RESUMEN
Making health-enhancing tea from Forsythia suspensa leaves has been a tradition of Chinese folk culture for centuries. However, these leaves were not officially recognized as a new food source until 2017 by the Chinese government. In this study, ethyl acetate fractions from Forsythia suspensa fruit and leaves exhibited excellent antioxidant activity in vitro antioxidant assays and in vivo D-galactose-induced aging mice model. The antioxidant activity of the leaves was higher than that of fruit both in vitro and in vivo. The chemical constituents present in these ethyl acetate fractions were comprehensively analyzed using UHPLC-Q-Exactive-Orbitrap/MS. A total of 20 compounds were identified, among which forsythoside E, (+)-epipinoresinol, dihydromyricetin, chlorogenic acid, and ursolic acid were exclusively detected in the ethyl acetate fraction of Forsythia suspensa leaves, but absent in the ethyl acetate fraction derived from its fruit. This study provides theoretical support for the utilization of Forsythia suspensa fruit and leaves.
Asunto(s)
Envejecimiento , Antioxidantes , Forsythia , Frutas , Galactosa , Extractos Vegetales , Hojas de la Planta , Animales , Forsythia/química , Hojas de la Planta/química , Ratones , Frutas/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Antioxidantes/química , Antioxidantes/farmacología , Envejecimiento/efectos de los fármacos , Masculino , Humanos , Espectrometría de MasasRESUMEN
BACKGROUND: Calorie restriction (CR) is suggested to activate protective mechanisms in neurodegenerative diseases (NDDs). Despite existing literature highlighting the protective role of Sirtuin (SIRT) proteins against age-related neurodegeneration (ND), no study has explored the total levels of SIRT 1, 3, and 6 proteins simultaneously in brain homogenates by ELISA following intermittent calorie restriction. Applying CR protocols in mice to induce stress, we aimed to determine whether ND would be more pronounced with ad libitum (AL) or with CR. METHODS: Mice were randomly assigned to ad libitum (AL), Chronic CR (CCR), or Intermittent CR (ICR) groups at 10 weeks of baseline age (BL). SIRT 1, 3, and 6 protein levels were measured in the homogenized whole-brain supernatants of 49/50 weeks old mice by the ELISA method. Neuronal morphology was evaluated by the cresyl violet on the hippocampus. Neurodegeneration (ND) was assessed by the fluoro-jade and ImageJ was used for quantifications. RESULTS: In the ICR group, SIRT1 levels were elevated compared to both the AL and BL groups. Similarly, the CCR group exhibited higher SIRT1 values compared to the AL and BL groups. While SIRT3 levels were higher in both the ICR and CCR groups compared to the AL and BL groups, this disparity did not reach statistical significance. SIRT6 levels were also higher in the ICR group compared to both the BL and AL groups, with the CCR group showing higher values compared to the BL and AL groups as well. Image quantification demonstrated significant neurodegeneration in the AL group compared to the CCR and ICR group, with no observed alterations in nerve cell morphology and number. CONCLUSION: This study revealed that the levels of SIRT 1, SIRT 3, and SIRT 6 in brain tissue were notably elevated, and there was less evidence of ND at the 50-week mark in groups undergoing continuous calorie restriction and intermittent calorie restriction compared to baseline and ad libitum groups. Our findings illustrate that CR promotes increased SIRT expression in the mouse brain, thereby potentially mitigating neurodegeneration.
Asunto(s)
Encéfalo , Restricción Calórica , Sirtuina 3 , Sirtuinas , Animales , Sirtuinas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Masculino , Sirtuina 3/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Ratones , Sirtuina 1/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patologíaRESUMEN
AIM: Several studies have shown that the progression of proteinuria and renal tissue injury is associated with activation of the intrarenal renin-angiotensin system (RAS). CCCTC-binding factor (CTCF) is a DNA-binding factor that plays an essential role in the regulation of gene expression. In the present study, we aimed to investigate the phenotypic effects of CTCF deficiency in podocytes. METHODS: Angiotensin II type 1 receptor blockers (ARBs) were administered to the podocyte-specific Ctcf knockout mice, and histological and biochemical analyzes were performed. We also investigated the changes in the expression of podocin in podocyte cell cultures with or without stimulation with angiotensin II from glomeruli isolated using magnetic beads from podocyte-specific Ctcf knockout mice. RESULTS: Mice in which Ctcf was deleted from podocytes developed glomerulopathy and mice developed severe progressive proteinuria, and impaired renal function. Moreover, ARBs suppressed the development of glomerulopathy in podocyte-specific Ctcf knockout mice. Both real-time polymerase chain reaction and western blotting showed that podocin expression was decreased in cell cultures stimulated with angiotensin II. Furthermore, RAS components gene expressions in podocyte cell cultures isolated from podocyte-specific Ctcf knockout mice were significantly increased. CONCLUSION: These results suggest that RAS is involved in the development of glomerulopathy in podocyte-specific Ctcf knockout mice. Elucidation of the pathophysiology of podocyte-specific Ctcf knockout mice may provide new insights into the relationship between podocyte injury and chronic glomerulonephritis.
