Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 3): 134475, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102917

RESUMEN

This work valorizes rejects from Tenebrio Molitor TM breeding through the production of chitin and chitosan. Two processes are proposed for extracting chitin from larval exuviae and adult. The first process P1 provides chitin with high contents compared to literature data but the characterization shows the presence of impurities in the exuviae chitin responsible for the shifts in the values of the physicochemical characteristics towards those presented by γ chitin. These impurities are removed by delipidation and pure α chitin is obtained. The effective delipidation of this chitin would be linked to its fibrous surface structure. The analysis of the results of P1 led us to develop a second extraction process P2 which provides pure chitin with improved yields using delipidation followed by deproteinization. The N-deacetylation of chitin according to Kurita or Broussignac process makes possible the preparation of pure, highly deacetylated chitosan samples (2 % < DA < 12 %) with high yields and controlled molar masses (Mv). A kinetic study of molecular degradation during deacetylation is carried out. A comparison with Hermetia illucens allows to extend the use of insects as a potential source of chitin and chitosan and confirms the role of the source and the processes in the determination of their characteristics.


Asunto(s)
Quitina , Quitosano , Tenebrio , Animales , Tenebrio/química , Quitina/química , Quitosano/química , Estadios del Ciclo de Vida , Cruzamiento , Larva , Acetilación
2.
Macromol Rapid Commun ; : e2400512, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108065

RESUMEN

The determination of molar masses and their distributions is crucial in polymer synthesis and design. This work presents the current performance and limitations of diffusion-ordered spectroscopy (DOSY) on a low-field (benchtop) NMR spectrometer (at 90 MHz) as an alternative to size exclusion chromatography (SEC) for determining diffusion coefficient distributions (DCDs) and molar mass distributions (MMDs). After optimization for narrowly distributed homopolymers, MMDs obtained with inverse Laplace transformation (ILT) and log-normal distribution are compared with average molar masses obtained with mono- and bi-exponential fits, as well as MMDs obtained from SEC. This approach enables ILT to determine DCDs and MMDs even for bimodal homopolymers with fully spectrally overlapping signals and block copolymers with various chemical compositions, for which chemical composition profiles are determined. The feasibility of low-field diffusion NMR with samples dissolved in non-deuterated solvents is further demonstrated and methods for solvent suppression are discussed.

3.
J Biomater Sci Polym Ed ; : 1-22, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167543

RESUMEN

Chitosan based films endowed with antibacterial features have witnessed remarkable progress as potential wound dressings. The current study aimed at appraising the effects of the molar mass of chitosan (MM) and the film casting acids on the properties of unplasticized chitosan films and plasticized MSO-embedded chitosan films in order to provide best suited film formulation as a potential candidate for wound dressing application. The prepared films were functionally characterized in terms of their qualitative assessment, thickness, density, swelling behavior, water vapor barrier, mechanical and antibacterial properties. Overall, all chitosan films displayed thickness lower than the human dermis even though thicker and denser films were produced with lactic acid. Assessment of the swelling behavior revealed that only high molar mass (HMM) chitosan films may be regarded as absorbent dressings. Moreover, unplasticized HMM lactate (HMM-LA) films furnished lower stiffness and higher percent strain break as compared to acetate films, due to the plasticizing effect of the remaining lactic acid as alluded by the FTIR analysis. Meanwhile, they provided suitable level of moisture and indicated substantial antibacterial activity against S. aureus and E. coli, the most commonly opportunistic bacteria found in infected skin wound. Plasticized chitosan films doped with MSO were significantly thicker and more permeable to water compared to unplasticized films. Furthermore, MSO significantly potentiate the antibacterial effect of chitosan-based films. Therefore, plasticized HMM-LA/MSO chitosan film flashing good swelling behavior, adequate WVTR and WVP, suitable mechanical properties and antibacterial performances substantiated to be a promising antibacterial dressing material for moderately exuding wounds.

