Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(6): 7640-7649, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38303602

RESUMEN

High-performance flexible piezoresistive sensors are becoming increasingly essential in various novel applications such as health monitoring, soft robotics, and human-computer interaction. The evolution of the interfacial contact morphology determines the sensing properties of piezoresistive devices. The introduction of microstructures enriches the interfacial contact morphology and effectively boosts the sensitivity; however, the limited compressibility of conventional microstructures leads to rapid saturation of the sensitivity in the low-pressure range, which hinders their application. Herein, we present a flexible piezoresistive sensor featuring a two-stage micropyramid array structure, which effectively enhances the sensitivity while widening the sensing range. Owing to the synergistic enhancement effect resulting from the sequential contact of micropyramids of various heights, the devices demonstrate remarkable performance, including boosting sensitivity (30.8 kPa-1) over a wide sensing range (up to 200 kPa), a fast response/recovery time (75/50 ms), and an ultralong durability of 15,000 loading-unloading cycles. As a proof of concept, the sensor is applied to detect human physiological and motion signals, further demonstrating a real-time spatial pressure distribution sensing system and a game control system, showing great potential for applications in health monitoring and human-computer interaction.


Asunto(s)
Computadores , Robótica , Humanos , Programas Informáticos , Movimiento (Física) , Sensación
2.
ACS Appl Mater Interfaces ; 15(40): 47327-47337, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769210

RESUMEN

Flexible capacitive pressure sensors with high sensitivity over a wide pressure range are highly anticipated in the fields of tactile perception and physiological signal monitoring. However, despite the introduction of microstructures on the electrolyte layer, the deformability is still limited due to the size limitation of the microstructures, making it difficult to significantly improve the sensitivity of iontronic capacitive pressure sensors (ICPSs). Here, we propose an innovative strategy of combining carbon nanotubes (CNTs) topological networks and ionic hydrogel micropyramid array microstructures that can significantly enhance the sensitivity of flexible ICPSs for ultrasensitive pressure detection. Compared with other previously reported ICPSs, the sensor developed in this work exhibits an unprecedented sensitivity (Smin > 1050 kPa-1) and a high linear response (R2 > 0.99) in a wide pressure range (0.03-28 kPa) enabled by CNT percolation networks inside the microstructred electrolyte layer. This ultrasensitive and flexible ICPS also can effectively detect pressure from a variety of sources, including sound waves, lightweight objects, and tiny physiological signals, such as pulse rate and heartbeat. This work provides a general strategy to achieve an ICPS with both broader pressure-response range and higher sensitivity, which provides a stable and efficient way for a low-cost, scalable sensor for sensitive tactile sensing in human-computer interaction applications.

3.
ACS Nano ; 17(3): 1906-1915, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36513374

RESUMEN

Almost regular hexagonal arrays of microscopic pyramids consisting of soot nanoparticles are formed on the surface of graphitized hollow filaments, which are resistively heated to ∼1800-2400 °C under an Ar atmosphere containing trace amounts of oxygen (∼300 ppm). At higher temperatures (T > 2300 °C, approximately) the soot particles are represented mainly by multishell carbon nano-onions. The height and width of the pyramids are strongly dependent on the temperature of the resistive heating, diminishing from 5 to 10 µm at T ≈ 1800 °C to ∼1 µm at 2300-2400 °C. Quasi-hexagonal arrays of the micropyramids are organized in the convex "craters" on the surface of the microtubes, which grow with the time of the thermal treatment. The pyramids always point normally to the surface of the craters, except at the boundaries between the craters, where the normal direction is not well-defined. The pyramids are soft and can be easily destroyed by touching them but can be hardened by heating them under an oxygen-free atmosphere. The pyramids are observed only on the exterior surface of the microtubes, not on their inner surface. This suggests that the thermophoretic force generated by a strong temperature gradient near the external surface of the tubes may be the cause of the micropyramid formation. Electrostatic charging of the soot nanoparticles due to thermionic emission may also be relevant to this phenomenon. The micropyramids can function as field emission point sources, as demonstrated with the use of a micronanoprobing station, mounted in a scanning electron microscope.

