Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.062
Filtrar
1.
Food Chem ; 462: 141028, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217743

RESUMEN

High-moisture extrusion technique with the advantage of high efficiency and low energy consumption is a promising strategy for processing Antarctic krill meat. Consequently, this study aimed to prepare high-moisture textured Antarctic krill meat (HMTAKM) with a rich fiber structure at different water contents (53 %, 57 %, and 61 %) and to reveal the binding and distribution regularity of water molecules, which is closely related to the fiber structure of HMTAKM and has been less studied. The hydrogen-bond network results indicated the presence of at least two or more types of water molecules with different hydrogen bonds. Increasing the water content of HMTAKM promoted the formation of hydrogen bonds between the water molecules and protein molecules, leading to the transition of the ß-sheet to the α-helix. These findings offer a novel viable processing technique for Antarctic krill and a new understanding of the fiber formation of high-moisture textured proteins.


Asunto(s)
Euphausiacea , Enlace de Hidrógeno , Agua , Euphausiacea/química , Animales , Agua/química , Agua/metabolismo , Regiones Antárticas , Carne/análisis , Manipulación de Alimentos
2.
J Food Prot ; 87(10): 100358, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245347

RESUMEN

Historically, low-moisture foods were considered to have minimal microbial risks. However, they have been linked to many high-profile multistate outbreaks and recalls in recent years, drawing research and extension attention to low-moisture food safety. Limited studies have assessed the food safety research and extension needs for the low-moisture food industry. The objectives of this needs assessment were to explore the food safety culture and education needs, identify the food safety challenges and data gaps, and understand the barriers to adopting food-safety-enhancing technologies in the U.S. low-moisture food industry. This needs assessment was composed of two studies. In Study 1, food safety experts from the low-moisture food industry upper management participated in online interviews and a debriefing discussion session. In Study 2, an online anonymous survey was disseminated to a different group of experts with experience in the low-moisture food industry. The qualitative data were analyzed using deductive and inductive coding approaches, while the quantitative data were analyzed via descriptive analysis. Twenty-five experts participated in the studies (Study 1: n = 12; Study 2: n = 13). Common commodities that participants had worked with included nuts and seeds, spices, flour, and dried fruits and vegetables. A food safety culture conceptual framework was adapted, which included three main components: infrastructure conditions (foundation), individual's food safety knowledge, attitudes, and risk perceptions; and organizational conditions (supporting pillars). Major barriers to establishing a positive food safety culture were identified to be limited resources, difficulties in risk communication, and difficulties in behavioral change. For continual improvement in food safety performance, two major themes of food safety challenges and data gaps were identified: cleaning, sanitation, and hygienic design; and pathogen reduction. Participants perceived the main barriers discouraging the low-moisture food industry from adopting food-safety-enhancing technologies were: (1) budgetary priorities, (2) operation constraints, (3) technology validation, (4) consumer acceptance, and (5) maintaining desired product characteristics such as quality and sensory functionality. The findings of this needs assessment provide guidance for the food industry, academia, and government agencies about the direction of future research and the development of targeted extension programs that might help improve food safety in the low-moisture food industry.

3.
J Hazard Mater ; 479: 135678, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39217946

RESUMEN

PFAS from degrading landfill waste partition into organic matter, leachate, and landfill gas. Driven by the limited understanding of PFAS distribution in landfill organics, we analyzed PFAS across various depths and seven spatially distinct locations within a municipal landfill. The measured PFAS concentrations in organics ranged from 6.71 to 73.06 µg kg-1, a sum of twenty-nine PFAS from six classes. Perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic acids (FTCAs) were the dominant classes, constituting 25-82 % and 8-40 % of total PFAS at different depths. PFBA was the most dominant PFCA with a concentration range of 0.90-37.91 µg kg-1, while 5:3 FTCA was the most prevalent FTCA with a concentration of 0.26-17.99 µg kg-1. A clear vertical distribution of PFAS was observed, with significantly greater PFAS concentrations at the middle depths (20-35 ft), compared to the shallow (10-20 ft) and high depths (35-50 ft). A strong positive correlation (r > 0.50) was noted between total PFAS, total carbon, and dissolved organic matter in landfill organics. Multivariate statistical analysis inferred common sources and transformations of PFAS within the landfill. This study underscores the importance of a system-level analysis of PFAS fate in landfills, considering waste variability, chemical properties, release mechanisms, and PFAS transformations.