4.
Carbohydr Polym ; 340: 122210, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858031

RESUMEN

Fluorescence labeling with N-(1-naphthyl)ethylenediamine is highly effective for quantifying oxidized reducing end groups (REGs) in cellulosic materials. When combined with size exclusion chromatography in DMAc/LiCl, along with fluorescence / multiple-angle laser light scattering / refractive index detection, a detailed profile of C1-oxidized REGs relative to the molecular weight distribution of the cellulosic material can be obtained. In this work, the derivatization process was extensively optimized, to be carried out heterogeneously in the solvent N-methyl-2-pyrrolidone. Furthermore, we show that to achieve high selectivity for carboxyl groups at the C1 position, keto and aldehyde groups need to be selectively reduced (e.g., by NaBH4), and carboxyl groups other than at C1 need to be blocked (e.g., by methylation with (trimethylsilyl)diazomethane) prior to fluorescence labeling of carboxyl groups at C1 position. Finally, we demonstrate the practical value of the analytical method by measuring the content of the C1-oxidized REGs in cellulose samples after chemical (by Pinnick oxidation) or enzymatic (by treatment with C1-oxidizing LPMO enzymes) oxidation of various pulp samples.

5.
Int J Biol Macromol ; 275(Pt 2): 133429, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944074

RESUMEN

Lytic polysaccharide monooxygenase (LPMO)-catalyzed oxidative processes play a major role in natural biomass conversion. Despite their oxidative cleavage at the surface of polysaccharides, understanding of their mode of action, and the impact of structural patterns of the cellulose fiber on LPMO activity is still not fully understood. In this work, we investigated the action of two different LPMOs from Podospora anserina on celluloses showing different structural patterns. For this purpose, we prepared cellulose II and cellulose III allomorphs from cellulose I cotton linters, as well as amorphous cellulose. LPMO action was monitored in terms of surface morphology, molar mass changes and monosaccharide profile. Both PaLPMO9E and PaLPMO9H were active on the different cellulose allomorphs (I, II and III), and on amorphous cellulose (PASC) whereas they displayed a different behavior, with a higher molar mass decrease observed for cellulose I. Overall, the pretreatment with LPMO enzymes clearly increased the accessibility of all types of cellulose, which was quantified by the higher carboxylate content after carboxymethylation reaction on LPMO-pretreated celluloses. This work gives more insight into the action of LPMOs as a tool for deconstructing lignocellulosic biomass to obtain new bio-based building blocks.


Asunto(s)
Celulosa , Oxigenasas de Función Mixta , Celulosa/química , Celulosa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Podospora/enzimología , Polisacáridos/química , Polisacáridos/metabolismo , Biomasa
6.
Int J Biol Macromol ; 266(Pt 2): 131314, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569995

RESUMEN

Breeding of the black soldier fly is carried out to produce proteins. It is accompanied by releases during the life cycle of this insect. This work is a study of the valorization of these rejects through the production of chitins and chitosans with controlled characteristics. An extraction process is developed with an order of treatments and reaction conditions that provide chitins with high contents. These contents increase as the stages of the life cycle progress and drop for the adult. However, the exuviae chitins present organic impurities which will be eliminated at the N-deacetylation reaction for pupe and after a purification treatment for chitosan from larval stages. All these chitins have an α structure although certain physicochemical characteristics of the larval exuviae chitins are close to those presented by γ chitin. The observed shifts are linked to the effect of impurities rather than to a difference in structure. N-deacetylation of chitins makes possible the valorization of all rejects by the production of pure chitosans with high yields which retain a porous structure for the exuviae and fibrous for the adult which allow complementary applications. These chitosans are highly to completely deacetylated and their molar masses can vary depending on the process and life stage.


