RESUMEN
The widespread use of milk mid-infrared (MIR) spectroscopy for phenotype prediction has urged the application of prediction models across regions and countries. Spectra standardization is the most effective way to reduce the variability in the spectral signal provided by different instruments and labs. This study aimed to develop different standardization models for MIR spectra collected by multiple instruments, across 2 provinces of China, and investigate whether the standardization method (piecewise direct standardization, PDS, and direct standardization, DS), testing scenario (standardization of spectra collected on the same day or after 7 mo), infrared prediction model accuracy (high or low), and instrument (6 instruments from 2 brands) affect the performance of the standardization model. The results showed that the determination coefficient (R2) between absorbance values at each wavenumber provided by the primary and the secondary instruments increased from less than 0.90 to nearly 1.00 after standardization. Both PDS and DS successfully reduced spectra variation among instruments, and performed significantly better than non-standardization (P < 0.05). However, DS was more prone to overfitting than PDS. Standardization accuracy was higher when tested using spectra collected on the same time compared with those collected 7 mo after (P < 0.05), but great improvement in model transferability was obtained for both scenarios compared with the non-standardized spectra. The less accurate infrared prediction model (for C8:0 and C10:0 content) benefited the most (P < 0.05) from spectra standardization compared with the more accurate model (for total fat and protein content). For spectra collected after 7 mo from standardization, after PDS the RMSE between predictions obtained by different machines decreased on average by 86 and 94% compared with the values before standardization, for C8:0 and C10:0 respectively. The secondary instrument had no significant effect on the R2 between predictions (P > 0.05). The variation in the spectral signal provided by different instruments was successfully reduced by standardization across 2 provinces in China. This study lays the foundations for developing a national MIR spectra database to provide consistent predictions across provinces to be used in dairy farm management and breeding programs in China. Besides, this provides opportunities for data exchange and cooperation at international levels.
RESUMEN
Accurate and ex-ante prediction of cows' likelihood of conception (LC) based on milk composition information could improve reproduction management on dairy farms. Milk composition is already routinely measured by mid-infrared (MIR) spectra, which are known to change with advancing stages of pregnancy. For lactating cows, MIR spectra may also be used for predicting the LC. Our objectives were to classify the LC at first insemination using milk MIR spectra data collected from calving to first insemination and to identify the spectral regions that contribute the most to the prediction of LC at first insemination. After quality control, 4,866 MIR spectra, milk production, and reproduction records from 3,451 Holstein cows were used. The classification accuracy and area under the curve (AUC) of 6 models comprising different predictors and 3 machine learning methods were estimated and compared. The results showed that partial least square discriminant analysis (PLS-DA) and random forest had higher prediction accuracies than logistic regression. The classification accuracy of good and poor LC cows and AUC in herd-by-herd validation of the best model were 76.35 ± 10.60% and 0.77 ± 0.11, respectively. All wavenumbers with values of variable importance in the projection higher than 1.00 in PLS-DA belonged to 3 spectral regions, namely from 1,003 to 1,189, 1,794 to 2,260, and 2,300 to 2,660 cm-1. In conclusion, the model can predict LC in dairy cows from a high productive TMR system before insemination with a relatively good accuracy, allowing farmers to intervene in advance or adjust the insemination schedule for cows with a poor predicted LC.
RESUMEN
A routine monitoring for subacute ruminal acidosis (SARA) on the individual level could support the minimization of economic losses and the ensuring of animal welfare in dairy cows. The objectives of this study were (1) to develop a SARA risk score (SRS) by combining information from different data acquisition systems to generate an integrative indicator trait, (2) the investigation of associations of the SRS with feed analysis data, blood characteristics, performance data, and milk composition, including the fatty acid (FA) profile, (3) the development of a milk mid-infrared (MIR) spectra-based prediction equation for this novel reference trait SRS, and (4) its application to an external data set consisting of MIR data of test day records to investigate the association between the MIR-based predictions of the SRS and the milk FA profile. The primary data set, which was used for the objectives (1) to (3), consisted of data collected from 10 commercial farms with a total of 100 Holstein cows in early lactation. The data comprised barn climate parameters, pH and temperature logging from intrareticular measurement boluses, as well as jaw movement and locomotion behavior recordings of noseband-sensor halters and pedometers. Further sampling and data collection included feed samples, blood samples, milk performance, and milk samples, whereof the latter were used to get the milk MIR spectra and to estimate the main milk components, the milk FA profile, and the lactoferrin content. Because all measurements were characterized by different temporal resolutions, the data preparation consisted of an aggregation into values on a daily basis and merging it into one data set. For the development of the SRS, a total of 7 traits were selected, which were derived from measurements of pH and temperature in the reticulum, chewing behavior, and milk yield. After adjustment for fixed effects and standardization, these 7 traits were combined into the SRS using a linear combination and directional weights based on current knowledge derived from literature studies. The secondary data set was used for objective (4) and consisted of test day records of the entire herds, including performance data, milk MIR spectra and MIR-predicted FA. At farm level, it could be shown that diets with higher proportions of concentrated feed resulted in both lower daily mean pH and higher SRS values. On the individual level, an increased SRS could be associated with a modified FA profile (e.g., lower levels of short- and medium-chain FA, higher levels of C17:0, odd- and branched-chain FA). Furthermore, a milk MIR-based partial least squares regression model with a moderate predictability was established for the SRS. This work provides the basis for the development of routine SARA monitoring and demonstrates the high potential of milk composition-based assessment of the health status of lactating cows.