Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.279
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2320470121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990951

RESUMEN

Although the formation of new walls during plant cell division tends to follow maximal tensile stress direction, analyses of individual cells over time reveal a much more variable behavior. The origin of such variability as well as the exact role of interphasic microtubule behavior before cell division have remained mysterious so far. To approach this question, we took advantage of the Arabidopsis stem, where the tensile stress pattern is both highly anisotropic and stable. Although cortical microtubules (CMTs) generally align with maximal tensile stress, we detected a specific time window, ca. 3 h before cell division, where cells form a radial pattern of CMTs. This microtubule array organization preceded preprophase band (PPB) formation, a transient CMT array predicting the position of the future division plane. It was observed under different growth conditions and was not related to cell geometry or polar auxin transport. Interestingly, this cortical radial pattern correlated with the well-documented increase of cytoplasmic microtubule accumulation before cell division. This radial organization was prolonged in cells of the trm678 mutant, where CMTs are unable to form a PPB. Whereas division plane orientation in trm678 is noisier, we found that cell division symmetry was in contrast less variable between daughter cells. We propose that this "radial step" reflects a trade-off in robustness for two essential cell division attributes: symmetry and orientation. This involves a "reset" stage in G2, where an increased cytoplasmic microtubule accumulation transiently disrupts CMT alignment with tissue stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , División Celular , Microtúbulos , Arabidopsis/metabolismo , Arabidopsis/citología , Microtúbulos/metabolismo , División Celular/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo
2.
J Biol Chem ; : 107544, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992434

RESUMEN

Microtubule filaments are assembled into higher-order structures using microtubule-associated proteins (MAPs). However, synthetic MAPs that direct the formation of new structures are challenging to design, as nanoscale biochemical activities must be organized across micron length-scales. Here we develop modular MAP-IDR condensates (synMAPs) that enable inducible assembly of higher-order microtubule structures for synthetic exploration in vitro and in mammalian cells. synMAPs harness a small microtubule-binding domain from oligodendrocytes (TPPP) whose activity we show can be rewired by interaction with unrelated condensate-forming IDR sequences. This combination is sufficient to allow synMAPs to self-organize multivalent structures that bind and bridge microtubules into higher-order architectures. By regulating the connection between the microtubule-binding domain and condensate-forming components of a synMAP, the formation of these structures can be triggered by small molecules or cell-signaling inputs. We systematically test a panel of synMAP circuit designs to define how the assembly of these synthetic microtubule structures can be controlled at the nanoscale (via microtubule-binding affinity) and microscale (via condensate formation). synMAPs thus provide a modular starting point for the design of higher-order microtubule systems and an experimental testbed for exploring condensate-directed mechanisms of higher-order microtubule assembly from the bottom-up.

3.
Commun Integr Biol ; 17(1): 2373301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993680

RESUMEN

As every life form is composed of cells, elements of consciousness, namely memory and sentience, must be grounded in mechanisms that are integral to unicellular organisms. Earlier studies indicated that cellular cytoskeletal structures consisting of excitable, flexible, and oscillating polymers such as microtubules, along with quantum events, are potentially responsible for information processing and thus consciousness. This work attempts to solve the unknown, that is, how, at the spark of life, the phenomenon of cellular information processing first appears. This study posits that the spatially distributed wave energy of the molecules of an incepting cell interacts with space and generates a rotating bioinformation field, forming a vortex. This vortex, the local energy maximum, whose inbound and outbound energy fluxes represent signal reception and dispersal, is a critical step in the spark of life responsible for information storage, and with incremental wave superpositions, exhibits information processing. The vorticity of the rotating field is computed, and the obtained field characteristics indicated the emergence of a prebiotic complex to initiate information processing. Furthermore, the developed system model explains how perturbations from the environment are converted into response signals for the emanation of sense, locomotion, nutrition, and asexual reproduction, the fundamental evolutionary building blocks of prokaryotes. Further research directions include explaining how the energy potential available in the bio-information field and the vortex leads to the first formation of genetic material, emergence of cytoskeleton, and extension of bio-information field to multi-cellular organisms.