Asunto(s)
Quitina , Quitosano , Quitosano/química , Animales , Quitina/química , Dípteros/metabolismo , Dípteros/química , Dípteros/crecimiento & desarrollo , Acetilación , Larva , Cruzamiento , Estadios del Ciclo de Vida , Fenómenos Químicos
7.
Carbohydr Polym ; 336: 122103, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670766

RESUMEN

Side reactions occurring on cellulose during 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TMEPO)-catalyzed oxidation have not been considered to be significant. Then, TEMPO-oxidized hardwood and softwood bleached kraft pulps (HBKP and SBKP) were prepared with an excess NaOCl·5H2O. Supernatant fractions (SFs) were obtained in the aqueous reaction mixtures of TEMPO-oxidized pulps by centrifugation and dialysis. The SFs with carboxyl contents of 5.0 and 4.2 mmol/g were obtained in the yields of 19 % and 30 % from HBKP and SBKP, respectively. These carboxy contents are much higher than those (2.6-2.7 mmol/g) of the precipitate fractions in the TEMPO-oxidized pulps. Solid-state 13C NMR spectra and other analyses revealed that the water-soluble ß-(1 â†’ 4)-polyglucuronic acids were predominantly present in the SFs. In addition, water-insoluble TEMPO-oxidized cellulose nanocrystals were present in the SFs, but they constituted less than ~10 % of the SFs. The mass-average degrees of polymerization (DPw) of the SFs obtained from HBKP and SBKP were 166 and 155, respectively, whereas the original HBKP and SBKP had DPw values of 1990 and 2140, respectively. These substantial depolymerization and formation of the water-soluble ß-(1 â†’ 4)-polyglucuronic acids occur on cellulose and oxidized cellulose molecules as side reactions during TEMPO-catalyzed oxidation, which should be considered for structural analyses of TEMPO-oxidized products.

8.
Polymers (Basel) ; 16(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611225

RESUMEN

Poly(phenylene methylene) (PPM) is a multifunctional polymer that is also active as an anticorrosion fluorescent coating material. Although this polymer was synthesized already more than 100 years ago, a versatile synthetic route to obtain soluble high molar mass polymers based on PPM has yet to be achieved. In this article, the influence of bifunctional bis-chloromethyl durene (BCMD) as a branching agent in the synthesis of PPM is reported. The progress of the reaction was followed by gel permeation chromatography (GPC) and NMR analysis. PPM-based copolymers with the highest molar mass reported so far for this class of materials (up to Mn of 205,300 g mol-1) were isolated. The versatile approach of using BCMD was confirmed by employing different catalysts. Interestingly, thermal and optical characterization established that the branching process does not affect the thermoplastic behavior and the fluorescence of the material, thus opening up PPM-based compounds with high molar mass for applications.

9.
Methods Mol Biol ; 2788: 49-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656508

RESUMEN

Calibrated size exclusion chromatography (SEC) is a useful tool for the analysis of molecular dimensions of polysaccharides. The calibration takes place with a set of narrow distributed dextran standards and peak position technique. Adapted columns systems and dissolving processes enable for the adequate separation of carbohydrate polymers. Plant-extracted fructan (a homopolymer with low molar mass and excellent water solubility) and mucilage (differently structured, high molar mass heteropolysaccarides that include existing supramolecular structures, and require a long dissolving time) are presented as examples of the versatility of this technique. Since narrow standards similar to the samples (chemically and structurally) are often unavailable, it must be noted that the obtained molar mass values and distributions by this method are only apparent (relative) values, expressed as dextran equivalents.


