Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Alzheimers Dement ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210637

RESUMEN

INTRODUCTION: Blood-derived microRNAs (miRNAs) are potential candidates for detecting and preventing subclinical cognitive dysfunction. However, replication of previous findings and identification of novel miRNAs associated with cognitive domains, including their relation to brain structure and the pathways they regulate, are still lacking. METHODS: We examined blood-derived miRNAs and miRNA co-expression clusters in relation to cognitive domains, structural magnetic resonance imaging measures, target gene expression, and genetic variants in 2869 participants of a population-based cohort. RESULTS: Five previously identified and 14 novel miRNAs were associated with cognitive domains. Eleven of these were also associated with cortical thickness and two with hippocampal volume. Multi-omics analysis showed that certain identified miRNAs were genetically influenced and regulated genes in pathways like neurogenesis and synapse assembly. DISCUSSION: We identified miRNAs associated with cognitive domains, brain regions, and neuronal processes affected by aging and neurodegeneration, making them promising candidate blood-based biomarkers or therapeutic targets of subclinical cognitive dysfunction. HIGHLIGHTS: We investigated the association of blood-derived microRNAs with cognitive domains. Five previously identified and 14 novel microRNAs were associated with cognition. Eleven cognition-related microRNAs were also associated with cortical thickness. Identified microRNAs were linked to genes associated with neuronal functions. Results provide putative biomarkers or therapeutic targets of cognitive aging.

2.
Cytotechnology ; 76(3): 291-300, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736725

RESUMEN

Pulmonary fibrosis (PF) is a chronic lung disease that has a poor prognosis and a serious impact on the quality of life of patients. Here, we investigated the potential role of miR-92a-3p in PF. The mRNA level of miR-92a-3p was significantly increased in both the lung tissues of bleomycin (BLM)--treated mice and pulmonary microvascular endothelial cells (PMVECs). Overexpressing miR-92a-3p increased the mRNA and protein levels of α­SMA, vimentin, and Col-1 but downregulated E-cadherin. Additionally, the protein and mRNA expression levels of KLF2 were significantly decreased in the lung tissues of BLM-treated mice, suggesting that KLF2 participated in the progression of BLM-induced PF. Downregulating miR-92a-3p upregulated the expression of KLF2 and inhibited the endothelial-to-mesenchymal transition (EndoMT) process, thus alleviating PF in vivo. Altogether, a miR-92a-3p deficiency could significantly reduce the development of myofibroblasts and ameliorate PF progression.

3.
Front Pharmacol ; 15: 1376638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659583

RESUMEN

Introduction: One of the primary obstacles faced by individuals with advanced colorectal cancer (CRC) is the potential development of acquired chemoresistance as the disease advances. Studies have indicated a direct association between elevated levels of miR-92a-3p and the progression, metastasis, and chemoresistance observed in CRC. We proposed that miR-92a-3p impairs FOLFOX (fluorouracil/oxaliplatin) chemotherapy response by upregulating the expression of chemoresistance biomarker genes through the activation of ß-catenin and epithelial-mesenchymal transition (EMT). These FOLFOX biomarker genes include the pyrimidine biosynthesis pathway genes dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), and the genes encoding the DNA repair complexes subunits ERCC1 and ERCC2, and XRCC1. Methods: To assess this, we transfected SW480 and SW620 colon cancer cell lines with miR-92a-3p mimics and then quantified the expression of DPYD, TYMS, MTHFR, ERCC1, ERCC2, and XRCC1, the expression of EMT markers and transcription factors, and activation of ß-catenin. Results and discussion: Our results reveal that miR-92a-3p does not affect the expression of DPYD, TYMS, MTHFR, and ERCC1. Furthermore, even though miR-92a-3p affects ERCC2, XRCC1, E-cadherin, and ß-catenin mRNA levels, it has no influence on their protein expression. Conclusion: We found that miR-92a-3p does not upregulate the expression of proteins of DNA-repair pathways and other genes involved in FOLFOX chemotherapy resistance.

