Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(11): 369, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377846

RESUMEN

CONTEXT: Exploring potential energy surfaces (PES) is fundamental in computational chemistry, as it provides insights into the relationship between molecular energy, geometry, and chemical reactivity. We introduce Kick-MEP, a hybrid method for exploring the PES of atomic and molecular clusters, particularly those dominated by non-covalent interactions. Kick-MEP computes the Coulomb integral between the maximum and minimum electrostatic potential values on a 0.001 a.u. electron density isosurface for two interacting fragments. This approach efficiently estimates interaction energies and selects low-energy configurations at reduced computational cost. Kick-MEP was evaluated on silicon-lithium clusters, water clusters, and thymol encapsulated within Cucurbit[7]uril, consistently identifying the lowest energy structures, including global minima and relevant local minima. METHODS: Kick-MEP generates an initial population of molecular structures using the stochastic Kick algorithm, which combines two molecular fragments (A and B). The molecular electrostatic potential (MEP) values on a 0.001 a.u. electron density isosurface for each fragment are used to compute the Coulomb integral between them. Structures with the lowest Coulomb integral are selected and refined through gradient-based optimization and DFT calculations at the PBE0-D3/Def2-TZVP level. Molecular docking simulations for the thymol-Cucurbit[7]uril complex using AutoDock Vina were performed for benchmarking. Kick-MEP was validated across different molecular systems, demonstrating its effectiveness in identifying the lowest energy structures, including global minima and relevant local minima, while maintaining a low computational cost.

2.
Ibrain ; 10(3): 323-344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346794

RESUMEN

This study aims to explore the expression profile of PANoptosis-related genes (PRGs) and immune infiltration in Alzheimer's disease (AD). Based on the Gene Expression Omnibus database, this study investigated the differentially expressed PRGs and immune cell infiltration in AD and explored related molecular clusters. Gene set variation analysis (GSVA) was used to analyze the expression of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes in different clusters. Weighted gene co-expression network analysis was utilized to find co-expressed gene modules and core genes in the network. By analyzing the intersection genes in random forest, support vector machine, generalized linear model, and extreme gradient boosting (XGB), the XGB model was determined. Eventually, the first five genes (Signal Transducer and Activator of Transcription 3, Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1B, Interleukin 4 Receptor, Chloride Intracellular Channel 1, TNF Receptor Superfamily Member 10B) in XGB model were selected as predictive genes. This research explored the relationship between PANoptosis and AD and established an XGB learning model to evaluate and screen key genes. At the same time, immune infiltration analysis showed that there were different immune infiltration expression profiles in AD.

3.
Sci Rep ; 14(1): 19294, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164344

RESUMEN

Lumbar disc herniation (LDH) is a common clinical spinal disorder, yet its etiology remains unclear. We aimed to explore the role of cuproptosis-related genes (CRGs) and identify potential diagnostic biomarkers. Our analysis involved interrogating the GSE124272 and GSE150408 datasets for differential gene expression profiles associated with CRGs and immune characteristics. Molecular clustering was performed on LDH samples, followed by expression and immune infiltration analyses. Using the WGCNA algorithm, specific genes within CRG clusters were identified. After selecting the most predictive genes from the optimal model, four machine learning models were constructed and validated. This study identified nine CRGs associated with copper-regulated cell death. Two copper-containing molecular clusters linked to death were detected in LDH samples. Elevated expression and immune infiltration levels were found in LDH patients, particularly in CRG cluster C2. Utilizing XGB, five genes were identified for constructing a diagnostic model, achieving an area under the curve values of 0.715. In conclusion, this research provides valuable insights into the association between LDH and copper-regulated cell death, alongside proposing a promising predictive model.


Asunto(s)
Cobre , Desplazamiento del Disco Intervertebral , Aprendizaje Automático , Desplazamiento del Disco Intervertebral/genética , Humanos , Perfilación de la Expresión Génica , Vértebras Lumbares/patología , Análisis por Conglomerados , Biomarcadores , Muerte Celular/genética , Transcriptoma
4.
J Comput Chem ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151062

RESUMEN

A system associated with several number of weak interactions supports numerous number of stable structures within a narrow range of energy. Often, a deterministic search method fails to locate the global minimum geometry as well as important local minimum isomers for such systems. Therefore, in this work, the stochastic search technique, namely parallel tempering, has been executed on the quantum chemical surface of the CNO (-) (H 2 O) n $$ {\mathrm{CNO}}^{\left(\hbox{-} \right)}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n $$ system for n = 1 $$ n=1 $$ -8 to generate global minimum as well as several number of local minimum isomers. IR spectrum can act as the fingerprint property for such system to be identified. Thus, IR spectroscopic features have also been included in this work. Vertical detachment energy has also been calculated to obtain clear information about number of water molecules in several spheres around the central anion. In addition, in a real experimental scenario, not only the global but also the local minimum isomers play an important role in determining the average value of a particular physically observable property. Therefore, the relative conformational populations have been determined for all the evaluated structures for the temperature range between 20K and 400K. Further to understand the phase change behavior, the configurational heat capacities have also been calculated for different sizes.

