Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.564
Filtrar
1.
Food Chem ; 459: 140376, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39002334

RESUMEN

The reddish-orange color of Antarctic krill oil fades during storage, and the mechanism remains unclear. Model systems containing different combinations of astaxanthin (ASTA), phosphatidylethanolamine (PE), and tocopherol were subjected to accelerated storage. Among all groups containing ASTA, only the ones with added PE showed significant fading. Meanwhile, the specific UV-visible absorption (A470 and A495) showed a similar trend. Peroxide value and thiobarbituric acid reactive substances increased during storage, while ASTA and PE contents decreased. Correlation analysis suggested that oxidized PE promoted fading by accelerating the transformation of ASTA. PE content exceeded the critical micelle concentration (1µg/g) indicating the formation of reverse micelles. Molecular docking analysis indicated that PE also interacted with ASTA in an anchor-like manner. Therefore, it is speculated that amphiphilic ASTA is more readily distributed at the oil-water interface of reverse micelles and captured by oxidized PE, which facilitates oxidation transfer, leading to ASTA oxidation and color fading.

2.
Colloids Surf B Biointerfaces ; 242: 114081, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39003850

RESUMEN

Hyaluronic acid (HA)-based tumor microenvironment-responsive nanocontainers are attractive candidates for anticancer drug delivery due to HA's excellent biocompatibility, biodegradability, and CD44-targeting properties. Nevertheless, the consecutive synthesis of stabilized, stealthy, responsive HA-based multicomponent nanomedicines generally requires multi-step preparation and purification procedures, leading to batch-to-batch variation and scale-up difficulties. To develop a facile yet robust strategy for promoted translations, a silica monomer containing a cross-linkable diethoxysilyl unit was prepared to enable in situ crosslinking without any additives. Further combined with the host-guest inclusion complexation between ß-cyclodextrin-grafted HA (HA-CD) and ferrocene-functionalized polymers, ferrocene-terminated poly(oligo(ethylene glycol) methyl ether methacrylate (Fc-POEGMA) and Fc-terminated poly(ε-caprolactone)-b-poly(3-(diethoxymethylsilyl)propyl(2-(methacryloyloxy)ethyl) carbamate) (Fc-PCL-b-PDESPMA), a reactive oxygen species (ROS)-sensitive supramolecular polymer construct, Fc-POEGMA/Fc-PCL-b-PDESPMA@HA-CD was readily fabricated to integrate stealthy POEGMA, tumor active targeting HA, and an in situ cross-linkable PDESPMA sequence. Supramolecular amphiphilic copolymers with two different POEGMA contents of 25 wt% (P1) and 20 wt% (P2) were prepared via a simple physical mixing process, affording two core-crosslinked (CCL) micelles via an in situ sol-gel process of ethoxysilyl groups. The P1-based CCL micelles show not only desired colloidal stability against high dilution, but also an intracellular ROS-mimicking environment-induced particulate aggregation that is beneficial for promoted intracellular release of the loaded cargoes. Most importantly, P1-based nanomedicines exhibited greater cytotoxicity in CD44 receptor-positive HeLa cells than that in CD44 receptor-negative MCF-7 cells. Overall, this work developed HA-based nanomedicines with sufficient extracellular colloidal stability and efficient intracellular destabilization properties for enhanced anticancer drug delivery via smart integration of in situ crosslinking and supramolecular complexation.