4.
Int J Biol Macromol ; 280(Pt 1): 135758, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299432

RESUMEN

Reconstituted rice was prepared by extrusion with different feed moistures (30 %, 33 %, 36 %, 39 % and 42 %), and the relationship between the crystalline structure, physicochemical properties, and textual quality of reconstituted rice was studied. The results revealed that, with the feed moisture increased (33 %-36 %), the gelatinization degree reached 97.28 % and the bound water content increased by 23.58 %. The water absorption index and swelling power index reached 8.35 g/g and 9.46 g/g, respectively, and the texture properties were close to those of native rice. Higher extrusion feed moisture (39 %-42 %) increased the setback value (206.00 cP) and breakdown value (721.33 cP) of starch, and the hardness and gumminess of reconstituted rice were also increased (p < 0.05). The starch crystalline structure was disrupted by extrusion and changed to a surface fractal structure, the relative crystallinity decreased from 26.87 % to 6.68 %, and the degree of order decreased from 1.680 to 1.006. Correlation analysis revealed that the crystalline structure of starch and water distribution would affect the textural and hydration properties of reconstituted rice. The results provide theoretical references and data support for improving the edibility and quality of reconstituted rice and enhancing the utilization rate of broken rice.

5.
Int J Biol Macromol ; 280(Pt 3): 136025, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326621

RESUMEN

In this study, comparative effect of heat moisture treatment (HMT) with distilled, hydrogen-infused and plasma-activated waters on the structure, physicochemical properties and in vitro digestibility of quinoa starch (QS) was investigated. To our knowledge, this study is the first to apply hydrogen-infused water to starch modification. The surface of HMT-modified samples was much rougher than that of native QS. HMT did not change the typical "A"-type X-ray diffraction pattern of QS but it increased its relative crystallinity. Meanwhile, amylose content, gelatinization temperature and water absorption capacity of QS significantly increased, whereas viscosity and swelling power markedly decreased. The rapidly digestible starch level of HMT-treated samples was significantly lower than that of native QS, and the resistant starch content markedly increased. These alterations were dependent on treatment moisture level. Furthermore, compared to distilled water, the HMT with hydrogen-infused and plasma-activated waters induced much more extensive effect on above properties, and the sample treated with plasma-activated water had the highest extent due to the acidic or alkaline environment and reactive oxygen and nitrogen species. These results identified that the combination of HMT with hydrogen-infused or plasma-activated water was a novel strategy to improve the thermal stability and functionality of quinoa starch.

6.
Food Sci Biotechnol ; 33(14): 3347-3356, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39328227

RESUMEN

This research verified the in vitro digestive properties of potato starch modified with citric acid (CA), malic acid (MA), and tartaric acid (TA), and evaluated its prebiotic potential. The resistant starch (RS) content in CA- or MA-modified starch was greater than that in native starch. Furthermore, after cooking, all modified starches exhibited an increase in RS content by 2.3 to 3.3 times compared to native starch, which has a 29.81% RS content, demonstrating high thermal stability. Probiotic bacteria demonstrated increased viability, raiging form 6.38-6.85 log CFU/mL, when cultured with modified starch, in contrast to 4.48 log CFU/mL with glucose. During animal testing, modified starches consistently improved gastrointestinal transit, fecal moisture, and lipid levels. Notably, CA-, MA- or TA-modified starches promoted beneficial bacteria growth by providing short-chain fatty acids, with CA-modified starch proving to be the most potent.