5.
Aging (Albany NY) ; 16(11): 9437-9459, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38814177

RESUMEN

Osteoarthritis (OA), a degenerative joint disease, involves synovial inflammation, subchondral bone erosion, and cartilage degeneration. Ferroptosis, a regulated non-apoptotic programmed cell death, is associated with various diseases. This study investigates ferroptosis-related molecular subtypes in OA to comprehend underlying mechanisms. The Gene Expression Omnibus datasets GSE206848, GSE55457, GSE55235, GSE77298 and GSE82107 were used utilized. Unsupervised clustering identified the ferroptosis-related gene (FRG) subtypes, and their immune characteristics were assessed. FRG signatures were derived using LASSO and SVM-RFE algorithms, forming models to evaluate OA's ferroptosis-related immune features. Three FRG clusters were found to be immunologically heterogeneous, with cluster 1 displaying robust immune response. Models identified nine key signature genes via algorithms, demonstrating strong diagnostic and prognostic performance. Finally, qRT-PCR and Western blot validated these genes, offering consistent results. In addition, some of these genes may have implications as new therapeutic targets and can be used to guide clinical applications.


Asunto(s)
Ferroptosis , Aprendizaje Automático , Osteoartritis , Ferroptosis/genética , Osteoartritis/genética , Osteoartritis/metabolismo , Humanos , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Análisis por Conglomerados
6.
Mol Biotechnol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801616

RESUMEN

Neutrophil extracellular traps (NETs) play a central role in chronic airway diseases. However, the precise genetic basis linking NETs to the development of severe asthma remains elusive. This study aims to unravel the molecular characterization of NET-related genes (NRGs) in severe asthma and to reliably identify relevant molecular clusters and biomarkers. We analyzed RNA-seq data from the Gene Expression Omnibus database. Interaction analysis revealed fifty differentially expressed NRGs (DE-NRGs). Subsequently, the non-negative matrix factorization algorithm categorized samples from severe asthma patients. A machine learning algorithm then identified core NRGs that were highly associated with severe asthma. DE-NRGs were correlated and subjected to protein-protein interaction analysis. Unsupervised consensus clustering of the core gene expression profiles delineated two distinct clusters (C1 and C2) characterizing severe asthma. Functional enrichment highlighted immune-related pathways in the C2 cluster. Core gene selection included the Boruta algorithm, support vector machine, and least absolute contraction and selection operator algorithms. Diagnostic performance was assessed by receiver operating characteristic curves. This study addresses the molecular characterization of NRGs in adult severe asthma, revealing distinct clusters based on DE-NRGs. Potential biomarkers (TIMP1 and NFIL3) were identified that may be important for early diagnosis and treatment of severe asthma.

7.
J Inflamm Res ; 17: 2757-2774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737111

RESUMEN

Background: Ulcerative colitis (UC) is a nonspecific inflammatory disease confined to the intestinal mucosa and submucosa, and its prevalence significantly increases each year. Disulfidptosis is a recently discovered new form of cell death that has been suggested to be involved in multiple diseases. The aim of this study was to explore the relevance of disulfidptosis in UC. Methods: First, the UC datasets were downloaded from the Gene Expression Omnibus (GEO) database, and UC samples were typed based on upregulated disulfidptosis-related genes (DRGs). Then, weighted gene co-expression network analysis (WGCNA) was performed on the datasets and molecular subtypes of UC, respectively, to obtain candidate signature genes. After validation of the validation set and qRT-PCR, we constructed a nomogram model by signature genes to predict the risk of UC. Finally, single-cell sequencing analysis was used to study the heterogeneity of UC and to demonstrate the expression of DRGs and signature genes at the single-cell level. Results: A total of 7 DRGs were significantly upregulated in the expression profiles of UC, and 180 UC samples were divided into two subtypes based on these DRGs. Five candidate signature genes were obtained by intersecting two key gene modules selected by WGCNA. After evaluation, four signature genes with diagnostic relevance (COL4A1, PRRX1, NNMT, and PECAM1) were eventually identified. The nomogram model showed excellent prediction ability. Finally, in the single-cell analysis, there were eight cell types (including B cells, T cells, monocyte, smooth muscle cells, epithelial cells, neutrophil, endothelial cells and NK cells) were identified. The signature genes were significantly expressed mainly in endothelial cells and smooth muscle cells. Conclusion: In this study, subtypes related to disulfidptosis were identified, and single-cell analysis was performed to understand the pathogenesis of UC from a new perspective. Four signature genes were screened and a prediction model with high accuracy was established. This provides novel insights for early diagnosis and therapeutic targets in UC.