RESUMEN
BACKGROUND AND OBJECTIVE: The brain α7 nicotinic acetylcholine receptor (α7 nAChR) has a critical role in the pathophysiology of Major Depressive Disorder (MDD) involving neuroinflammation. The α7 nAChR stimulation has been shown to modulate the anti-inflammatory effects of nuclear peroxisome proliferator-activated receptor-α (PPAR-α) via its endogenous ligands in the brain. The present study determined the effects of α7 nAChR modulator PNU120596 on PPAR-α, an inhibitor of κB (IκB) and nuclear factor-κB (NF-κB) expression and interleukin-1ß (IL-1ß) level in the hippocampus and prefrontal cortex (PFC) in an inflammatory mouse model of MDD induced by lipopolysaccharide (LPS). We also evaluated the combined effects of PNU120596 and GW6471, a PPAR-α antagonist, on depressive-like and cognitive deficit-like behaviors in mice. MATERIALS AND METHODS: Male C57BL/6J mice were treated with PNU120596, followed by systemic LPS (1 mg/kg, i.p.) administration. The effects of PNU120596 on the mRNA expression of PPAR-α and IκB were assessed in the hippocampus and PFC using qRT-PCR following LPS administration. Similarly, the effects of PNU120596 on the immunoreactivity of PPAR-α and NF-κB were measured in the hippocampus and PFC using an immunofluorescence assay. Furthermore, the effects of PNU120596 on pro-inflammatory cytokine IL-1ß levels were measured in the hippocampus and PFC using ELISA. The combined effects of PNU120596 and GW6471 were also assessed against LPS-induced depressive-like and cognitive deficit-like behaviors using the Tail Suspension Test (TST), Forced Swim Test (FST), and Y-maze test. RESULTS: PNU120596 (4 mg/kg) significantly prevented LPS-induced dysregulation of PPAR-α, IκB, p-NF-κB p65, and IL-1ß in the hippocampus and PFC. Pretreatment with PNU120596 showed significant antidepressant-like effects by reducing immobility time in the TST and FST. Similarly, pretreatment with PNU120596 significantly reduced cognitive deficit-like behavior in the Y-maze test. The antidepressant and pro-cognitive-like effects of PNU120596 were reversed by PPAR-α antagonist GW6471 (2 mg/kg). CONCLUSION: These results suggest that PNU120596 prevented LPS-induced MDD and cognitivelike behavior by regulating α7 nAChR/PPAR-α signaling pathway in the hippocampus and PFC.
RESUMEN
Introduction: In this study, we report a novel therapeutic approach redirecting antigen-specific CD4+ T cells recognizing a hybrid insulin peptide (BDC2.5 T cell receptor (TCR) transgenic CD4+ T cells) to attract and suppress islet-specific CD8+ T cells T cells in the non-obese diabetic (NOD) mouse model, and prevent the development of autoimmune diabetes. Methods: Purified BDC2.5 CD4+ T cells were induced to differentiate into regulatory T cells (Tregs). The Tregs were then electroporated with mRNA encoding chimeric human ß2 microglobulin (hß2m) covalently linked to insulin B chain amino acids 15-23 (designated INS-eTreg) or islet-specific glucose-6-phosphatase related protein (IGRP) peptide 206-214 (designated IGRP-eTreg). Immunoregulatory functions of these engineered regulatory T cells (eTregs) were tested by in vitro assays and in vivo co-transfer experiments with ß-cell-antigen-specific CD8+ T cells in NOD.Scid mice or by adoptive transfer into young, pre-diabetic NOD mice. Results: These eTregs were phenotyped by flow cytometry, and shown to have high expression of FoxP3, as well as other markers of Treg function, including IL-10. They suppressed polyclonal CD4+ T cells and antigen-specific CD8+ T cells (recognizing insulin or IGRP), decreasing proliferation and increasing exhaustion and regulatory markers in vitro. In vivo, eTregs reduced diabetes development in co-transfer experiments with pathogenic antigen-specific CD8+ T cells (INS-CD8+ or IGRP-CD8+ cells) into NOD.Scid mice. Finally, when the eTreg were injected into young NOD mice, they reduced insulitis and prevented spontaneous diabetes in the recipient mice. Conclusion: Our results suggest a novel therapeutic strategy to protect NOD mice by targeting antigen-specific cytotoxic CD8+ T cells, using redirected antigen-specific CD4+ Treg cells, to suppress autoimmune diabetes. This may suggest an innovative therapy for protection of people at risk of development of type 1 diabetes.