3.
Polymers (Basel) ; 16(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000726

RESUMEN

Polyion complex (PIC) nanoparticles, including PIC micelles and PICsomes, are typically composed of poly(ethylene glycol) block copolymers coupled with oppositely charged polyelectrolytes or therapeutic agents via electrostatic interaction. Due to a simple and rapid preparation process with high drug-loading efficiency, PIC nanoparticles are beneficial to maintaining the chemical integrity and high biological activity of the loaded drugs. However, the stability of PIC nanoparticles can be disrupted in high-ionic-strength solutions because electrostatic interaction is the DRIVING force; these disruptions can thus impair drug delivery. Herein, we summarize the advances in the use of PIC nanoparticles for delivery of charged drugs, focusing on the different chemical and physical strategies employed to enhance their stability, including enhancing the charge density, crosslinking, increasing hydrophobic interactions, forming hydrogen bonds, and the development of PIC-based gels. In particular, we describe the use of PIC nanoparticles to load peptide antibiotics targeting antibiotic-resistant and biofilm-related diseases and the use of nanoparticles that load chemotherapeutics and gaseous donors for cancer treatment. Furthermore, the application of PIC nanoparticles as magnetic resonance imaging contrast agents is summarized for the first time. Therefore, this review is of great significance for advances in the use of polymeric nanoparticles for functional drug delivery.

4.
J Cancer ; 15(14): 4717-4730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006085

RESUMEN

Background: Luteolin (LUT) is a bioactive compound with several pharmacological activities including anticancer effect. Doxorubicin (DOX) is an anthracycline chemotherapeutic drug that have proven to be effective in treating various types of cancers. Polymeric micelles (PMs) containing biologically active materials have emerged as prospective dosage forms with high drug-loading, which can add therapeutic benefit to the poorly water-soluble compounds and novel chemical entities. PMs are effective in delivering several drugs, such as anticancer drugs, antifungal drugs, flavonoids and drugs targeting the brain. The aim of the current study is to develop PMs for LUT and DOX as a combined delivery system for cancer therapy. Methods: PMs were prepared using 2.5% of each of LUT and DOX with varying compositions of Poloxamer 188, Poloxamer 407, Vitamin E (TPGS), Poloxamer 123 and Gellucire 44/14 at room temperature. Particle size, polydispersity index, zeta potential, were achieved using Zetasizer Nano particle size analyzer and the sizes were further confirmed with transmission electron microscopy (TEM). Prepared PMs were further characterized using powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). An MTT assay was performed on breast cancer (MCF-7) cells and liver cancer (HepG2) cells to determine the cytotoxic effect of the different PMs formulations. Results: PMs were successfully developed and optimized using 74.3% Poloxamer 407 with 20.7% Vitamin E (TPGS), and 70% Poloxamer 407 with 25% Gellucire 44/14, respectively. The droplet size and polydispersity index were found to be 62.03 ± 3.99 nm, 91.96 ± 5.80 nm and 0.33 ± 0.05, 0.59± 0.03, respectively for PMs containing TPGS and Gellucire 44/14. Zeta potentials of the PMs containing TPGS and Gellucire 44/14 were recorded as -2.27 ±0.11mV and -7.78 ± 0.10 mV, respectively. The PMs showed a spherical structure with approximately 50-90 nm range evident by TEM analysis. The PXRD spectra of PMs powder presented the amorphization of LUT and DOX. The FTIR spectra of LUT-loaded and DOX-loaded PMs were identical, suggesting consistent PMs composition. The MTT assay showed that the representative combined drug loaded PMs treatment led to a reduction in the viability of MCF-7 and HepG2 cells compared to drug free PMs and pure LUT, DOX alone. Conclusions: PMs with LUT and DOX exhibited significant cytotoxic effects against breast and liver cancer cells and could thus be an important new pharmaceutical formulation to treat cancer.