4.
Cell Signal ; 119: 111182, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640983

RESUMEN

Cancer-associated Fibroblasts (CAFs) exert a tumor-promoting effect in various cancers, including breast cancer. CAFs secrete exosomes containing miRNA and proteins, influencing the tumor microenvironment. In this study, we identified CAF-derived exosomes that transport functional miR-92a from CAFs to tumor cells, thereby intensifying the aggressiveness of breast cancer. CAFs downregulate the expression of G3BP2 in breast cancer cells, and a significant elevation in miR-92a levels in CAF-derived exosomes was observed. Both in vitro and in vivo experiments demonstrate that miR-92a enhances breast cancer cell migration and invasion by directly targeting G3BP2, functioning as a tumor-promoting miRNA. We validated that the RNA-binding proteins SNRPA facilitate the transfer of CAF-derived exosomal miR-92a to breast cancer cells. The reduction of G3BP2 protein by CAF-derived exosomes releases TWIST1 into the nucleus, promoting epithelial-mesenchymal transition (EMT) and further exacerbating breast cancer progression. Moreover, CAF-derived exosomal miR-92a induces tumor invasion and metastasis in mice. Overall, our study reveals that CAF-derived exosomal miR-92a serves as a promoter in the migration and invasion of breast cancer cells by reducing G3BP2 and may represent a potential novel tumor marker for breast cancer.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Movimiento Celular , Transición Epitelial-Mesenquimal , Exosomas , Regulación Neoplásica de la Expresión Génica , MicroARNs , Invasividad Neoplásica , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Exosomas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Metástasis de la Neoplasia , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión al ARN/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Proteína 1 Relacionada con Twist/genética
5.
Cell Stress Chaperones ; 29(3): 381-391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582327

RESUMEN

The role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes remains unclear. In this study, we explored the role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes and identified its target genes and signaling pathways. H9c2 cells were cultured with or without 100 mM ethanol for 24 h. The differential expression of miR-92a-3p was verified in H9c2 cells through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To manipulate the expression of miR-92a-3p, both a mimic and an inhibitor were transfected into H9c2 cells. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and apoptosis-related antibodies were used for apoptosis detection through flow cytometry and Western blotting, respectively. Target genes were verified through RT-qPCR, Western blotting, and double luciferase reporter gene assays. miR-92a-3p was significantly overexpressed in ethanol-stimulated H9c2 cardiomyocytes (P < 0.001). After ethanol stimulation, H9c2 myocardial cells exhibited increased apoptosis. The apoptosis rate was higher in the miR-92a-3p mimic group than in the control group. However, the apoptosis rate was lower in the miR-92a-3p inhibitor group than in the control group, indicating that miR-92a-3p promotes the ethanol-induced apoptosis of H9c2 myocardial cells. RT-qPCR and Western blotting revealed that the miR-92a-3p mimic and inhibitor significantly regulated the mRNA and protein expression levels of mitogen- and stress-activated protein kinase 2 and cyclic AMP-responsive element-binding protein 3-like protein 2 (CREB3L2), suggesting that miR-92a-3p promotes the apoptosis of H9c2 cardiomyocytes by inhibiting the MSK2/CREB/Bcl-2 pathway. Therefore, the apoptosis of H9c2 cardiomyocytes increases after ethanol stimulation, and miR-92a-3p can directly target MSK2 and CREB3L2, thereby promoting the ethanol-induced apoptosis of H9c2 myocardial cells.


Asunto(s)
Apoptosis , Etanol , MicroARNs , Miocitos Cardíacos , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , MicroARNs/metabolismo , MicroARNs/genética , Etanol/farmacología , Animales , Ratas , Línea Celular , Transducción de Señal/efectos de los fármacos
6.
Curr Pharm Biotechnol ; 25(14): 1858-1866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173217