Asunto(s)
Linfocitos T CD8-positivos , Diabetes Mellitus Tipo 1 , Ratones Endogámicos NOD , Linfocitos T Reguladores , Animales , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/prevención & control , Linfocitos T CD8-positivos/inmunología , Linfocitos T Reguladores/inmunología , Ratones , Humanos , Femenino , Ratones SCID , Insulina/inmunología , Traslado Adoptivo , Ratones Transgénicos , Glucosa-6-Fosfatasa/inmunología , Glucosa-6-Fosfatasa/genética , Microglobulina beta-2/genética , Microglobulina beta-2/inmunologíaRESUMEN
Introduction: Surgical interventions in mice require appropriate pain relief to ensure animal welfare and to avoid influence of pain on research findings. Carprofen is a non-steroidal anti-inflammatory drug commonly used as an analgesic for interventions inducing mild to moderate pain in laboratory rodents. Despite its frequent use, species-specific data on pharmacokinetics (PK), side effects, and potential impact on behavioral pain indicators are limited. Methods: We determined PK and tolerability profiles of carprofen in healthy male and female C57BL/6J mice (n = 42), administered at highest recommended doses via single subcutaneous (s.c.) injection (20 mg/kg) and oral self-administration (25 mg/kg/24 h) per drinking water (d.w.) for 5 days. Plasma concentrations were measured at various time points after the start of the treatment (n = 6 per time point), and side effects were evaluated using a modified Irwin test battery, hematology, and histopathology. Additionally, potential interference with cage-side behaviors commonly used for pain assessment, such as the mouse grimace scale, wheel running, burrowing, nesting, and grooming activity, was investigated. Results: Maximum plasma concentrations of 133.4 ± 11.3 µg/ml were reached 1 h after single s.c. injection with an elimination half-life of 8.52 h. Intake from d.w. resulted in a steady state within 24 h after the start of the treatment with plasma levels of around 60 µg/ml over 5 days in both sexes. The medicated water was well-accepted, and increased d.w. intake was observed in the first 24 h after exposure (p < 0.0001). The Irwin test revealed only minor influence on tested behavior and physiological functions. However, during treatment via d.w., an increase in body temperature (p < 0.0001) was observed, as well as a reduction in voluntary wheel running activity by 49-70% in male mice. Moreover, grooming behavior was slightly affected. Hematology and histopathology were without pathological findings that could be attributed to carprofen treatment. High-dose carprofen can be considered safe and of favorable PK for both administration routes assessed in healthy C57BL/6J mice of both sexes. Further efficacy evaluation of carprofen as monoanalgesic or component of multimodal post-surgical regimens is clearly encouraged; however, the impact on behavioral markers used for pain assessment should be considered in this context.
RESUMEN
BACKGROUND: While polystyrene microplastics (PS-MPs) are emerging as potentially significant health threats, linked to cancer and reproductive dysfunction, their precise effects on human health remain largely unknown. We aimed to investigate the underlying mechanisms promoting microplastic-induced damage in the reproductive system. METHODS: Thirty C57BL/6 male mice were randomly allocated into six equal-sized groups. Mice were exposed to fluorescent PS-MPs (5 µm, < 18%, green) at a dose of 1 and 3 mg/dL via oral gavage for 28 and 56 days, respectively (control, 0 mg/dL). The presence of antibodies and inflammatory and oxidative stress markers were evaluated using western blotting. Sperm analysis was also performed. Mouse testis Sertoli TM4 cells were divided into two groups: control (medium only) and PS-MPs (medium containing, 1,000 µg/mL) groups and cultured in vitro for 1, 24, 48, or 72 hours. The cells were cultured in a Ham's F12: Dulbecco's Modified Eagle Medium medium with 0.25% fetal bovine serum at 37°C with humidified atmosphere of 5% carbon dioxide in the air. Protein analyses for interleukin (IL)-6, IL-10, NADPH-oxidase (NOX)-2, NOX-4, hypoxia-inducible transcription factor (HIF)-2α, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-ß were performed using western blotting. RESULTS: The testes were evaluated after 28 and 56 days of exposure. Varying sizes of PS-MPs were detected in the testes (ranging from 5.870 to 7.768 µm). Significant differences in sperm concentration, motility, and the proportion of normal sperm were observed between the two groups. An increase in TGF-ß, HIF-2α, and NOX-4 levels was observed using western blot analysis. However, no dose-dependent correlations were observed between the two groups. In vitro evaluation of the PS-MPs group displayed PS-MP penetration of the lumen of Sertoli cells after 1 hour. Further PS-MP aggregation within Sertoli cells was observed at 24, 48, and 72 hours. A significant increase in inflammatory protein expressions (IL-10, TGF-ß, MCP-1, IL-6, TNF-α, and HIF-2α) was observed through western blotting, although oxidative agents did not show a significant increase. CONCLUSION: PS-MPs induced reproductive dysfunction in male mice provide new insights into PS-MPs-associated toxicity in mammals.