4.
Dev Dyn ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958410

RESUMEN

Primary cilia are antenna-like sensory organelles that are evolutionarily conserved in nearly all modern eukaryotes, from the single-celled green alga, Chlamydomonas reinhardtii, to vertebrates and mammals. Cilia are microtubule-based cellular projections that have adapted to perform a broad range of species-specific functions, from cell motility to detection of light and the transduction of extracellular mechanical and chemical signals. These functions render cilia essential for organismal development and survival. The high conservation of cilia has allowed for discoveries in C. reinhardtii to inform our understanding of the basic biology of mammalian primary cilia, and to provide insight into the genetic etiology of ciliopathies. Over the last two decades, a growing number of studies has revealed that multiple aspects of ciliary homeostasis are regulated by the actin cytoskeleton, including centrosome migration and positioning, vesicle transport to the basal body, ectocytosis, and ciliary-mediated signaling. Here, we review actin regulation of ciliary homeostasis, and highlight conserved and divergent mechanisms in C. reinhardtii and mammalian cells. Further, we compare the disease manifestations of patients with ciliopathies to those with mutations in actin and actin-associated genes, and propose that primary cilia defects caused by genetic alteration of the actin cytoskeleton may underlie certain birth defects.

5.
Cell Biosci ; 14(1): 91, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997783

RESUMEN

BACKGROUND: Nor1/NR4A3 is a member of the NR4A subfamily of nuclear receptors that play essential roles in regulating gene expression related to development, cell homeostasis and neurological functions. However, Nor1 is still considered an orphan receptor, as its natural ligand remains unclear for mediating transcriptional activation. Yet other activation signals may modulate Nor1 activity, although their precise role in the development and maintenance of the nervous system remains elusive. METHODS: We used transcriptional reporter assays, gene expression profiling, protein turnover measurement, and cell growth assays to assess the functional relevance of Nor1 and SUMO-defective variants in neuronal cells. SUMO1 and SUMO2 conjugation to Nor1 were assessed by immunoprecipitation. Tubulin stability was determined by acetylation and polymerization assays, and live-cell fluorescent microscopy. RESULTS: Here, we demonstrate that Nor1 undergoes SUMO1 conjugation at Lys-89 within a canonical ψKxE SUMOylation motif, contributing to the complex pattern of Nor1 SUMOylation, which also includes Lys-137. Disruption of Lys-89, thereby preventing SUMO1 conjugation, led to reduced Nor1 transcriptional competence and protein stability, as well as the downregulation of genes involved in cell growth and metabolism, such as ENO3, EN1, and CFLAR, and in microtubule cytoskeleton dynamics, including MAP2 and MAPT, which resulted in reduced survival of neuronal cells. Interestingly, Lys-89 SUMOylation was potentiated in response to nocodazole, a microtubule depolymerizing drug, although this was insufficient to rescue cells from microtubule disruption despite enhanced Nor1 gene expression. Instead, Lys-89 deSUMOylation reduced the expression of microtubule-severing genes like KATNA1, SPAST, and FIGN, and enhanced α-tubulin cellular levels, acetylation, and microfilament organization, promoting microtubule stability and resistance to nocodazole. These effects contrasted with Lys-137 SUMOylation, suggesting distinct regulatory mechanisms based on specific Nor1 input SUMOylation signals. CONCLUSIONS: Our study provides novel insights into Nor1 transcriptional signaling competence and identifies a hierarchical mechanism whereby selective Nor1 SUMOylation may govern neuronal cytoskeleton network dynamics and resistance against microtubule disturbances, a condition strongly associated with neurodegenerative diseases.

6.
Elife ; 132024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949652

RESUMEN

Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of ß-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.


Asunto(s)
Caenorhabditis elegans , Microtúbulos , Procesamiento Proteico-Postraduccional , Tubulina (Proteína) , Animales , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Microtúbulos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Acetilación , Axones/metabolismo , Axones/fisiología , Fosforilación , Regeneración Nerviosa , Cinesinas/metabolismo , Cinesinas/genética
8.
Alzheimers Dement ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967283