RESUMEN

OBJECTIVE: Cardiocerebrovascular disease is a severe threat to human health. Quercetin has a wide range of pharmacological effects such as antitumor and antioxidant. In this study, we aimed to determine how quercetin regulates mitochondrial function in H9c2 cells. METHODS: An H9c2 cell oxygen glucose deprivation/reoxygenation (OGD/R) model was constructed. The expression of miR-92a-3p and mitofusin 1 (Mfn1) mRNA in the cells was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the mitochondrial membrane potential of cells were examined by JC-1 staining. ATP production in the cells was detected using a biochemical assay. Mitochondrial morphological changes were observed using transmission electron microscopy. Detection of miR-92a-3p binding to Mfn1 was done using dual luciferase. Western blotting was used to detect the protein expression of Mfn1 in the cells. RESULTS: miR-92a-3p is essential in regulating cell viability, apoptosis, and tumor cell metastasis. OGD/R induced miR-92a-3p expression, decreased mitochondrial membrane potential and mitochondrial ATP production, and increased mitochondrial damage. Mitochondria are the most critical site for ATP production. Continued opening of the mitochondrial permeability transition pore results in an abnormal mitochondrial transmembrane potential. Both quercetin and inhibition of miR-29a-3p were able to downregulate miR-29a-3p levels, increase cell viability, mitochondrial membrane potential, and ATP levels, and improve mitochondrial damage morphology. Furthermore, we found that downregulation of miR-29a-3p upregulated the protein expression of Mfn1 in cells. Additionally, miR-92a-3p was found to bind to Mfn1 in a luciferase assay. miR- 29a-3p overexpression significantly inhibited the protein expression level of Mfn1. Quercetin treatment partially reversed the effects of miR-29a-3p overexpression in H9c2 cells. CONCLUSION: Quercetin promoted the recovery of mitochondrial damage in H9c2 cells through the miR-92a-3p/Mfn1 axis.


Asunto(s)
GTP Fosfohidrolasas , Potencial de la Membrana Mitocondrial , MicroARNs , Mitocondrias , Quercetina , Quercetina/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Ratas , Línea Celular , Animales , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Glucosa/metabolismo , Antioxidantes/farmacología , Adenosina Trifosfato/metabolismo , Proteínas de la Membrana , Proteínas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial
7.
J Bone Miner Metab ; 42(1): 1-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38055109

RESUMEN

INTRODUCTION: Osteoarthritis (OA) compromises patients' quality of life and requires further study. Although miR-92a-3p was reported to possess chondroprotective effects, the underlying mechanism requires further clarification. The objectives of this study were to elucidate the mechanism by which miR-92a-3p alleviates OA and to examine the efficacy of shRNA-92a-3p, which was designed based on mature miR-92a-3p. MATERIALS AND METHODS: TargetScan and luciferase reporter assay were used to predict the target of miR-92a-3p. Adipose-derived stem cells (ADSCs) were transfected with miR-92a-3p/miR-NC mimic for the analysis of chondrogenic biomarkers and SMAD proteins. ADSCs and osteoarthritic chondrocytes were transduced with shRNA-92a-3p for the analysis of chondrogenic biomarkers and SMAD proteins. OA was surgically induced in C57BL/6JJcl mice, and ADSCs with/without shRNA-92a-3p transduction were intra-articularly injected for the assessment of cartilage damage. RESULTS: SMAD6 and SMAD7 were predicted as direct targets of miR-92a-3p by TargetScan and luciferase reporter assay. Transfection of the miR-92a-3p mimic resulted in a decrease in SMAD6 and SMAD7 levels and an increase in phospho-SMAD2/3, phospho-SMAD1/5/9, SOX9, collagen type II, and aggrecan levels in ADSCs. Furthermore, shRNA-92a-3p decreased SMAD6 and SMAD7 levels, and increased phospho-SMAD2/3, phospho-SMAD1/5/9, SOX9, collagen type II, and aggrecan levels in ADSCs and osteoarthritic chondrocytes. Additionally, ADSC-shRNA-92a-3p-EVs reduced the rate of decrease of SOX9, collagen type II, and aggrecan in osteoarthritic chondrocytes. In mice with surgically induced OA, shRNA-92a-3p-treated ADSCs alleviated cartilage damage more effectively than nontreated ADSCs. CONCLUSIONS: miR-92a-3p and shRNA-92a-3p exhibit therapeutic effects in treating OA by targeting SMAD6 and SMAD7, thereby enhancing TGF-ß signaling.