Asunto(s)
Cromatografía en Gel , Peso Molecular , Polisacáridos , Cromatografía en Gel/métodos , Polisacáridos/química , Polisacáridos/análisis , Dextranos/química , Fructanos/química , Fructanos/análisis , Calibración
10.
Molecules ; 29(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38398654

RESUMEN

Bread is a basic element of the human diet. To counteract the process of its going stale, semi-finished bakery products are subjected to cooling or freezing. This process is called postponed baking. The aim of this work was to investigate the effect of the molar mass of rye arabinoxylans (AXs) on the properties of wheat breads baked using the postponed baking method. Breads were produced using the postponed baking method from wheat flour without and with 1 or 2% share of rye AXs clearly differing in molar masses-non-modified or modified AXs by means of partial hydrolysis and cross-linking. The molar mass of non-modified AXs was 413,800 g/mol, that of AXs after partial hydrolysis was 192,320 g/mol, and that of AXs after cross-linking was 535,630 g/mol. The findings showed that the addition of all AX preparations significantly increased the water absorption of the baking mixture, and the increase was proportional to the molar mass of AXs used as well as the share of AX preparation. Moreover, for the first time, it was shown that 1% share of partly hydrolyzed AXs, of a low molar mass, in the baking mixture had the highest effect on increasing the volume of bread and reducing the hardness of the bread crumb of bread baked using postponed baking method. It was also shown that the AXs had a low and inconclusive effect on the baking loss and moisture content of the bread crumb.


Asunto(s)
Pan , Triticum , Humanos , Harina , Xilanos
11.
ChemSusChem ; 17(10): e202301840, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38240610

RESUMEN

We present an approach to overcome the challenges associated with the increasing demand of high-throughput characterization of technical lignins, a key resource in emerging bioeconomies. Our approach offers a resort from the lack of direct, simple, and low-cost analytical techniques for lignin characterization by employing multivariate calibration models based on infrared (IR) spectroscopy to predict structural properties of lignins (i. e., functionality, molar mass). By leveraging a comprehensive database of over 500 well-characterized technical lignin samples - a factor of 10 larger than previously used sets - our chemometric models achieved high levels of quality and statistical confidence for the determination of different functional group contents (RMSEPs of 4-16 %). However, the statistical moments of the molar mass distribution are still best determined by size-exclusion chromatography. Analyses of over 500 technical lignins offered also a great opportunity to provide information on the general variability in kraft lignins and lignosulfonates (from different origins). Overall, the effected savings in analysis time (>7 h), resources, and required sample mass combined with non-destructiveness of the measurement satisfy key demands for efficient high-throughput lignin analyses. Finally, we discuss the advantages, disadvantages, and limitations of our approach, along with critical insights into the associated chemical-analytical and spectroscopic challenges.

12.
J Agric Food Chem ; 72(4): 1938-1948, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36977334

RESUMEN

Colloids are responsible for undesirable haze formation in wine. Here, we characterized 20 colloid batches after isolation by ultrafiltration of musts and wines from five cultivars obtained from four consecutive vintages. Polysaccharide and protein concentrations of the colloids ranged from 0.10 to 0.65 and 0.03 to 0.40 mg/L, respectively. Protein profiling in must and wine colloids by fast protein liquid chromatography (FPLC) and liquid chromatography-high-resolution tandem mass spectrometry (LC-HR-MS/MS) analyses indicated a lower number of proteins in wine than in must colloids. Molar mass distribution analyses revealed all colloids to consist of two carbohydrate- (424-33,390 and 48-462 kg/mol) and one protein-rich (14-121 kg/mol) fractions. The observed barely negative ζ potentials (-3.1 to -1.1 mV) in unstable wines unraveled that colloid instability might be partly related to their poor electrostatic repulsion in the wine matrix. ζ potentials of the colloids from pH 1 to 10 are also presented. Our data support future developments to eliminate haze-forming colloids from wine.