5.
Nanomedicine ; 61: 102772, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960367

RESUMEN

Glioblastoma (GBM) is a central nervous system cancer with high incidence and poor survival rates. Enhancing drug penetration of the blood-brain barrier (BBB) and targeting efficacy is crucial for improving treatment outcomes. In this study, we developed a redox-sensitive targeted nano-delivery system (HCA-A2) for temozolomide (TMZ) and ß-lapachone (ß-Lapa). This system used hyaluronic acid (HA) as the hydrophilic group, arachidonic acid (CA) as the hydrophobic group, and angiopep-2 (A2) as the targeting group. Control systems included non-redox sensitive (HDA-A2) and non-targeting (HCA) versions. In vitro, HCA-TMZ-Lapa micelles released 100 % of their payload in a simulated tumor microenvironment within 24 h, compared to 43.97 % under normal conditions. HCA-A2 micelles, internalized via clathrin-mediated endocytosis, showed stronger cytotoxicity and better BBB penetration and cellular uptake than controls. In vivo studies demonstrated superior tumor growth inhibition with HCA-A2 micelles, indicating their potential for GBM treatment.

6.
Nanomedicine ; : 102770, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960365

RESUMEN

Gadolinium-based contrast agents (GBCAs) are used in around 40 % of MRI procedures. Despite initial perceptions of minimal risk, their long-term use has emphasized the need to reduce toxicity and develop more efficient GBCAs with extended blood retention. Advancements in nanomaterials have led to improved GBCAs, enhancing MRI diagnostics. This study synthesizes and characterizes nanostructured gadolinium(III) micelles as superior MRI contrast agents. The complexes, [Gd(L)2], where L is a ligand of the N-alkyl-N-methylglucamine surfactant series (L8, L10 or L12, L10), form nanostructured micelles in aqueous solution. Gd(L8)2 and Gd(L10)2 relaxivities remained stable across concentrations. Compared to Gd-DTPA, Gd(III) micelles showed enhanced T1-weighted MRI contrast. Gd(L12)2 micelles exhibited cytotoxicity against B16F10 melanoma cells (IC50 42.5 ±â€¯2.2 µM) and L292L929 fibroblasts (IC50 52.0 ±â€¯2.5 µM), with a selectivity index of 1.2. In vivo application in mice brain T2-weighted images suggests nanostructured Gd(III) micelles are promising MRI contrast agents for targeting healthy organs or tumors.

7.
Adv Mater ; : e2404784, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38958110

RESUMEN

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.

8.
Acta Pharm Sin B ; 14(7): 3155-3168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027233

RESUMEN

The aggregation-caused quenching (ACQ) rationale has been employed to improve the fluorescence imaging accuracy of nanocarriers by precluding free probe-derived interferences. However, its usefulness is undermined by limited penetration and low spatiotemporal resolution of NIR-I (700-900 nm) bioimaging owing to absorption and diffraction by biological tissues and tissue-derived autofluorescence. This study aimed to develop ACQ-based NIR-II (1000-1700 nm) probes to further improve the imaging resolution and accuracy. The strategy employed is to install highly planar and electron-rich julolidine into the 3,5-position of aza-BODIPY based on the larger substituent effects. The newly developed probes displayed remarkable photophysical properties, with intense absorption centered at approximately 850 nm and bright emission in the 950-1300 nm region. Compared with the NIR-I counterpart P2, the NIR-II probes demonstrated superior water sensitivity and quenching stability. ACQ1 and ACQ6 exhibited more promising ACQ effects with absolute fluorescence quenching at water fractions above 40% and higher quenching stability with less than 2.0% fluorescence reillumination in plasma after 24 h of incubation. Theoretical calculations verified that molecular planarity is more important than hydrophobicity for ACQ properties. Additionally, in vivo and ex vivo reillumination studies revealed less than 2.5% signal interference from prequenched ACQ1, in contrast to 15% for P2.