RESUMEN

INTRODUCTION: Microtubule (MT) stability is crucial for proper neuronal function. Understanding MT dysregulation is critical for connecting amyloid beta (Aß) and tau-based degenerative events and early changes in presymptomatic Alzheimer's disease (AD). Herein we present positron emission tomography (PET) imaging properties of our MT-PET radiotracer, [11C]MPC-6827, in multiple established AD mouse models. METHODS: Longitudinal PET, biodistribution, autoradiography, immunohistochemistry, and behavioral studies were conducted at multiple time points in APPswe/PSEN1dE9 (APP/PS1), P301S-PS19 (P301S), 5xFAD, and age-matched control mice. RESULTS: Longitudinal [11C]MPC-6827 brain imaging showed significant increases in APP/PS1, P301S, and 5xFAD mice compared to controls. Longitudinal MT-PET correlated positively with biodistribution, autoradiography, and immunohistochemistry results and negatively with behavior data. DISCUSSION: Our study demonstrated significant longitudinal [11C]MPC-6827 PET increases in multiple AD mouse models for the first time. Strong correlations between PET and biomarker data underscored the interplay of MT destabilization, amyloid, and tau pathology in AD. These results suggest [11C]MPC-6827 PET as a promising tool for monitoring MT dysregulation early in AD progression. HIGHLIGHTS: Longitudinal positron emission tomography (PET) imaging studies using [11C]MPC-6827 in multiple established Alzheimer's disease (AD) mouse models revealed an early onset of microtubule dysregulation, with significant changes in brain radiotracer uptake evident from 2 to 4 months of age. Intra-group analysis showed a progressive increase in microtubule dysregulation with increasing AD burden, supported by significant correlations between PET imaging data and biodistribution, autoradiography, and molecular pathological markers. [11C]MPC-6827 PET imaging demonstrated its efficacy in detecting early microtubule alterations preceding observable behavioral changes in AD mouse models, suggesting its potential for early AD imaging. The inclusion of the 5xFAD mouse model further elucidated the impact of amyloid beta (Aß) toxicity on inducing tau hyperphosphorylation-mediated microtubule dysregulation, highlighting the versatility of [11C]MPC-6827 in delineating various aspects of AD pathology. Our study provides immediate clarity on high uptake of the microtubule-based radiotracer in AD brains in a longitudinal setting, which directly informs clinical utility in Aß/tau-based studies.

9.
bioRxiv ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38948772

RESUMEN

Duchenne muscular dystrophy (DMD) is marked by the genetic deficiency of the dystrophin protein in striated muscle whose consequence is a cascade of cellular changes that predispose the susceptibility to contraction injury central to DMD pathology. Recent evidence identified the proliferation of microtubules enriched in post-translationally modified tubulin as a consequence of dystrophins absence that increases the passive mechanics of the muscle fiber and the excess mechanotransduction elicited reactive oxygen species and calcium signals that promote contraction injury. Motivated by evidence that acutely normalizing the disease microtubule alterations reduced contraction injury in murine DMD muscle (mdx), here we sought the direct impact of these microtubule alterations independent of dystrophins absence and the multitude of other changes consequent to dystrophic disease. To this end we used acute pharmacologic (epithiolone-D, EpoD; 4 hours) or genetic (vashohibin-2 and small vasohibin binding protein overexpression via AAV9; 2 weeks) strategies to effectively model the proliferation of detyrosination enriched microtubules in the mdx muscle. Quantifying in vivo nerve evoked plantarflexor function we find no alteration in peak torque nor contraction kinetics in WT mice modeling these DMD relevant MT alterations. Quantifying the susceptibility to eccentric contraction injury we show EpoD treatment proffered a small but significant protection from contraction injury while VASH/SVBP had no discernable impact. We conclude that the disease dependent MT alterations act in concert with additional cellular changes to predispose contraction injury in DMD.