Asunto(s)
Vino , Vino/análisis , Espectrometría de Masas en Tándem , Cromatografía Liquida , Cromatografía Líquida de Alta Presión , Coloides
13.
J Chromatogr A ; 1705: 464186, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37453175

RESUMEN

High molar mass polyethylene oxide (HM-PEO) is commonly used to enhance the mechanical strength of solid oral opioid drug products to deter abuse. Because the properties of PEO depend on molar mass distribution, accurately determining the molar mass distribution is a necessary part of understanding PEO's role in abuse-deterrent formulations (ADF). In this study, an asymmetrical flow field-flow fractionation (AF4) analytical procedure was developed to characterize PEO polymers with nominal molar masses of 1, 4 or 7 MDa as well as those from in-house prepared placebo ADF. The placebo ADF were manufactured using direct compress or hot-melt-extrusion methods, and subjected to physical manipulation, such as heating and grinding before measurement by AF4 were performed. The molar mass distribution characterized by AF4 revealed that PEO was sensitive to thermal stress, exhibiting decreased molar mass with increased heat exposure. The optimized AF4 method was deemed suitable for characterizing HM-PEO, offering adequate dynamic separation range for PEO with molar mass from 100 kDa to approximately 10 MDa.


Asunto(s)
Formulaciones Disuasorias del Abuso , Fraccionamiento de Campo-Flujo , Polietilenglicoles , Fraccionamiento de Campo-Flujo/métodos , Comprimidos , Composición de Medicamentos
14.
Food Res Int ; 170: 112725, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316000

RESUMEN

Palate fullness intensity and mouthfeel descriptors are essential sensory characteristics of non-alcoholic beers (NABs). The descriptor's perception might be influenced by the molar distribution of the non-volatile matrix in cereal-based beverages like NABs. However, only limited information is available on the molar mass of different substances in NABs. This study investigated the role of weight average molar mass (Mw) and size of NABs fractions and their relation to sensory perception. Industrialized bottom-fermented NABs (n = 28) from the German market and NABs produced by different methods were used in this study. A trained sensory panel evaluated palate fullness intensity, mouthfeel, and basic taste descriptors (as additional quality parameters). Asymmetric flow field-flow fractionation was used to fractionate NABs, while Mw was determined by multi-angle light scattering and differential refractive index detectors. The NABs were fractionated into three groups containing different substances: proteins, proteins-polyphenol complexes (P-PC) and low molar mass (non-)starch polysaccharides (LN-SP), and high molar mass (non-)starch polysaccharides (HN-SP). The Mw range of proteins was 18.3-41 kDa, P-PC and LN-SP 43-122.6 kDa, and HN-SP 0.40-2.18·103 kDa. Harmony, defined as the sweet and sour ratio, influenced the palate fullness intensity perception. In the harmonic samples (sour/sweet sensory balanced), the size of HN-SP (> 25 nm) showed a positive correlation to palate fullness intensity. The results suggest the importance of dextrins, arabinoxylan, and ß-glucan in modulating the sensory characteristics of harmonic bottom-fermented NABs.


Asunto(s)
Cerveza , Bebidas , Dulces , Grano Comestible , Polifenoles , Almidón
15.
Molecules ; 28(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985449

RESUMEN

Pullulan is a linear exopolysaccharide, produced in the fermentation media of Aureobasidium pullulans, with a variety of applications in the food and pharmaceutical industries. Pullulan derivatives have growing potential for biomedical applications, but the high cost of pullulan biofabrication currently restricts its commercial use. Better control over pullulan yield, molecular weight and melanin production by altering fermentation conditions could improve the economics. In this study, the effects of sugar and mineral salt stresses on the pullulan production of A. pullulans ATCC 42023 were examined in batch processes. The chemical structure of the recovered pullulan was characterized by FTIR and NMR spectroscopy, and the molecular weight distribution was obtained via SEC. Pullulan yield and melanin production varied when the conditions were adjusted, and pullulans with different molar masses were obtained. Higher-yield pullulan production and a lower polydispersity index were observed when CuSO4 was added to the fermentation in comparison with the control and with the addition of sugars and other salts. Biofabrication of pullulan under stress conditions is a promising strategy to enhance biopolymer yield and to obtain pullulan with a targeted molecular weight.