7.
J Colloid Interface Sci ; 678(Pt C): 977-986, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39326169

RESUMEN

Polyimide (PI) aerogels possess significant potential for various applications due to their outstanding mechanics and thermal insulation. However, a major drawback of these aerogels is their susceptibility to moisture, which not only compromises their insulative performance but also leads to an increase in weight. To address this issue, we have developed a moisture-resistance technique by incorporating a long-chain hydrophobic barrier at the ortho position relative to the imide groups to enhance the moisture-resistance of the PI aerogels. This approach involved using a series of diamines with hydroxyl groups strategically located at the ortho position of imide groups as reactants. The resulting PI aerogels demonstrated a significant improvement in water resistance, reducing water-uptake to merely one-tenth of that recorded in unmodified samples. Furthermore, the effectiveness of this hydrophobic modification was validated through molecular dynamics simulations, which indicated a diffusion coefficient of 4.41 × 10-11 m2/s after modification. These findings represent a considerable advancement in developing effective methods for hydrophobic modification of PI aerogels, with potential applications in aerospace, electronic communications, and environmental protection.

8.
Sci Total Environ ; : 176431, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326751

RESUMEN

Floods clustered in episodes are the most prevalent natural disaster worldwide, causing substantial economic and human losses. Although these events are often linked to time-periods of extreme rainstorms and unique atmospheric circulation patterns, the river basin characteristics affected by anthropogenic land use changes could exert a strong influence. However, the way and extent of how land use changes across different time scales affect flooding periods are still unclear, especially considering the historical land use changes. This study uses the Landlab landscape evolution model, coupled with an evapotranspiration model, to investigate the forcing factors for the paleo-flooding trends in the Wei River catchment over the last 5000 years. The results indicate that the flooding period from 4400 to 4000 BP was caused by an increase of 28 % in antecedent moisture content as well as a decrease of 28 % in its spatial variability, which are primarily due to climate change, and that the contribution of land-use change is less than 5 %. The increases of about 14 % and 8 % in main channel sedimentation rate play a leading role in flood generation during the time periods from 3400 to 2800 BP and 2000-1400 BP, respectively. These two periods of increased flooding are primarily caused by the erosional effects of increasing anthropogenic land use, whose contributions range from 33 % to 64 %. Furthermore, based on our modelling results, we suggest that the downstream propagation of the main flooding locations, from the Wei River to the lower reaches of the Yellow River, can be explained by the downstream migrating sediment wave. In conclusion, our simulation results give new insights into the causes of Holocene flooding periods in the middle Yellow River from the perspective of dynamic changes in catchment characteristics, which is helpful to improve regional flood risk management under future climate change and anthropogenic activities.

9.
Heliyon ; 10(17): e37444, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296081

RESUMEN

The increase in municipal solid waste (MSW) generation rate has been a growing concern for the modern-day era. On-site composting has been the promising clean-tech alternative to managing biodegradable organic waste (BOW) in MSW. It allows sustainable and compact solutions for the in-house treatment of MSW, reducing the overall burden on landfill and treatment facilities. In this manuscript, a batch and pilot scale performance assessment study were conducted for BOW using a three-stage vertical drum composter (R1, R2, R3). The study aims to determine the impact of aeration, turning mechanisms, bulking agents, degradation rate, and process parameters on compost quality. It was found that physical-chemical properties such as bulk density (0.3 g/cm3), pH (∼7), temperature (<50 °C), moisture content (<20 %), total volatile solids (33 %), electrical conductivity (<4 dS/m) and carbon/nitrogen ratio (∼16) of final compost was under the prescribed limit. We conclude that the provision for aeration via perforated vents and regular turning mechanisms substantially impacted the quality of compost. Compost maturity was determined using humic to fulvic acid (HA/FA) ratio and germination index (GI). The HA/FA and GI of final compost in R1, R2, and R3 were found to be 6.21, 7.22, and 6.90; and 85.3 %, 90.4 %, and 87.6 %, respectively. During the degradation process, the increasing trend of HA/FA ratio (5-8) and GI (>85 %) showed that the compost quality was rich in nutrients and soil-conditioning properties. Based on the kinetic study, it was conclusive that adding bulking agents in R3 (0.0078 day-1) and R4 (0.0098 day-1) contributed to high degradation rates, underlining the value of creating a porous structure that enhances microbial activity. The findings can be a resource for waste generators, managers, technocrats, and policymakers to tackle the issues related to in-house management and treatment of MSW.