Asunto(s)
MicroARNs , Osteoartritis , Humanos , Animales , Ratones , Condrocitos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Colágeno Tipo II/metabolismo , Agrecanos/metabolismo , Calidad de Vida , Ratones Endogámicos C57BL , Osteoartritis/genética , Osteoartritis/terapia , Osteoartritis/metabolismo , Proteínas Smad/metabolismo , Biomarcadores/metabolismo , Luciferasas/metabolismo , Luciferasas/farmacología , Proteína smad6/metabolismo , Proteína smad6/farmacología
8.
J Physiol Biochem ; 80(1): 189-204, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38041784

RESUMEN

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling.


Asunto(s)
Exosomas , MicroARNs , Humanos , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Cicatrización de Heridas , Queratinocitos/metabolismo , Proliferación Celular , Tejido Adiposo/metabolismo , Colágeno/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/genética
9.
Int J Nanomedicine ; 18: 7583-7603, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106447

RESUMEN

Introduction: Osteoporosis is a common bone disease in which the bone loses density and strength and is prone to fracture. Bone marrow mesenchymal stem cells (BMSCs) are important in bone-related diseases. Exosomes, as mediators of cell communication, have potential in cell processes. Previous studies have focused on muscle factors' regulation of bone remodeling, but research on exosomes is lacking. Methods:  In order to confirm the therapeutic effect of mechanically stimulated myocytes (C2C12) derived exosomes (Exosome-MS) on the Glucocorticoid-induced osteoporosis(GIOP) compared with unmechanically stimulated myocytes (C2C12) derived exosomes (Exosomes), we established a dexamethasone-induced osteoporosis model in vivo and in vitro. Cell viability and proliferation were assessed using CCK8 and EDU assays. Osteogenic potential was evaluated through Western blotting, real-time PCR, alkaline phosphatase activity assay, and alizarin red staining. Differential expression of miRNAs was determined by high-throughput sequencing. The regulatory mechanism of miR-92a-3p on cell proliferation and osteogenic differentiation via the PTEN/AKT pathway was investigated using real-time PCR, luciferase reporter gene assay, Western blotting, and immunofluorescence. The therapeutic effects of exosomes were evaluated in vivo using microCT, HE staining, Masson staining, and immunohistochemistry. Results:  In this study, we found that exosomes derived from mechanical stress had a positive impact on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs). Importantly, we demonstrated that miR-92a-3p mimics could reverse dexamethasone-induced osteoporosis in vitro and in vivo, indicating that mechanical stress-induced mouse myoblast-derived exosomes could promote osteogenesis and prevent the occurrence and progression of osteoporosis in mice through miR-92a-3p/PTEN/AKT signaling pathway. Conclusion:  Exosomes derived from mechanical stress-induced myoblasts can promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells through miR-92a-3p/PTEN/AKT signaling pathway, and can have a therapeutic effect on glucocorticoid-induced osteoporosis in mice in vivo.


Asunto(s)
Exosomas , MicroARNs , Osteoporosis , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucocorticoides , Osteogénesis , Exosomas/metabolismo , Estrés Mecánico , Transducción de Señal , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Dexametasona/farmacología
11.
Front Mol Neurosci ; 16: 1173212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881368

RESUMEN

Introduction: Circulating microRNAs are promising biomarkers for multiple sclerosis (MS). Our aim was to correlate serum microRNA levels with various magnetic resonance imaging (MRI) parameters. Methods: We recruited 50 MS patients and measured cervical spine and cerebral white matter lesions together with regional brain volumes. Microstructural changes in the white matter were investigated with diffusion tensor imaging. Magnetic resonance spectroscopy was performed to measure cerebral metabolites. Functional connectivity within the default mode network was examined with resting-state functional MRI. On the day of the MRI measurements, we collected serum samples and carried out quantitative analysis of ten pre-selected microRNAs using droplet digital PCR. Results: Serum level of miR-143.3p could differentiate between MS subtypes and had lower levels in progressive MS types. We found significant associations between microRNA levels and MRI measures: (1) higher miR-92a.3p and miR-486.5p levels were associated with greater total white matter lesion volumes within the cervical spine, (2) decreased miR-142.5p levels was associated with reduced total creatinine concentration and (3) miR-92a.3p, miR-142.5p and miR-486.5p levels were associated with functional connectivity strengths between specific nodes of the default mode network. Specifically, we found a negative association between miR-92a.3p and miR-486.5p levels and connectivity strength between the lateral temporal cortex and posterior inferior parietal lobule, and a positive association between miR-142.5p level and connectivity strength between the retrosplenial cortex and temporal pole. However, miRNA levels were not associated with regional brain volumes. Conclusion: We provide here further evidence that circulating microRNAs may show correlation with both structural and functional neuroimaging outcomes in patients with MS.