8.
Immun Inflamm Dis ; 12(4): e1231, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578019

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a globally prevalent respiratory disease, and programmed cell death plays a pivotal role in the development of COPD. Disulfidptosis is a newly discovered type of cell death that may be associated with the progression of COPD. However, the expression and role of disulfidptosis-related genes (DRGs) in COPD remain unclear. METHODS: The expression of DRGs was identified by analyzing RNA sequencing (RNA-seq) data in COPD. Further, COPD patients were classified into two subtypes by unsupervised cluster analysis to reveal their differences in gene expression and immune infiltration. Meanwhile, hub genes associated with disulfidptosis were screened by weighted gene co-expression network analysis. Subsequently, the hub genes were validated experimentally in cells and animals. In addition, we screened potential therapeutic drugs through the hub genes. RESULTS: We identified two distinct molecular clusters and observed significant differences in immune cell populations between them. In addition, we screened nine hub genes, and experimental validation showed that CDC71, DOHH, PDAP1, and SLC25A39 were significantly upregulated in cigarette smoke-induced COPD mouse lung tissues and bronchial epithelial cells (BEAS-2B) treated with cigarette smoke extract. Finally, we predicted 10 potential small molecule drugs such as Atovaquone, Taurocholic acid, Latamoxef, and Methotrexate. CONCLUSION: We highlighted the strong association between COPD and disulfidptosis, with DRGs demonstrating a discriminative capacity for COPD. Additionally, the expression of certain novel genes, including CDC71, DOHH, PDAP1, and SLC25A39, is linked to COPD and may aid in the diagnosis and assessment of this condition.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Enfermedad Pulmonar Obstructiva Crónica/genética , Apoptosis , Atovacuona , Análisis por Conglomerados , Células Epiteliales , Péptidos y Proteínas de Señalización Intercelular
9.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38543140

RESUMEN

Pheochromocytomas (PCCs) and Paragangliomas (PGLs), commonly known as PPGLs to include both entities, are rare neuroendocrine tumors that may arise in the context of hereditary syndromes or be sporadic. However, even among sporadic PPGLs, identifiable somatic alterations in at least one of the known susceptibility genes can be detected. Therefore, about 3/4 of all PPGL patients can be assigned to one of the three molecular clusters that have been identified in the last years with difference in the underlying pathogenetic mechanisms, biochemical phenotype, metastatic potential, and prognosis. While surgery represents the mainstay of treatment for localized PPGLs, several therapeutic options are available in advanced and/or metastatic setting. However, only few of them hinge upon prospective data and a cluster-oriented approach has not yet been established. In order to render management even more personalized and improve the prognosis of this molecularly complex disease, it is undoubtable that genetic testing for germline mutations as well as genome profiling for somatic mutations, where available, must be improved and become standard practice. This review summarizes the current evidence regarding diagnosis and treatment of PPGLs, supporting the need of a more cluster-specific approach in clinical practice.

10.
Front Genet ; 15: 1255455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444758

RESUMEN

Purpose: Osteoarthritis (OA) is a disease of senescence and inflammation. Hedgehog's role in OA mechanisms is unclear. This study combines Bulk RNA-seq and scRNA-seq to identify Hedgehog-associated genes in OA, investigating their impact on the pathogenesis of OA. Materials and methods: Download and merge eight bulk-RNA seq datasets from GEO, also obtain a scRNA-seq dataset for validation and analysis. Analyze Hedgehog pathway activity in OA using bulk-RNA seq datasets. Use ten machine learning algorithms to identify important Hedgehog-associated genes, validate predictive models. Perform GSEA to investigate functional implications of identified Hedgehog-associated genes. Assess immune infiltration in OA using Cibersort and MCP-counter algorithms. Utilize ConsensusClusterPlus package to identify Hedgehog-related subgroups. Conduct WGCNA to identify key modules enriched based on Hedgehog-related subgroups. Characterization of genes by methylation and GWAS analysis. Evaluate Hedgehog pathway activity, expression of hub genes, pseudotime, and cell communication, in OA chondrocytes using scRNA-seq dataset. Validate Hedgehog-associated gene expression levels through Real-time PCR analysis. Results: The activity of the Hedgehog pathway is significantly enhanced in OA. Additionally, nine important Hedgehog-associated genes have been identified, and the predictive models built using these genes demonstrate strong predictive capabilities. GSEA analysis indicates a significant positive correlation between all seven important Hedgehog-associated genes and lysosomes. Consensus clustering reveals the presence of two hedgehog-related subgroups. In Cluster 1, Hedgehog pathway activity is significantly upregulated and associated with inflammatory pathways. WGCNA identifies that genes in the blue module are most significantly correlated with Cluster 1 and Cluster 2, as well as being involved in extracellular matrix and collagen-related pathways. Single-cell analysis confirms the significant upregulation of the Hedgehog pathway in OA, along with expression changes observed in 5 genes during putative temporal progression. Cell communication analysis suggests an association between low-scoring chondrocytes and macrophages. Conclusion: The Hedgehog pathway is significantly activated in OA and is associated with the extracellular matrix and collagen proteins. It plays a role in regulating immune cells and immune responses.