Asunto(s)
Ratones Endogámicos C57BL , Microplásticos , Estrés Oxidativo , Poliestirenos , Células de Sertoli , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/efectos de los fármacos , Animales , Microplásticos/toxicidad , Microplásticos/efectos adversos , Poliestirenos/química , Poliestirenos/efectos adversos , Ratones , Estrés Oxidativo/efectos de los fármacos , Fertilidad/efectos de los fármacos , Interleucina-6/metabolismo , Motilidad Espermática/efectos de los fármacos , Testículo/metabolismo , Testículo/efectos de los fármacos , Testículo/patología , Testículo/citología , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Interleucina-10/metabolismo , Quimiocina CCL2/metabolismo , Células Cultivadas , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Purpose: C-reactive protein (CRP) functions as a nonspecific marker in various inflammatory disorders, particularly in evaluating the efficacy of pharmacological treatments in patients with ulcerative colitis. The existing body of evidence does not offer adequate support for the direct implication of CRP in modulating the advancement of ulcerative colitis. Methods: Our study employed a rigorous mouse model. An ulcerative colitis mouse model was established by subjecting CRP-deficient mice to dextran sulfate sodium (DSS) treatment. The phenotype of the mice, which encompassed parameters such as body weight, colon length, and spleen weight, was meticulously evaluated. Additionally, various physiological and biochemical indicators were assessed, including colon histopathology, expression levels of inflammatory factors, and staining of the intestinal mucus layer. Results: The absence of CRP did not significantly affect the phenotype, physiological characteristics, and biochemical indices in a mouse model of ulcerative colitis compared to mice with wild-type CRP. Additionally, eliminating intestinal bacteria flora interference through antibiotic treatment revealed that mice lacking CRP did not demonstrate any notable variations in the ulcerative colitis model. Meanwhile, the survival rate of mice lacking CRP did not exhibit a statistically significant difference compared to wild-type mice. Conclusion: The results of our study suggest that CRP may not directly mediate ulcerative colitis. Instead, it is more likely to be a bystander that is present alongside with elevated inflammatory factors. Further investigation is warranted to determine the precise role of CRP in humans, given the significant limitations associated with the use of mouse models.
RESUMEN
Purpose: Rope bamboo (Gigantochloa apus) is traditionally used for medicinal purposes, and extracts from stem leaves and shoots have been shown to possess antioxidant and anti-inflammatory activity. Thus, this study looked at the potential compounds present in and the usefulness of Rope bamboo liquid smoke preparations in the wound healing process in mice. Methods: The fingerprinting of the liquid smoke was done by liquid chromatography-mass spectrometry. In-vivo experiments were conducted to observe the diameter and percentage of wound healing in mice for 14 days using topical formulations containing liquid smoke concentrations of 100%, 50%, 25%, positive control and negative control. Statistical analyses were conducted using the Kruskal-Wallis test and Spearman correlation. Results: The phytochemical fingerprint showed the presence of alkaloids, flavonoids, vitamins, phenols, and lipids. The 100% undiluted liquid smoke accelerated wound healing faster compared to 50% and 25% dilutions. The differences in wound diameters were statistically significant across treatments having a p-value of 0.020 and dose-dependent (p = 0.029). Conclusion: Liquid smoke acceleration of the wound healing process was dose-dependent compared to controls. This dose-dependency indicates that the wound healing effects were probably due to the anti-inflammatory, antioxidant, and antimicrobial activities of the elucidated constituents of Rope bamboo liquid smoke.