12.
J Pers Med ; 13(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37511774

RESUMEN

Circulating serum miRNA are increasingly used as biomarkers and potential treatment targets in several clinical scenarios, including cardiovascular diseases. However, the current data on circulating miRNA in thoracic aorta aneurism (TAA) patients are inconclusive. The aim of the present study is to compare the levels of several circulating miRNA in patients with degenerative TAA, coronary artery disease (CAD), and controls for special profile identification. We have identified several candidates for the role of new biomarkers: miR-143-3p, miR-181-5p, miR-126-3p, miR-126-5p, miR-145-5p, miR-150-5p, and miR-195-5p. MATERIALS AND METHODS: Serum samples of 100 patients were analyzed, including 388 TAA patients scheduled for elective surgery, 67 patients with stable CAD and 17 controls, were used for miRNA isolation and identification. RESULTS: More specific for TAA with very high predictive ability in ROC analysis was an increase in the levels of miR-21-5p, miR-29b-5p, miR-126-5p/-3p, miR-181b-5p, and miR-92a-3p, with the latter microRNA being investigated as a novel potential marker of TAA for the first time. CONCLUSION: TAA and CAD patients demonstrated a significant increase in the levels of circulating miR-126-5p/-3p, miR-181b-5p, and miR-29b-3p. More specific for TAA with very high predictive ability in ROC analysis was an increase in the levels of miR-21-5p, -29b-5p, -126-5p/-3p, 181b-5p, and -92a-3p, with the latter microRNA being investigated as a potential marker of TAA for the first time.

13.
Am J Transl Res ; 15(4): 2585-2597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37193164

RESUMEN

OBJECTIVE: This study seeks to assess the efficacy of exfoliated colonocytes isolated from feces (ECIF) miR-92a as a clinical colorectal cancer diagnostic marker in a larger cohort. METHODS: Clinicopathologic data from colorectal cancer patients and health controls that underwent colonoscopy, as well as patients of other cancers diagnosed, were included. A total of 963 Chinese participants were enrolled, with 292 (27.4%) having colorectal cancer, 140 (14.5%) having other types of cancer, e.g., pancreatic, liver, oral, bile duct, esophagus, and stomach cancer, 171 (17.8%) having infection in the intestine, rectal, stomach, appendix, and gastrointestinal ulcer, and 360 (37.4%) of healthy controls. ECIF samples were gathered and miR-92a levels were detected using TaqMan probe-based miR-92a real-time quantitative PCR (RT-qPCR) kit developed by Shenzhen GeneBioHealth Co., Ltd. RESULTS: Through a series of experiments, we demonstrated that the Ep-LMB/Vi-LMB magnetic separation system is feasible, highly specific, and highly sensitive at a cutoff value of 1053 copies per 6 ng of ECIF RNA. ECIF miR-92a levels were significantly higher in colorectal cancer patients than in controls. Colorectal cancer detection sensitivity and specificity were 87.3% and 86.9% respectively. Furthermore, the performance of this miR-92a detection kit demonstrated that it is an effective tool for colorectal cancer, with a high sensitivity of 84.1%, even in early cancer stages (0, I, and II). Furthermore, tumor removal resulted in lower stool miR-92a levels (3.21±0.58 vs. 2.14±1.14, P < 0.0001, n = 65). CONCLUSION: Finally, the miR-92a RT-qPCR kit detects ECIF-increased miR-92a and could be used for colorectal cancer screening.