9.
J Biomater Appl ; : 8853282241258161, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031074

RESUMEN

Background: Cancer is a serious threat to human life, health and social development. In recent years, nanomicelles, as an emerging drug carrier material, have gradually entered people's field of vision because of their advantages of improving bioavailability, maintaining drug levels, reducing systemic side effects and increasing drug accumulation at target sites. Methods: In this study, B-GPSG nano-micelles were prepared by film dispersion hydration method using brucine as model drug and glycyrrhetinic acid-polyethylene glycol-3-methylene glycol-dithiodipropionic acid-glycerol monostearate polymer as nano-carrier. The preparation process, characterization, drug release in vitro, pharmacokinetics and liver targeting were investigated. Results: The results showed that the range of particle size, polydispersion index and Zeta potential were 102.7 ± 1.09 nm, 0.201 ± 0.02 and -24.5 ± 0.19 mV respectively. The entrapment efficiency and drug loading were 83.79 ± 2.13% and 12.56 ± 0.09%, respectively. The drug release experiments in vitro and pharmacokinetic experiments showed that it had obvious sustained release effect. For pharmacokinetics study, it shows that both the B-GPSG solution group and the B-PSG solution group changed the metabolic kinetic parameters of brucine, but the B-GPSG solution group had a better effect. Compared with the B-PSG solution group, the drug was more prolonged in rats. The half-life in the body and the retention time in the body of B-GPSG are more helpful to improve the bioavailability of the drug and play a long-term effect. The tail vein injection results of mice indicate that B-GPSG can target and accumulate brucine in the liver without affecting other key organs. Cell uptake experiments and tissue distribution experiments in vivo show that glycyrrhetinic acid modified nano-micelles can increase the accumulation of brucine in hepatocytes, has a good liver targeting effect, and can be used as a new preparation for the treatment of liver cancer. Conclusion: The B-SPSG prepared in this experiment can provide a new treatment method and research idea for the treatment of liver cancer.

10.
Drug Discov Today ; 29(8): 104098, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38997002

RESUMEN

Block copolymer micelles, formed by the self-assembly of amphiphilic polymers, address formulation challenges, such as poor drug solubility and permeability. These micelles offer advantages including a smaller size, easier preparation, sterilization, and superior solubilization, compared with other nanocarriers. Preclinical studies have shown promising results, advancing them toward clinical trials. Their mucoadhesive properties enhance and prolong contact with the ocular surface, and their small size allows deeper penetration through tissues, such as the cornea. Additionally, copolymeric micelles improve the solubility and stability of hydrophobic drugs, sustain drug release, and allow for surface modifications to enhance biocompatibility. Despite these benefits, long-term stability remains a challenge. In this review, we highlight the preclinical performance, structural frameworks, preparation techniques, physicochemical properties, current developments, and prospects of block copolymer micelles as ocular drug delivery systems.

11.
Food Chem ; 459: 140419, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39024876

RESUMEN

Fluorescent nanoprobes are widely applied in innovate enzyme-linked immunosorbent assays (ELISA) for detection of fluoroquinolones (FQs) residue in foodstuffs. Nevertheless, the complicated synthesis of nanoprobes hampers their practical applications. Herein, a nanomaterial-independent and fluorescent ELISA for sensitive detection of FQs is developed using the Eu-micelles as signal probe. Non-nanostructured Eu-micelles with high quantum yield and stability are facilely synthesized through the assembly of Eu3+ and ligands. Alkaline phosphatase catalyzes hydrolysis of 4-nitrophenyl phosphate to 4-nitrophenol. The fluorescent Eu-micelles can be readily quenched by 4-nitrophenol via static quenching. The signal generation mechanism integrates well with conventional ELISA systems. The established fluorescent ELISA achieves sensitive detection of FQs with a limit of detection of 0.03 µg/kg. The validation results from LC-MS show that the fluorescent ELISA exhibits good accuracy and recoveries. Our study presents a nanomaterial-independent strategy for developing the rapid immunoassay for FQs, which holds good promise for practical applications.