10.
Int J Biol Macromol ; 280(Pt 2): 135806, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39307485

RESUMEN

This study aimed to investigate the effects of electron beam (E-beam) irradiation at different doses (0-15 kGy) on the solubility, rheological properties, emulsification characteristics, and moisture distribution of chicken myofibrillar proteins (MPs). Irradiation treatment notably increased the solubility, surface hydrophobicity, emulsification properties, and apparent viscosity of MPs, based on conformational changes caused by irradiation-induced oxidative denaturation of proteins. However, high doses of irradiation (15 kGy) induced in excessive cross-linking and aggregation of proteins, reducing the solubility, emulsification properties, and shear stress. Degradation of myosin heavy and light chains in irradiated MPs increased the content of ß-turns and random coils. Additionally, the initial relaxation times of T21 and T22 in irradiated protein gels were reduced, and the peak value of P21 was increased, which improved the water-capturing ability of protein gels. Altogether, these results findings suggest that electron beam irradiation can be applied as a potential technique for modifying muscle proteins.

11.
Sci Total Environ ; 953: 176060, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39245387

RESUMEN

Water resources are essential for desert oases and are key drivers of local ecological processes critical to the growth of desert vegetation. In this study, the oasis in the hinterland of the Taklamakan Desert, China, was selected as the research subject. Using high-precision classification of oasis vegetation through machine learning, surface water within the oasis was identified and extracted from multi-year Landsat remote sensing data. The spatial distribution patterns of the main community-building species, Populus euphratica and Tamarix ramosissima, were studied under different moisture gradients using environmental covariates and measured groundwater depth to invert its spatial distribution and K-mean clustering to construct surface water and groundwater moisture gradients. The results indicated that the classification accuracy for the two species reached 0.917. Gradients 1-5 were used to categorize the water resources, dividing surface water and groundwater into five gradients. Gradient 3 exhibited the optimal moisture conditions, with a high surface water distribution frequency (0.017) and shallow groundwater depth (3.158 m), while Gradient 4 showed the least optimal moisture conditions, characterized by a low surface water distribution frequency (0.008) and deep groundwater depth (4.820 m). The water gradient decreased in the following order: Gradient 3 > Gradient 5 > Gradient 1 > Gradient 2 > Gradient 4. The optimum gradients for growth of P. euphratica and T. ramosissima were gradients 5, 1, and 2. The normalized vegetation index spatial distribution patterns of the two species were consistent with that of the moisture gradient. Tamarix ramosissima was found to be more tolerant to salinity and drought than P. euphratica. Overall, this study provides valuable information on the effect of the spatial distribution of water resource gradients on oasis vegetation and can guide future water delivery policies in oases.


Asunto(s)
Clima Desértico , Monitoreo del Ambiente , Agua Subterránea , Tamaricaceae , Agua Subterránea/química , China , Populus/crecimiento & desarrollo , Ecosistema
12.
Sensors (Basel) ; 24(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39338703

RESUMEN

With the increasing focus on irrigation management, it is crucial to consider cost-effective alternatives for soil water monitoring, such as multi-point monitoring with low-cost soil moisture sensors. This study assesses the accuracy and functionality of low-cost sensors in a sandy loam (SL) soil amended with biochar at rates of 15.6 and 31.2 tons/ha by calibrating the sensors in the presence of two nitrogen (N) and potassium (K) commercial fertilizers at three salinity levels (non/slightly/moderately) and six soil water contents. Sensors were calibrated across nine SL-soil combinations with biochar and N and K fertilizers, counting for 21 treatments. The best fit for soil water content calibration was obtained using polynomial equations, demonstrating reliability with R2 values greater than 0.98 for each case. After a second calibration, low-cost soil moisture sensors provide acceptable results concerning previous calibration, especially for non- and slightly saline treatments and at soil moisture levels lower than 0.17 cm3cm-3. The results showed that at low frequencies, biochar and salinity increase the capacitance detected by the sensors, with calibration curves deviating up to 30% from the control sandy loam soil. Due to changes in the physical and chemical properties of soil resulting from biochar amendments and the conductive properties influenced by fertilization practices, it is required to conduct specific and continuous calibrations of soil water content sensor, leading to better agricultural management decisions.