4.
Nanotechnology ; 33(24)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35226885

RESUMEN

Optically driven electronic neuromodulation devices are a novel tool in basic research and offer new prospects in medical therapeutic applications. Optimal operation of such devices requires efficient light capture and charge generation, effective electrical communication across the device's bioelectronic interface, conformal adhesion to the target tissue, and mechanical stability of the device during the lifetime of the implant-all of which can be tuned by spatial structuring of the device. We demonstrate a 3D structured opto-bioelectronic device-an organic electrolytic photocapacitor spatially designed by depositing the active device layers on an inverted micropyramid-shaped substrate. Ultrathin, transparent, and flexible micropyramid-shaped foil was fabricated by chemical vapour deposition of parylene C on silicon moulds containing arrays of inverted micropyramids, followed by a peel-off procedure. The capacitive current delivered by the devices showed a strong dependency on the underlying spatial structure. The device performance was evaluated by numerical modelling. We propose that the developed numerical model can be used as a basis for the design of future functional 3D design of opto-bioelectronic devices and electrodes.

5.
ACS Appl Mater Interfaces ; 13(9): 11535-11542, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33625204

RESUMEN

Recently, few studies have focused on the light-trapping surface-enhanced Raman scattering (SERS) substrate combined with Si micropyramids and Ag (or Au). However, the Si micropyramids possess no ordered period, which not only affects the repeatability of the SERS signal but also affects the theoretical exploration. Here, the ordered micropyramids with strong light-trapping capability were fabricated by utilizing unconventional nanosphere lithography and anisotropy wet etching technique. Then, the Ag nanobowls were assembled on the ordered micropyramids to form the SERS substrate with bioinspired compound-eyes structure by utilizing the liquid-solid interface self-assembly and transfer technique. Especially, the evidence for the contribution of antireflective Si micropyramids to Raman enhancement was first presented. For this bioinspired SERS substrate, the lowest concentration of R6G that can be detected is 10-13 M with the level of a single molecule, and the relative standard deviation (RSD) is 3.68%. Meanwhile, the quantitative analysis and qualitative analysis can be realized. Especially, simultaneous trace detection of four common dyes (R6G, CV, MG, and MB) in food can be realized, suggesting that this SERS substrate will have a good application prospect in the field of optical sensors.


Asunto(s)
Colorantes/análisis , Nanoestructuras/química , Anisotropía , Nanotecnología/métodos , Poliestirenos/química , Silicio/química , Plata/química , Espectrometría Raman/métodos
6.
ACS Nano ; 14(10): 12866-12876, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32938185

RESUMEN

Flexible pressure sensors that can robustly mimic the function of slow-adapting type I (SA-I) mechanoreceptors are essential for realizing human-like object manipulation in artificial intelligent (AI) robots or amputees. Here, we report a straightforward approach to highly sensitive and robust flexible pressure sensors with fast response time and low operating voltage based on conductive micropyramids made of polydimethylsiloxane/carbon nanotube composites. Both numerical simulations and experimental studies show that the pressure-sensing properties of the devices can be systematically tuned by the spatial arrangement of micropyramids. In particular, by tailoring the ratio between the spacing and the pyramidal base length, the optimal pressure sensors can be achieved with a combination of high sensitivity in both low-pressure (<10 kPa) and medium-pressure (10-100 kPa) regimes, rapid response, high mechanical robustness, low operating voltage, and low power consumption, along with linear response and low hysteresis in the medium-pressure regimes. The optimized pressure sensor is further used for constructing a wearable pressure-sensing system that can convert the amplitude of pressure to wirelessly transmittable frequency signals (spikes) with nearly linear response, closely mimicking SA-I mechanoreceptors. Furthermore, we demonstrate that the high uniformity and scalability of the pressure sensors enable large-area pressure-sensing arrays for spatially resolved pressure mapping.