12.
Int J Pharm X ; 7: 100253, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38845681

RESUMEN

This study aimed to present findings on a paclitaxel (PTX)-loaded polymeric micellar formulation based on polycaprolactone-vitamin E TPGS (PCL-TPGS) and evaluate its in vitro anticancer activity as well as its in vivo pharmacokinetic profile in healthy mice in comparison to a marketed formulation. Micelles were prepared by a co-solvent evaporation method. The micelle's average diameter and polydispersity were determined using dynamic light scattering (DLS) technique. Drug encapsulation efficiency was assessed using an HPLC assay. The in vitro cytotoxicity was performed on human breast cancer cells (MCF-7 and MDA-MB-231) using MTT assay. The in vivo pharmacokinetic profile was characterized following a single intravenous dose of 4 mg/kg to healthy mice. The mean diameters of the prepared micelles were ≤ 100 nm. Moreover, these micelles increased the aqueous solubility of PTX from ∼0.3 µg/mL to reach nearly 1 mg/mL. While the PTX-loaded micelles showed an in vitro cytotoxicity comparable to the marketed formulation (Ebetaxel), drug-free PCL-TPGS micelles did not show any cytotoxic effects on both types of breast cancer cells (∼100% viability). Pharmacokinetics of PTX as part of PCL-TPGS showed a significant increase in its volume of distribution compared to PTX conventional formulation, Ebetaxel, which is in line with what was reported for clinical nano formulations of PTX, i.e., Abraxane, Genexol-PM, or Apealea. The findings of our studies indicate a significant potential for PCL-TPGS micelles to act as an effective system for solubilization and delivery of PTX.

13.
Int J Pharm ; 659: 124292, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38823466

RESUMEN

Camptothecin, a natural alkaloid, was first isolated from the bark and stem of the Camptotheca acuminate tree in China. It, along with its analogs, has demonstrated potent anti-cancer activity in preclinical studies, particularly against solid tumors such as lung, breast, ovarian, and colon cancer. Despite its promising anti-cancer activity, the application of camptothecin is limited due to its poor solubility, toxicity, and limited biodistribution. Nanotechnology-based drug delivery systems have been used to overcome limited bioavailability and ensure greater biodistribution after administration. Additionally, various drug delivery systems, particularly polymeric micelles, have been investigated to enhance the solubility, stability, and efficacy of camptothecin. Polymeric micelles offer a promising approach for the delivery of camptothecin. Polymeric micelles possess a core-shell structure, with a typical hydrophobic core, which exhibits a high capacity to incorporate hydrophobic drugs. The structure of polymeric micelles can be engineered to have a high drug loading capacity, thereby enabling them to carry a large amount of hydrophobic drug within their core. The shell portion of polymeric micelles is composed of hydrophilic polymers Furthermore, the hydrophilic segment of polymeric micelles plays an important role in protecting against the reticuloendothelial system (RES). This review provides a discussion on recent research and developments in the delivery of camptothecin using polymeric micelles for the treatment of cancers.


Asunto(s)
Antineoplásicos Fitogénicos , Camptotecina , Sistemas de Liberación de Medicamentos , Micelas , Polímeros , Camptotecina/administración & dosificación , Camptotecina/química , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Camptotecina/farmacología , Humanos , Polímeros/química , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Portadores de Fármacos/química , Solubilidad , Distribución Tisular , Interacciones Hidrofóbicas e Hidrofílicas
14.
BMC Oral Health ; 24(1): 713, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902666