13.
Data Brief ; 55: 110729, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39234058

RESUMEN

The interaction of wood and moisture has to be considered in many industrial sectors. Wood is highly hygroscopic material while the absorbed moisture affects all its technical properties. One of them is a moisture permeability which is further affected by the sorption hysteresis and also differs in the three wood anatomical directions - radial, tangential, and axial. For the prediction of the dynamic hygro-thermal behaviour of wood can be used numerical simulation tools. However, data from carefully designed and controlled experiments are needed for reliable validation of these tools. This paper presents data from a 45-day dynamic laboratory experiment. The one-dimensional moisture transport in spruce wood in the tangential and radial directions under isothermal conditions was studied. The samples were exposed to cyclic step-changes in relative humidity 72-95 % at 23 °C. Data show the rate of stabilisation of moisture content in the samples, the effect of sorption hysteresis, and changes in the temperature of samples due to moisture sorption. In addition, the paper also presents material functions describing the sorption properties and moisture permeability of spruce wood. These properties were determined based on laboratory measurements using the spruce wood of the same origin as used for the dynamic experiment. The dynamic data, together with the proposed material functions can be used in the development or verification of hygro-thermal numerical simulation tools.

14.
Environ Technol ; : 1-14, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250824

RESUMEN

The adsorption/desorption characteristics of methane (CH4) on moist shale are of great significance for shale gas exploration and production. However, the influence of moisture on CH4 adsorption/desorption under high temperature and pressure conditions, which is consistent to shale reservoirs (burial depths about 3500-4500 m) in China, remained unclear. In this study, quantitative analysis toward moisture dependence of CH4 adsorption/desorption capability on shales was investigated through experimentation and molecular dynamics simulation under moisture contents of 0%, 0.204%, 0.445%, 0.677%, and 0.965%. Results show that with increasing moisture content, the isothermal adsorption capacity of CH4 decrease, and it reaches 36.80% and 10.00% at moisture content of 0.965% in experimentation and simulation, respectively. Simultaneously, the hysteresis index of CH4 desorption increase by 19.64% and 4.52%. The role of water molecules hindering CH4 desorption under low and high moisture content was clarified. At low moisture content, water molecules are mainly adsorbed on the pore walls, thereby reducing the size of the pore throat and hindering CH4 transport pathways. At high moisture content, many water molecules escape from the original adsorption sites and form clusters in the middle of the pores, blocking the pore throats. Meanwhile, CH4 is re-adsorbed onto the exposed adsorption sites of water, which leads to CH4 desorption hysteresis. The results provide valuable insights for shale gas exploration and production under practical water-bearing shale reservoir conditions.

15.
J Sci Food Agric ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253887

RESUMEN

BACKGROUND: Construction of meat analogs based on pea protein isolate (PPI) alone by high moisture extrusion (HME) is diffocult as a result of the lack of anisotropic structures. In the present study, 0%-15% of whey protein (WP) was introduced to PPI to make hybrid blends, which were used to construct HME extrudates. RESULTS: WP enhanced the hardness, adhesive, cohesiveness and gumminess of the extrudates and facilitated the formation of a distinct anisotropic structure of PPI. The fibrous degrees of the extrudates containing 10% and 15% WP were around 1.50. The addition of WP, which has more -SH groups, increased the disulfide bonds and hydrogen bonding in the extrudates, leading to a denser cross-linked structure. Particle size distribution and Fourier transform infrared analysis showed that WP induced more compact structured aggregates and more ß-sheet structures in the extrudates. Furthermore, the higher hydration capacity of WP may also help form a dilute melt and generate a more pronounced plug flow, assisting the formation of fiber structures of PPI. CONCLUSION: The present study demonstrates that WP is a potential modifier, which could be used to improve the structure of PPI-based meat analogs. © 2024 Society of Chemical Industry.

