Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anat Histol Embryol ; 50(2): 316-323, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33179337

RESUMEN

The white rhinoceros is the largest of the five extant rhinoceros species. The population is declining rapidly because of intense poaching. However, normal anatomical descriptions in this species are lacking. The purpose of this study is to describe the osseous anatomy of the middle and inner ear of the southern white rhinoceros using micro-focus X-ray computed tomography imaging. Four temporal bones obtained from two 1-day old southern white rhinoceros preserved in 10% formalin were scanned. Tri-dimensional reconstructions were obtained and volumes of the middle ear ossicles and inner ear structures were calculated. Excellent high spatial resolution 3D images were obtained for all samples and virtual models of the auditory ossicles and bony labyrinth were generated. Visualization of the tympanic membrane, middle ear and inner ear structures was possible in all samples. Whereas the stapes and incus had a shape similar to their human or equine counterparts, the malleus showed a unique appearance with a long rostral branch projecting latero-distally to the manubrium. The cochlea described 2 turns rostro-laterally around its axis, with a medial direction of rotation. However, identification of the soft tissue structures of the middle ear was sometimes difficult and visualization of the small structures of the membranous labyrinth was not possible using this formalin fixation and alternative techniques should be investigated. Further investigations are needed in order to provide a complete virtual model including both soft and bone tissues of this difficultly accessible region.


Asunto(s)
Osículos del Oído , Yunque , Animales , Oído Medio/diagnóstico por imagen , Caballos , Perisodáctilos , Hueso Temporal
2.
Am J Bot ; 107(8): 1122-1135, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32779767

RESUMEN

PREMISE: Water stored in the xylem of woody plants is important for supporting the transpiration stream under prolonged drought, yet the source of stored water within the xylem during drought remains unclear. Insights into xylem water utilization during drought will uncover the adaptation strategies of the test species to stress. METHODS: To fill the existing knowledge gap, we excised twigs of Abies firma (Japanese fir, conifer), Cercidiphyllum japonicum (katsura tree, diffuse-porous) and Quercus serrata (konara oak, ring-porous) to quantify interspecific variation of water transfer in xylem corresponding with increasing cumulative water release (CWR) using micro x-ray computed tomography and cryo-SEM. RESULTS: For all species studied, the main components of water storage within the operating range of water potential were not living cells but cavitation release and capillaries. Abies firma maintained water in the earlywood-like cells, for possible maintenance of the transpiration stream. Cercidiphyllum japonicum maintained water in its vessels over 200 kg m-3 of CWR, while Q. serrata lost most of its water in vessels with increasing CWR up to 100 kg m-3 . Cercidiphyllum japonicum exhibited a higher water storage capacity than Q. serrata. Under high CWR, narrow conduits stored xylem water in C. japonicum and imperforate tracheary elements in Q. serrata. CONCLUSIONS: Among the species examined, increasing CWR appears to indicate differential utilization of stored water in relation to variation of xylem structure, thereby providing insight into the interspecific responses of tree species to drought.


Asunto(s)
Árboles , Agua , Deshidratación , Sequías , Humanos , Xilema
3.
Materials (Basel) ; 6(7): 2578-2594, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-28811396

RESUMEN

For cementitious composites and materials, the sealing of fractures can occur in water by the precipitation of calcium compounds. In this study, the sealing behavior in a macro-fractured high-strength and ultra-low-permeability concrete (HSULPC) specimen was investigated in simulated seawater using micro-focus X-ray computed tomography (CT). In particular, the influence of fracture width (0.10 and 0.25 mm) on fracture sealing was investigated. Precipitation occurred mainly at the outermost parts of the fractured surface of the specimen for both fracture widths. While significant sealing was observed for the fracture width of 0.10 mm, sealing was not attained for the fracture width of 0.25 mm within the observation period (49 days). Examination of the sealed regions on the macro-fracture was performed using a three-dimensional image registration technique and applying image subtraction between the CT images of the HSULPC specimen before and after maintaining the specimen in simulated seawater. The temporal change of the sealing deposits for the fracture width of 0.10 mm was much larger than that for the fracture width of 0.25 mm. Therefore, it is concluded that the sealability of the fracture in the HSULPC is affected by the fracture width.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...