RESUMEN

BACKGROUND: Low mechanical properties are the main limitation of glass ionomer cements (GICs). The incorporation of elastomeric micelles is expected to enhance the strength of GICs without detrimentally affecting their physical properties and biocompatibility. This study compared the chemical and mechanical properties, as well as the cytotoxicity, of elastomeric micelles-containing glass ionomer cement (DeltaFil, DT) with commonly used materials, including EQUIA Forte Fil (EF), Fuji IX GP Extra (F9), and Ketac Molar (KT). METHOD: Powder particles of GICs were examined with SEM-EDX. Setting kinetics were assessed using ATR-FTIR. Biaxial flexural strength/modulus and Vickers surface microhardness were measured after immersion in water for 24 h and 4 weeks. The release of F, Al, Sr, and P in water over 8 weeks was analyzed using a fluoride-specific electrode and ICP-OES. The toxicity of the material extract on mouse fibroblasts was also evaluated. RESULTS: High fluoride levels in the powder were detected with EF and F9. DT demonstrated an initial delay followed by a faster acid reaction compared to other cements, suggesting an improved snap set. DT also exhibited superior flexural strength than other materials at both 24 h and 4 weeks but lower surface microhardness (p < 0.05). EF and F9 showed higher release of F, Al, and P than DT and KT. There was no statistically significant difference in fibroblast viability among the tested materials (p > 0.05). CONCLUSIONS: Elastomeric micelles-containing glass ionomer cement (DT) exhibited satisfactory mechanical properties and cytocompatibility compared with other materials. DT could, therefore, potentially be considered an alternative high-strength GIC for load-bearing restorations.


Asunto(s)
Elastómeros , Fibroblastos , Resistencia Flexional , Cementos de Ionómero Vítreo , Dureza , Ensayo de Materiales , Micelas , Cementos de Ionómero Vítreo/toxicidad , Cementos de Ionómero Vítreo/química , Animales , Ratones , Fibroblastos/efectos de los fármacos , Elastómeros/química , Elastómeros/toxicidad , Aluminio/química , Fluoruros/química , Estroncio/química , Cemento de Policarboxilato/química , Cemento de Policarboxilato/toxicidad , Supervivencia Celular/efectos de los fármacos , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Docilidad , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Factores de Tiempo , Materiales Biocompatibles/química
15.
J Colloid Interface Sci ; 674: 560-575, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38945024

RESUMEN

The present paper reports the fabrication of novel types of hybrid fibrous photocatalysts by combining block copolymer (BCP) templating, sol-gel processing, and coaxial electrospinning techniques. Coaxial electrospinning produces core-shell nanofibers (NFs), which are converted into hollow porous TiO2 NFs using an oxidative calcination step. Hybrid BCP micelles comprising a single plasmonic nanoparticle (NP) in their core and thereof derived silica-coated core-shell particles are utilized as precursors to generate yolk-shell type particulate inclusions in photocatalytically active NFs. The catalytic and photocatalytic activity of calcined NFs comprising different types of yolk-shell particles is systematically investigated and compared. Interestingly, calcined NFs comprising silica-coated yolk-shells demonstrate enhanced catalytic and photocatalytic performance despite the presence of silica shell separating plasmonic NP from the TiO2 matrix. Electromagnetic simulations indicate that this enhancement is caused by a localized surface plasmon resonance and a confinement effect in silica-coated yolk-shells embedded in porous TiO2 NFs. Utilization of the coaxially electrospun TiO2 NFs in combination with yolk-shells comprising plasmonic NPs reveals to be a potent method for the photocatalytic decomposition of numerous pollutants. It is worth noting that this study stands as the first occurrence of combining yolk-shells (Au@void@SiO2) with porous electrospun NFs (TiO2) for photocatalytic purposes and gaining an understanding of plasmon and confinement effects for photocatalytic performance. This approach represents a promising route for fabricating highly active and up-scalable fibrous photocatalytic systems.

16.
Food Res Int ; 190: 114624, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945578

RESUMEN

The present work evaluated how a native pea protein isolate (PPI) affects the key roles carried out by bile salts (BS) in lipid digestion by means of the in vitro static INFOGEST protocol. Two gastric residence times were evaluated (10 and 60 min), and then the peptides obtained (GPPP) were mixed with BS at physiological concentration in simulated intestinal fluid to understand how they interact with BS both at the bulk and at the interface. Both GPPP give rise to a film with a predominant viscous character that does not constitute a barrier to the penetration of BS, but interact with BS in the bulk duodenal fluid. When the peptides flushing from the stomach after the different gastric residence times undergo duodenal digestion, it was found that for the longer gastric residence time the percentage of soluble fraction in the duodenal phase, that perform synergistically with BS micelles, was twice that of the lower residence time, leading to an increase in the solubilization of oleic acid. These results finally lead to a greater extent of lipolysis of olive oil emulsions. This work demonstrates the usefulness of in vitro models as a starting point to study the influence of gastric residence time of pea protein on its interaction with BS, affecting lipolysis. Pea proteins were shown to be effective emulsifiers that synergistically perform with BS improving the release and bioaccessibility of bioactive lipids as olive oil.