16.
Environ Monit Assess ; 196(10): 882, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223393

RESUMEN

The study characterized the temporal and spatial variability in greenhouse gas (GHG) fluxes (CO2, CH4, and N2O) between December 2020 and November 2021 and their regulating drivers in the subtropical wetland of the Indian Himalayan foothill. Five distinct habitats (M1-sloppy surface at swamp forest, M2-plain surface at swamp forest, M3-swamp surface with small grasses, M4-marshy land with dense macrophytes, and M5-marshy land with sparse macrophytes) were studied. We conducted in situ measurements of GHG fluxes, microclimate (AT, ST, and SMC(v/v)), and soil properties (pH, EC, N, P, K, and SOC) in triplicates in all the habitat types. Across the habitats, CO2, CH4, and N2O fluxes ranged from 125 to 536 mg m-2 h-1, 0.32 to 28.4 mg m-2 h-1, and 0.16 to 3.14 mg m-2 h-1, respectively. The habitats (M3 and M5) exhibited higher GHG fluxes than the others. The CH4 flux followed the summer > autumn > spring > winter hierarchy. However, CO2 and N2O fluxes followed the summer > spring > autumn > winter. CO2 fluxes were primarily governed by ST and SOC. However, CH4 and N2O fluxes were mainly regulated by ST and SMC(v/v) across the habitats. In the case of N2O fluxes, soil P and EC also played a crucial role across the habitats. AT was a universal driver controlling all GHG fluxes across the habitats. The results emphasize that long-term GHG flux monitoring in sub-tropical Himalayan Wetlands has become imperative to accurately predict the near-future GHG fluxes and their changing nature with the ongoing climate change.


Asunto(s)
Contaminantes Atmosféricos , Dióxido de Carbono , Monitoreo del Ambiente , Gases de Efecto Invernadero , Metano , Humedales , Gases de Efecto Invernadero/análisis , Metano/análisis , India , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Ecosistema , Suelo/química
17.
Environ Monit Assess ; 196(10): 884, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225827

RESUMEN

Groundwater depletion and water scarcity are pressing issues in water-limited regions worldwide, including Pakistan, where it ranks as the third-largest user of groundwater. Lahore, Pakistan, grapples with severe groundwater depletion due to factors like population growth and increased agricultural land use. This study aims to address the lack of comprehensive groundwater availability data in Lahore's semi-arid region by employing GIS techniques and remote sensing data. Various parameters, including Land Use and Land Cover (LULC), Rainfall, Drainage Density (DD), Water Depth, Soil Type, Slope, Population Density, Road Density, Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-Up Index (NDBI), Moisture Stress Index (MSI), Water Vegetation Water Index (WVWI), and Land Surface Temperature (LST), are considered. Thematic layers of these parameters are assigned different weights based on previous literature, reclassified, and superimposed in weighted overlay tool to develop a groundwater potential zones index map for Lahore. The groundwater recharge potential zones are categorized into five classes: Extremely Bad, Bad, Mediocre, Good, and Extremely Good. The groundwater potential zone index (GWPZI) map of Lahore reveals that the majority falls within the Bad to Mediocre recharge potential zones, covering 33% and 28% of the total land area in Lahore, respectively. Additionally, 14% of the total area falls under the category of Extremely Bad recharge potential zones, while Good to Extremely Good areas cover 19% and 6%, respectively. By providing policymakers and water supply authorities with valuable insights, this study underscores the significance of GIS techniques in groundwater management. Implementing the findings can aid in addressing Lahore's groundwater challenges and formulating sustainable water management strategies for the city's future.