RESUMEN
Background: Pulmonary infections resulting from respiratory syncytial virus (RSV) continue to pose a significant threat to the well-being of infants and the elderly, but there is no safe, effective and specific treatment except symptomatic treatment. Forsythia Suspensa Leaf (FSL) is cold in nature and bitter in taste, and has the efficacy of clearing away heat and toxic materials. Previous research by our research group showed that the active components in FSL have the pharmacological effect of anti-RSV. Based on that, this study aims further to clarify the anti-RSV active components and mechanism of FSL. Methods: Firstly, we established the BALB/c mouse model of RSV infection, assessed the in vivo anti-RSV efficacy, and determined the optimal dosage of FSL and its active components. Evaluation parameters included body weight changes, organ indices, lung tissue pathological sections, lung tissue viral load, and inflammatory factors. Additionally, we used RT-PCR, Western Blot and other molecular biology techniques to determine the expression changes of key factors such as Nrf2 and NLRP3 in PI3K/Akt-NLRP3 pathway, and revealed the anti-RSV mechanism of FSL and its active components. Results: Pharmacodynamic experiments in animals showed that the FSL Low (0.4 g/kg·d), RosA Low (100 mg/kg·d) and Phillyrin Medium (100 mg/kg·d) groups could effectively improve the pathological conditions of mice with RSV pneumonia, such as weight loss, the level of pulmonary inflammatory factors and the increase of viral load. In addition, oral administration of Phillyrin at a dose of 100 mg/kg d to RSV-infected mice can effectively control the trend that the expression of Nrf2 protein decreases and the expression of NLRP3 protein increases in RSV pneumonia mice. Conclusion: Phillyrin, the active component in FSL, can not only directly inhibit the replication of RSV, but also effectively control the inflammatory reaction caused by RSV infection and improve lung injury, which is expected to become a potential drug against RSV pneumonia.
RESUMEN
Introduction: The purpose of this research was to test the impact of seeding a hydrogel chitosan scaffold (HCS) with human adipose-derived stem cells (hADSCs) under the influence of photobiomodulation (PBM) on the remodeling step on the wound repairing process in mice. Methods: Thirty mice were randomly assigned to five groups (n=6 per group ): The control group (group 1) consisted of mice without any intervention. In group 2, an HCS was implanted into the wound. In group 3, a combination of HCS+hADSC was inserted into the wound. In group 4, an HCS was inserted into the wound and PBM was applied. In group 5, a combination of HCS+hADSCs was inserted into the wound, followed by PBM treatment. Results: Improvements in the injury closing rate (WCR) and microbial flora were observed in all groups. However, the highest WCRs were observed in group s 5, 4, 3, and 2 (all P values were 0.000). Groups 3-5 showed increased wound strength compared to group s 1 and 2, with group 2 demonstrating better results than group 1 (P values ranged from 0.000 to 0.013). Although group s 3-5 showed increases in certain stereological elements compared to group s 1 and 2, group 2 exhibited superior results in comparison with group 1 (P values ranged from 0.000 to 0.049). Conclusion: The joined use of HCS+hADSCs+PBM significantly accelerated the wound healing process during the maturation phase in healthy mice. This approach demonstrated superior wound healing compared to the use of HCS alone, hADSCs+HCS, or PBM+HCS. The findings suggest an additive effect when HCS+hADSCs+PBM are combined.
RESUMEN
Although significant progress in the treatment of breast cancer has been achieved, toxic therapies would not be required if breast cancer could be prevented from developing in the first place. While breast cancer prevention is difficult to study in humans due to long disease latency and stochastic cancer development, transgenic mouse models with 100% incidence and defined mammary tumor onset, provide excellent models for tumor prevention studies. In this study, we used Neu/Erbb2 transgenic mice (MTB-TAN) as a model of human HER2+ breast cancer to investigate whether a family of microRNAs, known as the miR-200 family, can prevent mammary tumor development. Overexpression of Neu induced palpable mammary tumors in 100% of the mice within 38 days of Neu overexpression. When the miR-200b/200a/429 cluster was co-overexpressed with Neu in the same mammary epithelial cells (MTB-TANba429 mice), the miR-200b/200a/429 cluster prevented Neu from inducing mammary epithelial hyperplasia and mammary tumor development. RNA sequencing revealed alterations in the extracellular matrix of the mammary gland and a decrease in stromal cells including myoepithelial cells in Neu transgenic mice. Immunohistochemistry for smooth muscle actin confirmed that mammary epithelial cells in control and MTB-TANba429 mice were surrounded by a layer of myoepithelial cells and these myoepithelial cells were lost in MTB-TAN mice with hyperplasia. Thus, we have shown for the first time that elevated expression of miR-200 family members in mammary epithelial cells can completely prevent mammary tumor development in Neu transgenic mice possibly through regulating myoepithelial cells.