10.
Cell Mol Biol Lett ; 29(1): 101, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978018

RESUMEN

BACKGROUND: Prostate cancer (PCa) ranks as the second most prevalent cancer in men, with advanced stages posing significant treatment challenges. Given its solid tumor nature, PCa is highly susceptible to hypoxia, a condition associated with resistance to radiation and chemotherapy, metastasis, and unfavorable patient outcomes. Hypoxia-inducible factors (HIFs) play a pivotal role in cancer cell adaptation to hypoxic environments, contributing to treatment resistance. Consequently, inhibitors targeting HIFs hold promise for cancer therapy. METHODS: In this study, we aimed to characterize novel HIF-1α inhibitors including Sodwanones A (1), B (2), C (3), G (4) and Yardenone 2 (5) isolated from marine sponges belonging to the Axinella genus. Our investigation evaluated the impact of these compounds on various aspects of HIF-1α regulation, including stabilization, nuclear localization, expression of HIF-1 target genes (while sparing HIF-2 target genes), cellular metabolism, as well as cell proliferation and viability in prostate cells under hypoxic conditions. RESULTS: Our findings revealed that among the compounds tested, Yardenone 2 exhibited notable effects in hypoxia: it destabilized HIF-1α at the protein level, decreased its nuclear localization, selectively altered the expression of HIF-1 target genes, and restrained cell proliferation in aggressive PC3 prostate cancer cells as well as in an MSK-PCa3 patient-derived organoid line. Moreover, it affected the morphology of these organoid. Yardenone 2 was also compared to Docetaxel, a specific microtubule inhibitor and a drug used in the treatment of prostate cancer. The comparison between the two compounds revealed notable differences, such as a lack of specificity to hypoxic cells of Docetaxel. CONCLUSION: These results mark the first demonstration that Yardenone 2 functions as a cytostatic-like inhibitor impacting microtubules, specifically targeting hypoxic cancer cells. This discovery suggests a promising avenue for novel therapeutic interventions in prostate cancer.


Asunto(s)
Proliferación Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias de la Próstata , Humanos , Masculino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Animales , Poríferos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Hipoxia de la Célula/efectos de los fármacos
11.
J Cell Sci ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988298

RESUMEN

Coordinated cell shape changes are a major driver of tissue morphogenesis, with apical constriction of epithelial cells leading to tissue bending. During the tube budding of the salivary glands in the Drosophila embryo we previously identified a key interplay between the apical-medial actomyosin, driving apical constriction, with the underlying longitudinal microtubule array. At this microtubule-actomyosin-interface a hub of proteins accumulates: as shown before, the microtubule-actin-crosslinker Shot and the minus-end-binder Patronin, and now identified two actin-crosslinkers, ß-H-Spectrin and Filamin, and the multi-PDZ-protein Big-bang. We show that tissue-specific-degradation of ß-H-Spectrin led to reduction of apical-medial F-actin, Shot, Patronin and Big-bang and concomitant defects in apical constriction, but residual Patronin was still sufficient to assist microtubule reorganisation. Contrary to Patronin and Shot, neither ß-H-Spectrin nor Big bang required microtubules for their localisation. ß-H-Spectrin was instead recruited via binding to apical-medial phosphoinositides. Overexpression of ß-H-33 containing the PH domain displaced endogenous ß-H-Spectrin and led to strong morphogenetic defects. This protein hub therefore required the synergy and coincidence of membrane- and microtubule-associated components for its assembly and function in sustaining the apical constriction during tubulogenesis.

12.
Int J Biol Sci ; 20(8): 3140-3155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904029

RESUMEN

Cysteine-rich angiogenic inducer 61 (CYR61), also called CCN1, has long been characterized as a secretory protein. Nevertheless, the intracellular function of CYR61 remains unclear. Here, we found that CYR61 is important for proper cell cycle progression. Specifically, CYR61 interacts with microtubules and promotes microtubule polymerization to ensure mitotic entry. Moreover, CYR61 interacts with PLK1 and accumulates during the mitotic process, followed by degradation as mitosis concludes. The proteolysis of CYR61 requires the PLK1 kinase activity, which directly phosphorylates two conserved motifs on CYR61, enhancing its interaction with the SCF E3 complex subunit FBW7 and mediating its degradation by the proteasome. Mutations of phosphorylation sites of Ser167 and Ser188 greatly increase CYR61's stability, while deletion of CYR61 extends prophase and metaphase and delays anaphase onset. In summary, our findings highlight the precise control of the intracellular CYR61 by the PLK1-FBW7 pathway, accentuating its significance as a microtubule-associated protein during mitotic progression.