Asunto(s)
Ácidos y Sales Biliares , Digestión , Lipólisis , Proteínas de Guisantes , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/química , Proteínas de Guisantes/química , Proteínas de Guisantes/metabolismo , Pisum sativum/química , Pisum sativum/metabolismo , Péptidos/metabolismo , Péptidos/química , Duodeno/metabolismo , Humanos
17.
Int J Pharm ; 661: 124387, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925238

RESUMEN

Breast cancer treatment can be challenging, but a targeted drug delivery system (DDS) has the potential to make it more effective and reduce side effects. This study presents a novel nanotherapeutic targeted DDS developed through the self-assembly of an amphiphilic di-block copolymer to deliver the chemotherapy drug SN38 specifically to breast cancer cells. The vehicle was constructed from the PHPMA-b-PEAMA diblock copolymer synthesized via RAFT polymerization. A single emulsion method was then used to encapsulate SN38 within nanoparticles (NPs) formed from the PHPMA-b-PEAMA copolymer. The AS1411 DNA aptamer was covalently bonded to the surface of the micellar NPs, producing a targeted DDS. Molecular dynamics (MD) simulation studies were also performed on the di block polymeric system, demonstrating that SN38 interacted well with the di block. The in vitro results demonstrated that AS1411- decorated SN38-loaded HPMA NPs were highly toxic to breast cancer cells while having a minimal effect on non-cancerous cells. Remarkably, in vivo studies elucidated the ability of the targeted DDS to enhance the antitumor effect of SN38, suppressing tumor growth and improving survival rates compared to free SN38.

18.
J Therm Biol ; 123: 103905, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38941825

RESUMEN

Heat stress poses a significant challenge to sheep farming in arid and semi-arid regions, impacting growth performance, health, and physiological responses. While sheep have innate mechanisms to manage heat stress, prolonged exposure impairs their performance and health. This study evaluated the influence of varying doses of Curcumin Nano-Micelle (CNM) on heat-stressed fattening lambs in northeastern Iran over three months, examining the relationship between CNM doses and growth performance, feeding behavior, physiological responses, immune function, and antioxidant status. Thirty-two crossbred male lambs were included in a completely randomized design with four treatments and eight replications. The experimental treatments were as follows: 1) CTRL: No dietary inclusion of CNM, (control group); 2) T20: Dietary inclusion of 20 mg of CNM per head per day; 3) T40: Dietary inclusion of 40 mg of CNM per head per day; and 4) T80: Dietary inclusion of 80 mg of CNM per head per day. The results revealed that dietary supplementation with 20 and 40 mg of CNM significantly improved live body weight, weight gain, average daily gain (ADG), and feed conversion ratio (FCR) compared to the control treatment. Regression analysis demonstrated quadratic models between growth performance parameters and the Temperature-Humidity Index (THI), indicating a correlation between CNM doses and the animals' responses to heat stress. Regarding eating behavior, CNM doses of 40 and 80 mg/day significantly reduced eating time while increasing ruminating time. Blood analysis indicated significant reductions in glucose levels across all treatments, with T40 significantly reducing both cholesterol and triglyceride (TG) levels. Additionally, CNM supplementation decreased serum malondialdehyde (MDA) levels and increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, indicating enhanced antioxidant status. Physiological responses were influenced by CNM, notably reducing rectal temperature (RT), skin temperature (ST), respiration rate (RR), while pulse rate (PR) increased across various time intervals, particularly in the T80 group. This study demonstrates that CNM supplementation can enhance performance, physiological responses, and antioxidant status in heat-stressed fattening lambs, highlighting its potential to mitigate heat stress effects in sheep farming.