RESUMEN
There has been increasing interest in biologically active plant extracts. Studies continue to discover novel components, especially those with anti-anxiety activities. The present study investigates the anxiolytic activity of Salvia moorcroftiana Wall. ex Benth. aerial parts through both in vivo and in silico studies. Aerial parts of the experimental plant were extracted using a hydroalcoholic solvent and fractionated with various organic solvents of differing polarities, including hexane, dichloromethane, ethyl acetate, and n-butanol. The chemical compositions were determined using gas chromatography-mass spectrometry (GC/MS). In vivo anti-anxiety activity was tested on various Swiss albino mice models. Results indicate that all fractions of S. moorcroftiana exhibited significant anxiolytic effects, with the butanol fraction displaying the highest efficacy. Molecular docking analysis suggested that some of the compounds could target anxiety disorder proteins. ADME/T calculations were performed to examine the effects of S. moorcroftiana extracts on human metabolism. Therefore, the present study establishes the significant anti-anxiety activity of S. moorcroftiana aerial parts, suggesting its potential as a therapeutic agent for various anxiety disorders.
RESUMEN
BACKGROUND: Atherosclerosis is the most common cause of cardiovascular diseases. Clinical studies indicate that loss-of-function ASGR1 (asialoglycoprotein receptor 1) is significantly associated with lower plasma cholesterol levels and reduces cardiovascular disease risk. However, the effect of ASGR1 on atherosclerosis remains incompletely understood; whether inhibition of ASGR1 causes liver injury remains controversial. Here, we comprehensively investigated the effects and the underlying molecular mechanisms of ASGR1 deficiency and overexpression on atherosclerosis and liver injury in mice. METHODS: We engineered Asgr1 knockout mice (Asgr1-/-), Asgr1 and ApoE double-knockout mice (Asgr1-/-ApoE-/-), and ASGR1-overexpressing mice on an ApoE-/- background and then fed them different diets to assess the role of ASGR1 in atherosclerosis and liver injury. RESULTS: After being fed a Western diet for 12 weeks, Asgr1-/-ApoE-/- mice exhibited significantly decreased atherosclerotic lesion areas in the aorta and aortic root sections, reduced plasma VLDL (very-low-density lipoprotein) cholesterol and LDL (low-density lipoprotein) cholesterol levels, decreased VLDL production, and increased fecal cholesterol contents. Conversely, ASGR1 overexpression in ApoE-/- mice increased atherosclerotic lesions in the aorta and aortic root sections, augmented plasma VLDL cholesterol and LDL cholesterol levels and VLDL production, and decreased fecal cholesterol contents. Mechanistically, ASGR1 deficiency reduced VLDL production by inhibiting the expression of MTTP (microsomal triglyceride transfer protein) and ANGPTL3 (angiopoietin-like protein 3)/ANGPTL8 (angiopoietin-like protein 8) but increasing LPL (lipoprotein lipase) activity, increased LDL uptake by increasing LDLR (LDL receptor) expression, and promoted cholesterol efflux through increasing expression of LXRα (liver X receptor-α), ABCA1 (ATP-binding cassette subfamily A member 1), ABCG5 (ATP-binding cassette subfamily G member 5), and CYP7A1 (cytochrome P450 family 7 subfamily A member 1). These underlying alterations were confirmed in ASGR1-overexpressing ApoE-/- mice. In addition, ASGR1 deficiency exacerbated liver injury in Western diet-induced Asgr1-/-ApoE-/- mice and high-fat diet-induced but not normal laboratory diet-induced and high-fat and high-cholesterol diet-induced Asgr1-/- mice, while its overexpression mitigated liver injury in Western diet-induced ASGR1-overexpressing ApoE-/- mice. CONCLUSIONS: Inhibition of ASGR1 inhibits atherosclerosis in Western diet-fed ApoE-/- mice, suggesting that inhibiting ASGR1 may serve as a novel therapeutic strategy to treat atherosclerosis and cardiovascular diseases.
RESUMEN
We studied psychoemotional characteristics and the blood level of corticosterone in sexually mature male C57BL/6 mice (n=40): intact (control), after simulating preoperative stress and surgery, after surgery, and after anesthesia alone. It was found that the anxiety index calculated on the basis of testing in the elevated plus maze was significantly higher in both groups of operated animals. The mice of both operated groups and animals exposed to anesthesia alone showed increased anxiety. Symptoms indicating a high probability of transition of anxiety into a psychoemotional disorder have been recorded.