Asunto(s)
Proteínas de Ciclo Celular , Proteína 61 Rica en Cisteína , Microtúbulos , Mitosis , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Humanos , Mitosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Microtúbulos/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Células HeLa , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
13.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891892

RESUMEN

Recently, a compound derived from recent scientific advances named 34 has emerged as the focus of this research, the aim of which is to explore its potential impact on solid tumor cell lines. Using a combination of bioinformatics and biological assays, this study conducted an in-depth investigation of the effects of 34. The results of this study have substantial implications for cancer research and treatment. 34 has shown remarkable efficacy in inhibiting the growth of several cancer cell lines, including those representing prostate carcinoma (PC3) and cervical carcinoma (HeLa). The high sensitivity of these cells, indicated by low IC50 values, underscores its potential as a promising chemotherapeutic agent. In addition, 34 has revealed the ability to induce cell cycle arrest, particularly in the G2/M phase, a phenomenon with critical implications for tumor initiation and growth. By interfering with DNA replication in cancer cells, 34 has shown the capacity to trigger cell death, offering a new avenue for cancer treatment. In addition, computational analyses have identified key genes affected by 34 treatment, suggesting potential therapeutic targets. These genes are involved in critical biological processes, including cell cycle regulation, DNA replication and microtubule dynamics, all of which are central to cancer development and progression. In conclusion, this study highlights the different mechanisms of 34 that inhibit cancer cell growth and alter the cell cycle. These promising results suggest the potential for more effective and less toxic anticancer therapies. Further in vivo validation and exploration of combination therapies are critical to improve cancer treatment outcomes.


Asunto(s)
Acrilonitrilo , Antineoplásicos , Microtúbulos , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Acrilonitrilo/análogos & derivados , Acrilonitrilo/farmacología , Acrilonitrilo/uso terapéutico , Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Células HeLa , Apoptosis/efectos de los fármacos , Triazoles/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico , Células PC-3
14.
EMBO J ; 43(13): 2733-2758, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831122

RESUMEN

Organ morphogenesis depends on mechanical interactions between cells and tissues. These interactions generate forces that can be sensed by cells and affect key cellular processes. However, how mechanical forces, together with biochemical signals, contribute to the shaping of complex organs is still largely unclear. We address this question using the seed of Arabidopsis as a model system. We show that seeds first experience a phase of rapid anisotropic growth that is dependent on the response of cortical microtubule (CMT) to forces, which guide cellulose deposition according to shape-driven stresses in the outermost layer of the seed coat. However, at later stages of development, we show that seed growth is isotropic and depends on the properties of an inner layer of the seed coat that stiffens its walls in response to tension but has isotropic material properties. Finally, we show that the transition from anisotropic to isotropic growth is due to the dampening of cortical microtubule responses to shape-driven stresses. Altogether, our work supports a model in which spatiotemporally distinct mechanical responses control the shape of developing seeds in Arabidopsis.


Asunto(s)
Arabidopsis , Microtúbulos , Semillas , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Microtúbulos/metabolismo , Fenómenos Biomecánicos , Estrés Mecánico , Anisotropía , Celulosa/metabolismo
15.
J Cell Sci ; 137(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38841887

RESUMEN

Centrosomal proteins play pivotal roles in orchestrating microtubule dynamics, and their dysregulation leads to disorders, including cancer and ciliopathies. Understanding the multifaceted roles of centrosomal proteins is vital to comprehend their involvement in disease development. Here, we report novel cellular functions of CEP41, a centrosomal and ciliary protein implicated in Joubert syndrome. We show that CEP41 is an essential microtubule-associated protein with microtubule-stabilizing activity. Purified CEP41 binds to preformed microtubules, promotes microtubule nucleation and suppresses microtubule disassembly. When overexpressed in cultured cells, CEP41 localizes to microtubules and promotes microtubule bundling. Conversely, shRNA-mediated knockdown of CEP41 disrupts the interphase microtubule network and delays microtubule reassembly, emphasizing its role in microtubule organization. Further, we demonstrate that the association of CEP41 with microtubules relies on its conserved rhodanese homology domain (RHOD) and the N-terminal region. Interestingly, a disease-causing mutation in the RHOD domain impairs CEP41-microtubule interaction. Moreover, depletion of CEP41 inhibits cell proliferation and disrupts cell cycle progression, suggesting its potential involvement in cell cycle regulation. These insights into the cellular functions of CEP41 hold promise for unraveling the impact of its mutations in ciliopathies.