Asunto(s)
Ascomicetos , Sales (Química) , Sales (Química)/farmacología , Azúcares , Melaninas , Ascomicetos/química , Fermentación , Minerales/farmacología
16.
Int J Biol Macromol ; 235: 123854, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36858094

RESUMEN

The rise of various multidrug-resistant bacteria has created a need for new biocompatible and biodegradable antibacterial compounds. Cationic polysaccharides are promising candidates for this role. Therefore, cationic derivatives of commercial dextrans with molar masses of 11 kDa, 76 kDa, 411 kDa, and 1500-2500 kDa and various degrees of substitution (DSQ 0.34-0.52) were prepared and their antimicrobial properties against four gram-negative nosocomial bacteria were tested. As expected, a higher DSQ led to higher efficiency. The best antimicrobial properties were found for derivatives of 411 kDa, followed by 76 kDa and 1500-2000 kDa dextrans. This indicates that there is a certain optimum molar mass with the best antimicrobial properties. However, as molar mass increased, the biocompatibility of cationic dextran steadily decreased, with increased hemagglutination and toxicity being seen for human cells. The derivatives of 76 kDa dextran with higher DSQ (0.40-0.52) were the best antimicrobial agents suitable for further clinical testing.


Asunto(s)
Antiinfecciosos , Infección Hospitalaria , Humanos , Dextranos , Infección Hospitalaria/tratamiento farmacológico , Antibacterianos/farmacología , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
17.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502213

RESUMEN

Sucrose is a primary metabolite in plants, a source of energy, a source of carbon atoms for growth and development, and a regulator of biochemical processes. Most of the traditional analytical chemistry methods for sucrose quantification in plants require sample treatment (with consequent tissue destruction) and complex facilities, that do not allow real-time sucrose quantification at ultra-low concentrations (nM to pM range) under in vivo conditions, limiting our understanding of sucrose roles in plant physiology across different plant tissues and cellular compartments. Some of the above-mentioned problems may be circumvented with the use of bio-compatible ligands for molecular recognition of sucrose. Nevertheless, problems such as the signal-noise ratio, stability, and selectivity are some of the main challenges limiting the use of molecular recognition methods for the in vivo quantification of sucrose. In this review, we provide a critical analysis of the existing analytical chemistry tools, biosensors, and synthetic ligands, for sucrose quantification and discuss the most promising paths to improve upon its limits of detection. Our goal is to highlight the criteria design need for real-time, in vivo, highly sensitive and selective sucrose sensing capabilities to enable further our understanding of living organisms, the development of new plant breeding strategies for increased crop productivity and sustainability, and ultimately to contribute to the overarching need for food security.


Asunto(s)
Carbono , Sacarosa , Química Analítica , Producción de Cultivos , Reconocimiento en Psicología
18.
Curr Protein Pept Sci ; 23(12): 862-873, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330647

RESUMEN

BACKGROUND: Surfactant protein-S (SP-D) is a naturally occurring lung protein with the potential to treat pulmonary infections. A recombinant surfactant protein-D (SP-D) has been produced and was previously found to exist in multiple oligomeric states. INTRODUCTION: Separation and characterization of interconverting oligomeric states of a protein can be difficult using chromatographic methods, so an alternative separation technique was employed for SPD to characterize the different association states that exist. METHODS: Samples of SP-D were analyzed using asymmetrical flow field-flow fractionation (AF4) using UV and multi-angle laser light scattering (MALLS) detection. The AF4 method appears to be able to separate species as small as the monomer up to the dodecamer (the dominant species) to much larger species with a molar mass greater than 5 MDa. RESULTS: Consistent elution of four distinct peaks was observed after repeated injections. The largest species observed under the last peak (labeled as Peak 4) were termed "unstructured multimers" and were resolved fairly well from the other species. The AF4-MALLS data suggest that only a small fraction of Peak 4 truly corresponds to high molar mass unstructured multimers. All other peaks demonstrated significant molar mass homogeneity consistent with AFM results. CONCLUSION: AF4-MALLS technology appears to be a powerful analytical approach to characterize the complex and dynamic interplay among different protein oligomeric species of SP-D in an aqueous solution.