Asunto(s)
Ansiedad , Corticosterona , Ratones Endogámicos C57BL , Estrés Psicológico , Animales , Masculino , Ratones , Corticosterona/sangre , Ansiedad/psicología , Ansiedad/sangre , Estrés Psicológico/psicología , Estrés Psicológico/sangre , Conducta Animal/fisiología , Aprendizaje por Laberinto/fisiología , Periodo Preoperatorio , Anestesia , Modelos Animales de EnfermedadRESUMEN
Low molecular weight polysaccharides had higher bio-activity and bioavailability compared to ultra-high molecular weight polysaccharides, this study aimed to obtain low molecular weight polysaccharides from Tremella fuciformis (TFLP) by using high-temperature and high-pressure assisted hydrochloric acid method to degrade Tremella fuciformis polysaccharides (TFP), and the structural characteristics, in vivo antioxidant and immune enhancing activities of TFP and TFLP was explored through Caenorhabditis elegans (C. elegans) and mice model. It was found that TFP and TFLP were acidic polysaccharides with molecular weights of 2238 kDa and 3 kDa, respectively. The glycosidic bonding of TFP and TFLP was mainly composed of different configurations of mannopyranose. TFP and TFLP had excellent in vivo antioxidant activity and stress resistance by regulating the mRNA transcription level and metabolites in C. elegans. Results also showed that TFP and TFLP could enhance the antioxidant capacity and immunity of serum, spleen and small intestine tissues in normal mice and cyclophosphamide-induced immunosuppressive mice through regulating the relative transcription and expression levels of anti-inflammatory related signaling factors, and it has found that TFLP showed better immune enhancement and antioxidant activity than TFP. In addition, Akkermansia, Bacteroides and Alloprevotella were characteristic bacteria at the genus level in immunosuppressed mice intervened with TFLP, with a significant increase in relative abundance. The content of SCFAs significantly increased in immunosuppressed mice by TFLP. These results indicated that TFP and TFLP had potential in vivo antioxidant and immune enhancing activities.
RESUMEN
Though µ and δ opioid receptors are reported to regulate energy homeostasis, any role for κ opioid receptors in these processes remains unclear. The present study investigated the role of κ opioid receptors in regulation of feeding behavior and plasma glucose levels using nalfurafine, a κ opioid receptor agonist used clinically. Systemic injection of nalfurafine increased food intake under non-fasted conditions, but not after food deprivation, and this effect was inhibited by the κ opioid receptor antagonist norbinaltorphimine. In contrast, nalfurafine did not affect plasma glucose levels. I.c.v. injection of nalfurafine increased food intake, whereas systemic injection of nalfurafine methiodide, which does not penetrate the blood brain barrier, was without effect. In addition, nalfurafine tended to increase preproorexin mRNA in the hypothalamus. However, neither the orexin OX1 receptor antagonist YNT-1310 nor the non-selective orexin receptor antagonist suvorexant inhibited the increase in food intake induced by nalfurafine. While nalfurafine injected into the lateral hypothalamus did not affect food intake, nalfurafine injected into the nucleus accumbens increased food intake, which was inhibited by norbinaltorphimine. Finally, we examined the effect of nalfurafine on anorexia induced by the anti-cancer agent 5-fluorouracil. Reduced food intake at 2 days following 5-fluorouracil administration was alleviated across the first 3 h following daily injection of nalfurafine, though daily food intake was not influenced. These results indicate that nalfurafine promotes feeding behavior through stimulation of κ opioid receptors in the nucleus accumbens and may be a candidate for reducing anorexia due to anti-cancer agents.
RESUMEN
PURPOSE: Determination of the value of relative biological effectiveness (RBE) of heavy charged ions in vivo is an important task for their optimal use in particle radiotherapy. The aim of this study was to determine the RBE value of a beam of carbon ions with an energy of 450 MeV/nucleon in different regions of the Bragg curve in irradiation of mice at low, medium, and high doses in comparison with X-ray radiation. MATERIALS AND METHODS: SHK mice (n = 330) were irradiated in three regions of the Bragg curve in the dose range of 0-1.5 Gy for cytogenetic damage detection and at a dose of 6.5 Gy for determination of 30-day survival. For irradiation of mice in the Bragg peak, two widths of a spread-out Bragg peak (SOBP) were used: 10 mm (LET â¼100 keV/µm) and 30 mm (LET â¼39 keV/µm). RESULTS: The RBE value was 0.8-0.9 before the Bragg peak (LET â¼15 keV/µm) and 0.8 after the peak (LET â¼5 keV/µm), and did not depend on the determination method, despite the differences in LET values. The RBE value determined by the micronucleus test was 1.1-1.7 for the 10-mm-wide SOBP and 1.0-1.3 for the 30-mm-wide SOBP, with the highest RBE value obtained in the low-dose region upon irradiation of mice in the 10-mm-wide Bragg peak. The RBE values in the high-dose region determined by the 30-day survival test lay in the range from 1.4 to 2.6 depending on the width of the Bragg peak and the chosen criterion for calculating the value. The RBE values in the 10-mm-wide Bragg peak (LET â¼100 keV/µm) were higher than those in the 30-mm-wide Bragg peak (LET â¼39 keV/µm) at all used criteria. CONCLUSIONS: The present findings suggest that there is the complex relationship between LET and organism response to accelerated charged particle radiation, and the contribution of specific factors and mechanisms must be further considered.