14.
J Exp Clin Cancer Res ; 42(1): 109, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37131239

RESUMEN

BACKGROUND: We have previously reported that extracellular vesicles (EVs) derived from osteoblastic, osteoclastic and mixed prostate cancer cells promote osteoclast differentiation and inhibit osteoblast differentiation via transferring miR-92a-1-5p. In the present study, we focused on engineering miR-92a-1-5p into EVs and determining any therapeutic roles and mechanisms of the engineered EVs. METHODS: A stable prostate cancer cell line (MDA PCa 2b) overexpressing miR-92a-1-5p was constructed by lentivirus, and EVs were isolated by ultracentrifugation. The overexpression of miR-92a-1-5p in both cells and EVs was tested using qPCR. Osteoclast function was evaluated by Trap staining, mRNA expression of osteoclastic markers ctsk and trap, immunolabeling of CTSK and TRAP and microCT using either in vitro and in vivo assays. Target gene of miR-92a-1-5p was proved by a dual-luciferase reporter assay system. siRNAs were designed and used for transient expression in order to determine the role of downstream genes on osteoclast differentiation. RESULTS: Stable overexpression cells of miRNA-92a-5p was associated with EVs upregulating this microRNA, as confirmed by qPCR. Further, miR-92a-1-5p enriched EVs promote osteoclast differentiation in vitro by reducing MAPK1 and FoxO1 expression, associated with increased osteoclast function as shown by TRAP staining and mRNA expression of osteoclast functional genes. siRNA targeting MAPK1 or FoxO1 resulted in similar increase in osteoclast function. In vivo, the miR-92a-1-5p enriched EVs given via i.v. injection promote osteolysis, which was associated with reduction of MAPK1 and FoxO1 expression in bone marrow. CONCLUSION: These experiments suggest that miR-92a-1-5p enriched EVs regulate osteoclast function via reduction of MAPK1 and FoxO1.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias de la Próstata , Humanos , Masculino , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Osteoclastos/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , ARN Mensajero/metabolismo
15.
Immun Inflamm Dis ; 11(4): e819, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37102653

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is an inflammatory disease with high mortality. Previous study has suggested that circular RNAs are dysregulated and involved in the regulation of inflammatory responses in AP. This study aimed to investigate the function and regulatory mechanism underlying mmu_circ_0000037 in caerulein-induced AP cellular model. METHODS: Caerulein-treated MPC-83 cells were used as an in vitro cellular model for AP. The expression levels of mmu_circ_0000037, microRNA (miR)-92a-3p, and protein inhibitor of activated STAT1 (Pias1) were detected by quantitative real-time polymerase chain reaction. Cell viability, amylase activity, apoptosis, and inflammatory response were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Amylase Assay Kit, flow cytometry, and enzyme-linked immunosorbent assays. The protein level was quantified by western blot analysis. The target interaction between miR-92a-3p and mmu_circ_0000037 or Pias1 were predicted by StarbaseV3.0 and validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS: Mmu_circ_0000037 and Pias1 levels were decreased, whereas miR-92a-3p expression was elevated in caerulein-induced MPC-83 cells. Overexpression of mmu_circ_0000037 protected MPC-83 cells from caerulein-induced the decrease of cell viability, as well as the promotion of amylase activity, apoptosis and inflammation. MiR-92a-3p was targeted by mmu_circ_0000037, and miR-92a-3p overexpression rescued the effect of mmu_circ_0000037 on caerulein-induced MPC-83 cell injury. Pias1 was confirmed as a target of miR-92a-3p and mmu_circ_0000037 regulated the expression of Pias1 by sponging miR-92a-3p. CONCLUSION: Mmu_circ_0000037 relieves caerulein-induced inflammatory injury in MPC-83 cells by targeting miR-92a-3p/Pias1 axis, providing a theoretical basis for the treatment of AP.


Asunto(s)
MicroARNs , Pancreatitis , Proteínas Inhibidoras de STAT Activados , ARN Circular , Humanos , Enfermedad Aguda , Amilasas , Ceruletida/toxicidad , MicroARNs/genética , Pancreatitis/inducido químicamente , Pancreatitis/genética , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , ARN Circular/genética
16.
Environ Toxicol ; 38(6): 1420-1430, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36988267