7.
ACS Appl Mater Interfaces ; 12(37): 41515-41526, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32799525

RESUMEN

Si is regarded as a promising photocathode material for solar hydrogen evolution reaction (HER) because of its small band gap and highly negative conduction band edge. However, bare Si electrodes have high overpotential because of sluggish HER kinetics on the surface. In this study, molybdenum tungsten sulfide (MoS2-WS2) was decorated on Si photocathodes as the co-catalyst to accelerate HER kinetics. The catalytic performance of MoS2-WS2 was further enhanced by introducing phosphate materials. Phosphate-modified molybdenum tungsten sulfide (PO-MoWS) was deposited on Si photoabsorbers to provide an optimal current of -15.0 mA cm-2 at 0 V. Joint characterizations of X-ray photoelectron and X-ray absorption spectroscopies demonstrated that the phosphate material dominantly coordinated with the WS2 component in PO-MoWS. Moreover, this phosphate material induced a large number of sulfur vacancies in the PO-MoWS/Si electrodes that contributed to the ideal catalytic activity. Herein, TiO2 thin films were prepared as the protective layer to improve the stability of photocathodes. The PO-MoWS/2 nm TiO2/Si electrode maintained 83.8% of the initial photocurrent after chronoamperometric measurement was performed for 8000 s.

8.
Mikrochim Acta ; 187(4): 247, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32219540

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is gaining importance as an ultrasensitive analytical tool for routine high-throughput analysis of a variety of molecular compounds. One of the main challenges is the development of robust, reproducible and cost-effective SERS substrates. In this work, we study the SERS activity of 3D silver mirror-like micro-pyramid structures extended in the z-direction up to 3.7 µm (G0 type substrate) or 7.7 µm (G1 type substrate), prepared by Si-based microfabrication technologies, for trace detection of organophosphorous pesticides, using paraoxon-methyl as probe molecule. The average relative standard deviation (RSD) for the SERS intensity of the peak displayed at 1338 cm-1 recorded over a centimetre scale area of the substrate is below 13% for pesticide concentrations in the range 10-6 to 10-15 mol L-1. This data underlies the spatial uniformity of the SERS response provided by the microfabrication approach. According to finite-difference time-domain (FDTD) simulations, such remarkable feature is mainly due to the contribution on electromagnetic field enhancement of edge plasmon polaritons (EPPs), propagating along the pyramid edges where the pesticide molecules are preferentially adsorbed. Graphical abstract.


Asunto(s)
Materiales Manufacturados , Paraoxon/análogos & derivados , Plaguicidas/análisis , Plata/química , Adsorción , Paraoxon/análisis , Paraoxon/química , Plaguicidas/química , Reproducibilidad de los Resultados , Espectrometría Raman/métodos
9.
ACS Appl Bio Mater ; 1(5): 1579-1586, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34996208

RESUMEN

Herein, the novel strategy of copper oxide (CuO) deposited oxygen-doped nitrogen incorporated nanodiamond (NOND)/Si pyramids (Pyr-Si) heterostructure is studied for high-performance nonenzymatic glucose sensor. The combined properties of surface-modified NOND/Pyr-Si induced by different growth durations (5 to 20 min) of CuO is envisioned to improve glucose sensitivity and stability. For comparison, the same methods and parameters were deposited on the plane silicon wafers. The systematic analysis reveals the best glucose sensing properties of 15 min grown CuO/NOND/Pyr-Si based sensor, with a high sensitivity of 1993 µA mM-1 cm-2, a lower limit of detection of 0.1 µm, and a longer stability of 28 d (∼96%). In addition, the present sensor exhibits good selectivity of glucose among other analytes such as sodium chloride, ascorbic acid, uric acid, and so on. The enhancement in glucose sensing performances of the as-fabricated CuO/NOND/Pyr-Si is ascribed to the interfacial effect of NOND and the synergistic effect of CuO and NOND/Pyr-Si. Moreover, the oxygen dopant in NOND and CuO stimulates the reactive oxygen species while measuring glucose and affords rapid recovery (<2 s). This promotes fast electron kinetics in the electrocatalytic solutions, which enhances the electroactive area and thereby contributes to a high sensitivity. These salient results suggested that the as-fabricated CuO/NOND/Pyr-Si sensor is more suitable for high-performance biosensors and effective energy storage device applications.

10.
Adv Mater ; 27(41): 6511-8, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26389973

RESUMEN

Silicon micropyramids with n(+) pp(+) junctions are demonstrated to be efficient absorbers for integrated solar-driven hydrogen production systems enabling significant improvements in both photocurrent and onset potential. When conformally coated with MoSx Cly , a catalyst that has excellent catalytic activity and high optical transparency, the highest photocurrent density for Si-based photocathodes with earth-abundant catalysts is achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...