RESUMEN
Radiofrequency electromagnetic fields (RF-EMFs) can penetrate tissues and potentially influence endocrine and brain development. Despite increased mobile phone use among children and adolescents, the long-term effects of RF-EMF exposure on brain and endocrine development remain unclear. This study investigated the effects of long-term evolution band (LTE) EMF exposure on thyroid hormone levels, crucial for metabolism, growth, and development. Four-week-old male mice (C57BL/6) were exposed to LTE EMF (whole-body average specific absorption rate [SAR] 4 W/kg) or a positive control (lead; Pb, 300 ppm in drinking water) for 4 weeks. Subsequently, the mice underwent behavioral tests including open field, marble burying, and nest building. Blood pituitary and thyroid hormone levels, and thyroid hormone-regulating genes within the hypothalamus-pituitary-thyroid (HPT) axis were analyzed. LTE exposure increased T3 levels, while Pb exposure elevated T3 and T4 and decreased ACTH levels. The LTE EMF group showed no gene expression alterations in the thyroid and pituitary glands, but hypothalamic Dio2 and Dio3 expressions were significantly reduced compared to that in the sham-exposed group. Pb exposure altered the hypothalamic mRNA levels of Oatp1c1 and Trh, pituitary mRNA of Trhr, and Tpo and Tg expression in the thyroid. In conclusion, LTE EMF exposure altered hypothalamic Dio2 and Dio3 expression, potentially impacting the HPT axis function. Further research is needed to explore RF-EMF's impacts on the endocrine system.
Asunto(s)
Conducta Animal , Campos Electromagnéticos , Hormonas Tiroideas , Animales , Masculino , Campos Electromagnéticos/efectos adversos , Ratones , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/sangre , Conducta Animal/efectos de la radiación , Ratones Endogámicos C57BL , Glándula Tiroides/metabolismo , Glándula Tiroides/efectos de la radiación , Yoduro Peroxidasa/metabolismo , Yoduro Peroxidasa/genética , Hipófisis/metabolismo , Hipófisis/efectos de la radiación , Hipotálamo/metabolismoRESUMEN
HIV-1 envelope glycoprotein (Env) conformation substantially impacts antibody-dependent cellular cytotoxicity (ADCC). Envs from primary HIV-1 isolates adopt a prefusion "closed" conformation, which is targeted by broadly neutralizing antibodies (bnAbs). CD4 binding drives Env into more "open" conformations, which are recognized by non-neutralizing Abs (nnAbs). To better understand Env-Ab and Env-CD4 interaction in CD4+ T cells infected with HIV-1, we simultaneously measured antibody binding and HIV-1 mRNA expression using multiparametric flow cytometry and RNA flow fluorescent in situ hybridization (FISH) techniques. We observed that env mRNA is almost exclusively expressed by HIV-1 productively infected cells that already downmodulated CD4. This suggests that CD4 downmodulation precedes env mRNA expression. Consequently, productively infected cells express "closed" Envs on their surface, which renders them resistant to nnAbs. Cells recognized by nnAbs were all env mRNA negative, indicating Ab binding through shed gp120 or virions attached to their surface. Consistent with these findings, treatment of HIV-1-infected humanized mice with the ADCC-mediating nnAb A32 failed to lower viral replication or reduce the size of the viral reservoir. These findings confirm the resistance of productively infected CD4+ T cells to nnAbs-mediated ADCC and question the rationale of immunotherapy approaches using this strategy. IMPORTANCE: Antibody-dependent cellular cytotoxicity (ADCC) represents an effective immune response for clearing virally infected cells, making ADCC-mediating antibodies promising therapeutic candidates for HIV-1 cure strategies. Broadly neutralizing antibodies (bNAbs) target epitopes present on the native "closed" envelope glycoprotein (Env), while non-neutralizing antibodies (nnAbs) recognize epitopes exposed upon Env-CD4 interaction. Here, we provide evidence that env mRNA is predominantly expressed by productively infected cells that have already downmodulated cell-surface CD4. This indicates that CD4 downmodulation by HIV-1 precedes Env expression, making productively infected cells resistant to ADCC mediated by nnAbs but sensitive to those mediated by bnAbs. These findings offer critical insights for the development of immunotherapy-based strategies aimed at targeting and eliminating productively infected cells in people living with HIV.