RESUMEN

Hydroquinone (HQ), one of the metabolites of benzene in humans, has significant hepatotoxic properties. Chronic exposure to HQ can lead to leukemia. In a previous study by this group, we constructed a model of malignant transformation of human lymphoblastoid cells (TK6) induced by chronic exposure to HQ with significant subcutaneous tumorigenic capacity in nude mice. miR-92a-3p is a tumor factor whose role in HQ-induced malignant transformation is not yet clear. In the present study, raw signal analysis and dual-luciferase reporter gene results suggested that miR-92a-3p could target and regulate TOB1, and the expression level of miR-92a-3p was significantly upregulated in the long-term HQ-induced TK6 malignant transformation model, while the anti-proliferative factor TOB1 was significantly downregulated. To investigate the mechanism behind this, we inhibited miR-92a-3p in a malignant transformation model and found a decrease in cell viability, a decrease in MMP-9 protein levels, a G2/M phase block in the cell cycle, and an upregulation of the expression of G2/M phase-related proteins cyclinB1 and CDK1. Inhibition of miR-92a-3p in combination with si-TOB1 restored cell viability, inhibited cyclin B1 and CDK1 protein levels, and attenuated the G2/M phase block. Taken together, miR-92a-3p reduced the cell proliferation rate of HQ19 and caused cell cycle arrest by targeting TOB1, which in turn contributed to the altered malignant phenotype of the cells. This study suggests that miR-92a-3p is likely to be a biomarker for long-term HQ-induced malignant transformation of TK6 and could be a potential therapeutic target for leukemia caused by long-term exposure to HQ.


Asunto(s)
Leucemia , MicroARNs , Animales , Ratones , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Hidroquinonas/toxicidad , Ratones Desnudos , División Celular , Apoptosis/genética
17.
Cell Mol Biol Lett ; 28(1): 20, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890442

RESUMEN

BACKGROUND: Kidney ischemia-reperfusion injury is inevitable in kidney transplantation, and is essential for primary graft dysfunction and delayed graft function. Our previous study has proved that miR-92a could ameliorate kidney ischemia-reperfusion injury, but the mechanism has not been studied. METHODS: This study conducted further research on the role of miR-92a in kidney ischemia-reperfusion injury and organ preservation. In vivo, mice models of bilateral kidney ischemia (30 min), cold preservation after ischemia (cold preservation time of 6, 12, and 24 h), and ischemia-reperfusion (reperfusion time of 24, 48, and 72 h) were established. Before or after modeling, the model mice were injected with miR-92a-agomir through the caudal vein. In vitro, the hypoxia-reoxygenation of HK-2 cells was used to simulate ischemia-reperfusion injury. RESULTS: Kidney ischemia and ischemia-reperfusion significantly damaged kidney function, decreased the expression of miR-92a, and increased apoptosis and autophagy in kidneys. miR-92a agomir tail vein injection significantly increased the expression of miR-92a in kidneys, improved kidney function, and alleviated kidney injury, and the intervention before modeling achieved a better effect than after. Moreover, miR-92a agomir significantly reduced the apoptosis and autophagy in HK-2 cells induced by hypoxia, hypoxia-reoxygenation, and rapamycin, while miR-92a antagomir had opposite effects. Furthermore, mitogen-activated protein kinase, c-Jun NH (2) terminal kinase, caspase 3, Beclin 1, and microtubule-associated protein 1 light chain 3B were inhibited by overexpression of miR-92a both in vivo and in vitro, which in turn reduced apoptosis and autophagy. CONCLUSIONS: Our results prove that overexpression of miR-92a attenuated kidney ischemia-reperfusion injury and improved kidney preservation, and intervention before ischemia-reperfusion provides better protection than after.


Asunto(s)
MicroARNs , Daño por Reperfusión , Ratones , Animales , MicroARNs/metabolismo , Riñón/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Autofagia , Isquemia/metabolismo , Apoptosis/genética , Hipoxia/metabolismo
18.
Funct Integr Genomics ; 23(2): 93, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941394