Asunto(s)
Proliferación Celular , Microtúbulos , Humanos , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Centrosoma/metabolismo , Retina/metabolismo , Retina/patología , Retina/anomalías , Ciliopatías/metabolismo , Ciliopatías/genética , Ciliopatías/patología , Cerebelo/metabolismo , Cerebelo/anomalías , Cerebelo/patología , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Cilios/metabolismo , Cilios/patología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Animales , Anomalías Múltiples/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías del Ojo/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Unión Proteica , Ciclo Celular/genética , Células HEK293
16.
J R Soc Interface ; 21(215): 20230641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835244

RESUMEN

Cell polarity is important for controlling cell shape, motility and cell division processes. Vimentin intermediate filaments are important for cell migration and cell polarization in mesenchymal cells and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts. We find that vimentin mediates the structure of the pericentriolar material, promotes centrosome-mediated microtubule regrowth and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.


Asunto(s)
Movimiento Celular , Polaridad Celular , Centrosoma , Microtúbulos , Vimentina , Animales , Ratones , Acetilación , Centrosoma/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citología , Ratones Noqueados , Microtúbulos/metabolismo , Vimentina/metabolismo
17.
Biochemistry (Mosc) ; 89(4): 726-736, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38831508

RESUMEN

Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn's disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.


Asunto(s)
Filamentos Intermedios , Vimentina , Vimentina/metabolismo , Vimentina/química , Humanos , Filamentos Intermedios/metabolismo , Animales , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de Filamentos Intermediarios/química
18.
Dev Cell ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38848716

RESUMEN

In plant vegetative tissues, cell division employs a mitotic microtubule array called the preprophase band (PPB) that marks the cortical division site. This transient cytoskeletal array imprints the spatial information to be read by the cytokinetic phragmoplast at later stages of mitotic cell division. In Arabidopsis thaliana, we discovered that the PPB recruited the Myosin XI motor MYA1/Myo11F to the cortical division site, where it joined microtubule-associated proteins and motors to form a ring of prominent cytoskeletal assemblies that received the expanding phragmoplast. Such a myosin localization pattern at the cortical division site was dependent on the POK1/2 Kinesin-12 motors. This regulatory function of MYA1/Myo11F in phragmoplast guidance was dependent on intact actin filaments. The discovery of these cytoskeletal motor assemblies pinpoints a mechanism underlying how two dynamic cytoskeletal networks work in concert to govern PPB-dependent division plane orientation in flowering plants.

19.
Behav Brain Res ; 471: 115068, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830386

RESUMEN

Alcohol-Related Brain Damage (ARBD) manifests predominantly as cognitive impairment and brain atrophy with the hippocampus showing particular vulnerability. Fasudil, a Rho kinase (ROCK) inhibitor, has established neuroprotective properties; however, its impact on alcohol-induced cognitive dysfunction and hippocampal structural damage remains unelucidated. This study probes Fasudil's neuroprotective potential and identifies its mechanism of action in an in vivo context. Male C57BL/6 J mice were exposed to 30% (v/v, 6.0 g/kg) ethanol by intragastric administration for four weeks. Concurrently, these mice received a co-treatment with Fasudil through intraperitoneal injections at a dosage of 10 mg/kg/day. Fasudil was found to mitigate alcohol-induced spatial and recognition memory deficits, which were quantified using Y maze, Morris water maze, and novel object recognition tests. Concurrently, Fasudil attenuated hippocampal structural damage prompted by chronic alcohol exposure. Notably, Fasudil moderated alcohol-induced disassembly of the actin cytoskeleton and microtubules-mechanisms central to the maintenance of hippocampal synaptic integrity. Collectively, our findings indicate that Fasudil partially reverses alcohol-induced cognitive and morphological detriments by modulating cytoskeletal dynamics, offering insights into potential therapeutic strategies for ARBD.

20.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892473

RESUMEN

The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.


Asunto(s)
Arrestinas , Transducción de Señal , Humanos , Animales , Arrestinas/metabolismo , Arrestinas/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Unión Proteica , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...