Asunto(s)
Monitoreo del Ambiente , Sistemas de Información Geográfica , Agua Subterránea , Tecnología de Sensores Remotos , Pakistán , Agua Subterránea/química , Monitoreo del Ambiente/métodos , Abastecimiento de Agua/estadística & datos numéricos , Agricultura/métodos
18.
Data Brief ; 56: 110861, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39286418

RESUMEN

Drying of mushroom up to the optimal moisture content is an important preservation technique. This research contains data of the drying kinetics, moisture sorption isotherm, and evaluation of the important functional groups of fresh and dried oyster mushroom (Pleurotus ostreatus) while drying in tray dryer using hot air-drying medium. Mushrooms contains macronutrients that used as supplementary foods and moisture that make it perishable with in short time. Various drying kinetics models at different temperatures (50, 55, 60, 65, 70, and 75 °C) for was studied for oyster mushroom drying. The drying parameters (drying temperature, air speed and mass of mushroom) of mushroom in tray dryer were optimized. Fourier transform infrared (FTIR), and Atomic Absorption Spectroscopy (AAS) was used to investigate the useful functional groups and minerals composition of the dried and fresh oyster mushroom. Further proximity study was conducted. This dataset is publicly available for researchers, industrial sectors, and research laboratory to optimize and save time.

19.
J Wound Care ; 33(9): 708-717, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39287030

RESUMEN

OBJECTIVE: The aim of this in vitro experimental series was to explore the mode of action of a hydrocellular polyurethane foam dressing (HPFD) and how its advanced features support beneficial interactions with the wound bed to address common barriers to wound healing, thus supporting improved clinical outcomes. METHOD: Multiple in vitro microbiological tests were performed, assessing prevention of bacterial ingress, surface removal of bacteria, bacterial sequestration and retention into the dressing in a clinically relevant environment. Odour molecule concentrations were measured using gas chromatography and further assays explored matrix metalloproteinase (MMP)-9 retention in the dressing using enzyme linked immunosorbent assay. RESULTS: The HPFD demonstrated marked reductions in bioburden levels across multiple tests. These included prevention of bacterial ingress for seven days, removal of surface bacteria and absorption into the dressing. Further tests identified that most bacteria were sequestered into the hyperabsorbent layer (90.5% for Pseudomonas aeruginosa and 89.6% for meticillin-resistant Staphylococcus aureus). Moreover, the majority of bacteria (99.99% for both test organisms) were retained within the dressing, even upon compression. Additional tests demonstrated a marked reduction of odour molecules following incubation with HPFD and total retention of protease MMP-9 within the dressing. CONCLUSIONS: Proactive management of the wound environment with an appropriate advanced wound dressing, such as the HPFD examined in these in vitro investigations, can not only help to minimise the barriers to healing, as observed across this test series by direct interaction with the wound bed, but may, as a result, provide an ideal environment for wound progression with minimal disturbance.


Asunto(s)
Poliuretanos , Cicatrización de Heridas , Humanos , Pseudomonas aeruginosa , Vendajes , Infección de Heridas/microbiología , Odorantes , Staphylococcus aureus Resistente a Meticilina
20.
J Wound Care ; 33(9): 644-651, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39287040

RESUMEN

Pressure ulcers (PU) are a globally recognised healthcare concern, with their largely preventable development prompting the implementation of targeted preventive strategies. Risk assessment is the first step to planning individualised preventive measures. However, despite the long use of risk assessment, and the >70 risk assessment tools currently available, PUs remain a significant concern. Various technological advancements, including artificial intelligence, subepidermal moisture measurement, cytokine measurement, thermography and ultrasound are emerging as promising tools for PU detection, and subsequent prevention of more serious PU damage. Given the rise in availability of these technologies, this advances the question of whether our current approaches to PU prevention can be enhanced with the use of technology. This article delves into these technologies, suggesting that they could lead healthcare in the right direction, toward optimal assessment and adoption of focused prevention strategies.


Asunto(s)
Diagnóstico Precoz , Úlcera por Presión , Úlcera por Presión/prevención & control , Úlcera por Presión/diagnóstico , Humanos , Medición de Riesgo , Termografía/métodos , Inteligencia Artificial , Ultrasonografía , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...