Asunto(s)
Multimerización de Proteína , Proteína D Asociada a Surfactante Pulmonar , Fraccionamiento de Campo-Flujo/métodos , Multimerización de Proteína/fisiología , Proteína D Asociada a Surfactante Pulmonar/química , Proteínas Recombinantes/química
19.
Polymers (Basel) ; 14(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36433139

RESUMEN

We describe a method of partial moments devised for accurate simulation of the time/conversion evolution of polymer composition and molar mass. Expressions were derived that enable rigorous evaluation of the complete molar mass and composition distribution for shorter chain lengths (e.g., degree of polymerization, Xn = N < 200 units) while longer chains (Xn ≥ 200 units) are not neglected, rather they are explicitly considered in terms of partial moments of the molar mass distribution, µxN(P)=∑n=N+1∞nx[Pn] (where P is a polymeric species and n is its' chain length). The methodology provides the exact molar mass distribution for chains Xn < N, allows accurate calculation of the overall molar mass averages, the molar mass dispersity and standard deviations of the distributions, provides closure to what would otherwise be an infinite series of differential equations, and reduces the stiffness of the system. The method also allows for the inclusion of the chain length dependence of the rate coefficients associated with the various reaction steps (in particular, termination and propagation) and the various side reactions that may complicate initiation or initialization. The method is particularly suited for the detailed analysis of the low molar mass portion of molar mass distributions of polymers formed by radical polymerization with reversible addition-fragmentation chain transfer (RAFT) and is relevant to designing the RAFT-synthesis of sequence-defined polymers. In this paper, we successfully apply the method to compare the behavior of thermally initiated (with an added dialkyldiazene initiator) and photo-initiated (with a RAFT agent as a direct photo-iniferter) RAFT-single-unit monomer insertion (RAFT-SUMI) and oligomerization of N,N-dimethylacrylamide (DMAm).

20.
Polymers (Basel) ; 14(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365525

RESUMEN

The solution properties of a water-soluble chemically modified cellulose ether, hydroxyethyl cellulose (HeC), were examined using static light scattering (SLS), dynamic light scattering (DLS), small-to-wide-angle neutron scattering (S-WANS), small-to-wide-angle X-ray scattering (S-WAXS) and viscometric techniques at 25 °C. The examined HeC samples had average molar substitution numbers ranging from 2.36 to 2.41 and weight average molar masses (Mw) that fell within a wide range from 87 to 1500 kg mol-1. Although the relationship between the determined radius of gyration (Rg) and Mw was described as Rg ∝ Mw~0.6, as is observed usually in flexible polymer solutions in good solvents, the observed scattering vector (q) dependencies of excess Rayleigh ratios were well interpreted using a rigid rod particle model, even in high-Mw samples. Moreover, the ratios of the formed particle length (L) evaluated assuming the model for rigid rods to the determined Rg showed the relationship LRg-1 ~ 3.5 irrespective of Mw and were close to those theoretically predicted for rigid rod particle systems, i.e., LRg-1 = 12. The observed SLS behavior suggested that HeC molecules behave just like rigid rods in aqueous solution. As the L values were not simply proportional to the average molecular contour length calculated from the Mw, the chain conformation or structure of the formed particles by HeC molecules in aqueous solution changed with increasing Mw. The q dependencies of excess scattering intensities observed using the S-WANS and S-WAXS experiments demonstrated that HeC molecules with Mw less than 200 kg mol-1 have a diameter of ~1.4 nm and possess an extended rigid rod-like local structure, the size of which increases gradually with increasing Mw. The observed Mw dependencies of the translational and rotational diffusion coefficients and the intrinsic viscosity of the particle suspensions strongly support the idea that the HeC molecules behave as rigid rod particles irrespective of their Mw.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...