RESUMEN

Based on the recently added high throughput analysis data on small noncoding RNAs in modulating disease pathophysiology of malaria, we performed an integrative computational analysis for exploring the role of human-host erythrocytic microRNAs (miRNAs) and their influence on parasite survival and host homeostasis. An in silico analysis was performed on transcriptomic datasets accessed from PlasmoDB and Gene Expression Omnibus (GEO) repositories analyzed using miRanda, miRTarBase, mirDIP, and miRDB to identify the candidate miRNAs that were further subjected to network analysis using MCODE and DAVID. This was followed by immune infiltration analysis and screening for RNA degradation mechanisms. Seven erythrocytic miRNAs, miR-451a, miR-92a-3p, miR-16-5p, miR-142-3p, miR-15b-5p, miR-19b-3p, and miR-223-3p showed favourable interactions with parasite genes expressed during blood stage infection. The miR-92a-3p that targeted the virulence gene PfEMP1 showed drastic reduction during infection. Performing pathway analysis for the human-host gene targets for the miRNA identified TOB1, TOB2, CNOT4, and XRN1 genes that are associated to RNA degradation processes, with the exoribonuclease XRN1, highly enriched in the malarial samples. On evaluating the role of exoribonucleases in miRNA degradation further, the pattern of Plasmodium falciparum_XRN1 showed increased levels during infection thus suggesting a defensive role for parasite survival. This study identifies miR-92a-3p, a member of C13orf25/ miR-17-92 cluster, as a novel miRNA inhibitor of the crucial parasite genes responsible for symptomatic malaria. Evidence for a plausible link to chromosome 13q31.3 loci controlling the epigenetic disease regulation is also suggested.


Asunto(s)
Malaria , MicroARNs , Proteínas Protozoarias , Humanos , Eritrocitos/metabolismo , Perfilación de la Expresión Génica , Malaria/genética , MicroARNs/genética , MicroARNs/metabolismo , Transcriptoma , Proteínas Protozoarias/metabolismo , Plasmodium falciparum
19.
Cancers (Basel) ; 15(4)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36831695

RESUMEN

MicroRNA-92a (miR-92a) may serve as a novel promising biomarker in multiple cancers, including colorectal cancer (CRC); however, the diagnostic accuracy and the underlying molecular mechanism of miR-92a in CRC is poorly understood. We first carried out meta-analysis and found that serum/plasma miR-92a yield better diagnostic efficacy when compared to stool samples and CRC tissues, and this finding was validated by our independent study through stool sample. Multiple bioinformatics assay indicated that miR-92a expression was positively correlated with heterogeneous nuclear ribonucleoproteins A2/B1 (HNRNPA2B1) expression and closely related with the clinical characteristics of CRC. Experimental evidence showed that knockdown of HNRNPA2B1 could significantly decrease miR-92a expression and secretion in RKO cells. HNRNPA2B1 mediated miR-92a via m6A RNA modification. These findings indicate that HNRNPA2B1-m6A RNA modification-derived MicroRNA-92a upregulation and section from the local CRC acts a candidate noninvasive serum biomarker in colorectal cancer. Our study provides a novel insight into miR-92a mechanisms in relation to both expression and secretion for CRC diagnosis.

20.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768805

RESUMEN

Cardiovascular complications are the main cause of morbidity and mortality from diabetes. Herein, vascular inflammation is a major pathological manifestation. We previously characterized the cardiac microvascular inflammatory phenotype in diabetic patients and highlighted micro-RNA 92a (miR-92a) as a driver of endothelial dysfunction. In this article, we further dissect the molecular underlying of these findings by addressing anti-inflammatory Krüppel-like factors 2 and 4 (KLF2 and KLF4). We show that KLF2 dysregulation in diabetes correlates with greater monocyte adhesion as well as migratory defects in cardiac microvascular endothelial cells. We also describe, for the first time, a role for myocyte enhancer factor 2D (MEF2D) in cardiac microvascular dysfunction in diabetes. We show that both KLFs 2 and 4, as well as MEF2D, are dysregulated in human and porcine models of diabetes. Furthermore, we prove a direct interaction between miR-92a and all three targets. Altogether, our data strongly qualify miR-92a as a potential therapeutic target for diabetes-associated cardiovascular disease.


Asunto(s)
Diabetes Mellitus , MicroARNs , Humanos , Animales , Porcinos , Factores de Transcripción MEF2/genética , Células Endoteliales , Factores de Transcripción de Tipo Kruppel/genética , MicroARNs/genética , Diabetes Mellitus/genética , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...