19.
J Colloid Interface Sci ; 674: 405-415, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38941934

RESUMEN

HYPOTHESIS: Cationic surfactants have a wide range of applications, often associated with their affinity for a range of solid surfaces and their anti-microbial properties. Manipulating their adsorption and self-assembly properties is key to most applications, and this is commonly achieved through surfactant mixtures or manipulating their headgroup or alkyl chain structure. Achieving this through adjustments to their headgroup structure is less common in cationic surfactants than in anionic surfactants. Ethoxylation provides the ability to adjust the hydrophilic / hydrophobic balance, as extensively demonstrated in a range of anionic surfactants. EXPERIMENTS: This same approach has been applied here to a range of ethoxylated cationic surfactants in the form of the quaternary ammonium salts, and their tertiary nonionic equivalents before quaternisation. Their adsorption and self-assembly properties are investigated using predominantly the neutron scattering techniques of neutron reflectivity, NR, and small angle neutron scattering, SANS. FINDINGS: The trends in the adsorption at the air-water interface and the self-assembly in aqueous solution demonstrate how the hydrophilic / hydrophobic balance can be adjusted by varying the degree of ethoxylation and the alkyl chain length, and illustrate the degree of interdependence of the different structural changes. The variation in the adsorption and the micelle structure shows how the surfactant conformation / packing changes as the degree of ethoxylation and alkyl chain length increases and how the introduction of charge induces further changes.

20.
ACS Appl Mater Interfaces ; 16(26): 32971-32982, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885044

RESUMEN

We report herein the synthesis of three detergents bearing a perfluorinated cyclohexyl group connected through a short, hydrogenated spacer (i.e., propyl, butyl, or pentyl) to a ß-maltoside polar head that are, respectively, called FCymal-3, FCymal-4, and FCymal-5. Increasing the length of the spacer decreased the critical micellar concentration (CMC), as demonstrated by surface tension (SFT) and isothermal titration calorimetry (ITC), from 5 mM for FCymal-3 to 0.7 mM for FCymal-5. The morphology of the micelles was studied by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and small-angle X-ray scattering (SAXS), indicating heterogeneous rod-like shapes. While micelles of FCymal-3 and -4 have similar hydrodynamic diameters of ∼10 nm, those of FCymal-5 were twice as large. We also investigated the ability of the detergents to solubilize lipid membranes made of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC). Molecular modeling indicated that the FCymal detergents generate disorder in lipid bilayers, with FCymal-3 being inserted more deeply into bilayers than FCymal-4 and -5. This was experimentally confirmed using POPC vesicles that were completely solubilized within 2 h with FCymal-3, whereas FCymal-5 required >8 h. A similar trend was noticed for the direct extraction of membrane proteins from E. coli membranes, with FCymal-3 being more potent than FCymal-5. An opposite trend was observed in terms of stabilization of the two model membrane proteins bacteriorhodopsin (bR) and SpNOX. In all three FCymal detergents, bR was stable for at least 2 months with no signs of aggregation. However, while the structural integrity of bR was fully preserved in FCymal-4 and -5, minor bleaching was observed in FCymal-3. Similarly, SpNOX exhibited the least activity in FCymal-3 and the highest activity in FCymal-5. By combining solubilizing and stabilizing potency, FCymal detergents push forward our expectations of the usefulness of fluorinated detergents for handling and investigating membrane proteins.


Asunto(s)
Detergentes , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Detergentes/química , Halogenación , Escherichia coli/efectos de los fármacos , Fosfatidilcolinas/química , Membrana Dobles de Lípidos/química , Bacteriorodopsinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...