUMEN

Magnesium ions (Mg2+) are divalent cations essential for various cellular functions. Mg2+ homeostasis is maintained through Mg2+ channels such as MgtE, a prokaryotic Mg2+ channel whose gating is regulated by intracellular Mg2+ levels. Our previous crystal structure of MgtE in the Mg2+-bound, closed state revealed the existence of seven crystallographically-independent Mg2+-binding sites, Mg1-Mg7. The role of Mg2+-binding to each site in channel closure remains unknown. Here, we investigated Mg2+-dependent changes in the structure and dynamics of MgtE using nuclear magnetic resonance spectroscopy. Mg2+-titration experiments, using wild-type and mutant forms of MgtE, revealed that the Mg2+ binding sites Mg1, Mg2, Mg3, and Mg6, exhibited cooperativity and a higher affinity for Mg2+, enabling the remaining Mg2+ binding sites, Mg4, Mg5, and Mg7, to play important roles in channel closure. This study revealed the role of each Mg2+-binding site in MgtE gating, underlying the mechanism of cellular Mg2+ homeostasis.


Asunto(s)
Antiportadores/química , Antiportadores/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Magnesio/metabolismo , Thermus thermophilus/enzimología , Sitios de Unión , Cationes Bivalentes/metabolismo , Espectroscopía de Resonancia Magnética , Unión Proteica , Conformación Proteica
8.
J Bacteriol ; 199(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28847924

RESUMEN

Pseudomonas aeruginosa causes numerous acute and chronic opportunistic infections in humans. One of its most formidable weapons is a type III secretion system (T3SS), which injects powerful toxins directly into host cells. The toxins lead to cell dysfunction and, ultimately, cell death. Identification of regulatory pathways that control T3SS gene expression may lead to the discovery of novel therapeutics to treat P. aeruginosa infections. In a previous study, we found that expression of the magnesium transporter gene mgtE inhibits T3SS gene transcription. MgtE-dependent inhibition appeared to interfere with the synthesis or function of the master T3SS transcriptional activator ExsA, although the exact mechanism was unclear. We now demonstrate that mgtE expression acts through the GacAS two-component system to activate rsmY and rsmZ transcription. This event ultimately leads to inhibition of exsA translation. This inhibitory effect is specific to exsA as translation of other genes in the exsCEBA operon is not inhibited by mgtE Moreover, our data reveal that MgtE acts solely through this pathway to regulate T3SS gene transcription. Our study reveals an important mechanism that may allow P. aeruginosa to fine-tune T3SS activity in response to certain environmental stimuli.IMPORTANCE The type III secretion system (T3SS) is a critical virulence factor utilized by numerous Gram-negative bacteria, including Pseudomonas aeruginosa, to intoxicate and kill host cells. Elucidating T3SS regulatory mechanisms may uncover targets for novel anti-P. aeruginosa therapeutics and provide deeper understanding of bacterial pathogenesis. We previously found that the magnesium transporter MgtE inhibits T3SS gene transcription in P. aeruginosa In this study, we describe the mechanism of MgtE-dependent inhibition of the T3SS. Our report also illustrates how MgtE might respond to environmental cues, such as magnesium levels, to fine-tune T3SS gene expression.


Asunto(s)
Antiportadores/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Magnesio/metabolismo , Pseudomonas aeruginosa/metabolismo , Transcripción Genética/fisiología , Sistemas de Secreción Tipo III/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Operón/fisiología , Transducción de Señal/fisiología , Transactivadores/metabolismo , Factores de Virulencia/metabolismo
9.
Curr Top Membr ; 73: 383-410, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24745990

RESUMEN

The solute carrier family 41 (SLC41) encompasses three members A1, A2, and A3. Based on their distant homology to the bacterial Mg²âº channel MgtE, all have been linked to Mg²âº transport. There is only very limited knowledge on the molecular biology and exact functions of SLC41A2 and SLC41A3. SLC41A1 is ubiquitously expressed and data on its functional and molecular properties, regulation, complex-forming ability, and spectrum of binding partners are available. SLC41A1 was recently identified as being the Na⁺/Mg²âº exchanger (NME)-a predominant Mg²âº efflux system. Mg²âº-dependent and hormonal regulation of NME activity is now known to depend on the intracellular N terminus of SLC41A1 that is involved in Mg²âº sensing and contains phosphorylation sites for protein kinase (PK) A and PKC. Data showing a link between SLC41A1 and human disorders such as Parkinson's disease, nephronophthisis (induced by the null mutation c.698G>T in renal SLC41A1), and preeclampsia make the protein a candidate therapeutic target.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Animales , Enfermedad , Humanos , Magnesio/metabolismo , Transporte de Proteínas , Sodio/metabolismo
10.
Biochim Biophys Acta ; 1828(11): 2778-92, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23954807

RESUMEN

The magnesium ion (Mg(2+)) is the most abundant divalent cation within cells. In man, Mg(2+)-deficiency is associated with diseases affecting the heart, muscle, bone, immune, and nervous systems. Despite its impact on human health, little is known about the molecular mechanisms that regulate magnesium transport and storage. Complete structural information on eukaryotic Mg(2+)-transport proteins is currently lacking due to associated technical challenges. The prokaryotic MgtE and CorA magnesium transport systems have recently succumbed to structure determination by X-ray crystallography, providing first views of these ubiquitous and essential Mg(2+)-channels. MgtE and CorA are unique among known membrane protein structures, each revealing a novel protein fold containing distinct arrangements of ten transmembrane-spanning α-helices. Structural and functional analyses have established that Mg(2+)-selectivity in MgtE and CorA occurs through distinct mechanisms. Conserved acidic side-chains appear to form the selectivity filter in MgtE, whereas conserved asparagines coordinate hydrated Mg(2+)-ions within the selectivity filter of CorA. Common structural themes have also emerged whereby MgtE and CorA sense and respond to physiologically relevant, intracellular Mg(2+)-levels through dedicated regulatory domains. Within these domains, multiple primary and secondary Mg(2+)-binding sites serve to staple these ion channels into their respective closed conformations, implying that Mg(2+)-transport is well guarded and very tightly regulated. The MgtE and CorA proteins represent valuable structural templates to better understand the related eukaryotic SLC41 and Mrs2-Alr1 magnesium channels. Herein, we review the structure, function and regulation of MgtE and CorA and consider these unique proteins within the expanding universe of ion channel and transporter structural biology.


Asunto(s)
Canales Iónicos/metabolismo , Manganeso/metabolismo , Cristalografía por Rayos X , Canales Iónicos/química , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...