11.
Heliyon ; 10(2): e24875, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312708

RESUMEN

Ulcerative colitis (UC) is a refractory inflammatory disease with imbalances in intestinal mucosal homeostasis. Cuproptosis serves as newly identified programmed cell death (PCD) form involved in UC. In the study, UC-related datasets were extracted from the Gene Expression Omnibus (GEO) database. A comparison of UC patients and healthy controls identified 11 differentially expressed cuproptosis-related genes (DE-CRGs), where FDX1, LIAS, and DLAT were differentially expressed in UC groups from the mouse models and clinical samples, with their expression correlating with disease severity. By comprehending weighted gene co-expression network analysis (WGCNA) and differential expression analysis, the key genes common to the module genes relevant to different cuproptosis-related clusters and differentially expressed genes (DEGs) both in different clusters and patients with and without UC were identified using several bioinformatic analysis. Furthermore, the mRNA levels of four characteristic genes with diagnostic potential demonstrated significant decrease in both mouse models and clinical UC samples. Our discoveries offer a theoretical foundation for cuproptosis effect in UC.

12.
Front Immunol ; 15: 1335675, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410514

RESUMEN

Introduction: Burns are a global public health problem. Major burns can stimulate the body to enter a stress state, thereby increasing the risk of infection and adversely affecting the patient's prognosis. Recently, it has been discovered that cuproptosis, a form of cell death, is associated with various diseases. Our research aims to explore the molecular clusters associated with cuproptosis in major burns and construct predictive models. Methods: We analyzed the expression and immune infiltration characteristics of cuproptosis-related factors in major burn based on the GSE37069 dataset. Using 553 samples from major burn patients, we explored the molecular clusters based on cuproptosis-related genes and their associated immune cell infiltrates. The WGCNA was utilized to identify cluster-specific genes. Subsequently, the performance of different machine learning models was compared to select the optimal model. The effectiveness of the predictive model was validated using Nomogram, calibration curves, decision curves, and an external dataset. Finally, five core genes related to cuproptosis and major burn have been was validated using RT-qPCR. Results: In both major burn and normal samples, we determined the cuproptosis-related genes associated with major burns through WGCNA analysis. Through immune infiltrate profiling analysis, we found significant immune differences between different clusters. When K=2, the clustering number is the most stable. GSVA analysis shows that specific genes in cluster 2 are closely associated with various functions. After identifying the cross-core genes, machine learning models indicate that generalized linear models have better accuracy. Ultimately, a generalized linear model for five highly correlated genes was constructed, and validation with an external dataset showed an AUC of 0.982. The accuracy of the model was further verified through calibration curves, decision curves, and modal graphs. Further analysis of clinical relevance revealed that these correlated genes were closely related to time of injury. Conclusion: This study has revealed the intricate relationship between cuproptosis and major burns. Research has identified 15 cuproptosis-related genes that are associated with major burn. Through a machine learning model, five core genes related to cuproptosis and major burn have been selected and validated.


Asunto(s)
Quemaduras , Familia de Multigenes , Humanos , Quemaduras/genética , Muerte Celular , Calibración , Aprendizaje Automático
13.
Lipids Health Dis ; 23(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169383

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is an unpredictable and potentially fatal disorder. A derailed or unbalanced immune response may be the root of the disease's severe course. Disorders of lipid metabolism are highly correlated with the occurrence and severity of AP. We aimed to characterize the contribution and immunological characteristics of lipid metabolism-related genes (LMRGs) in non-mild acute pancreatitis (NMAP) and identify a robust subtype and biomarker for NMAP. METHODS: The expression mode of LMRGs and immune characteristics in NMAP were examined. Then LMRG-derived subtypes were identified using consensus clustering. The weighted gene co-expression network analysis (WGCNA) was utilized to determine hub genes and perform functional enrichment analyses. Multiple machine learning methods were used to build the diagnostic model for NMAP patients. To validate the predictive effectiveness, nomograms, receiver operating characteristic (ROC), calibration, and decision curve analysis (DCA) were used. Using gene set variation analysis (GSVA) and single-cell analysis to study the biological roles of model genes. RESULTS: Dysregulated LMRGs and immunological responses were identified between NMAP and normal individuals. NMAP individuals were divided into two LMRG-related subtypes with significant differences in biological function. The cluster-specific genes are primarily engaged in the regulation of defense response, T cell activation, and positive regulation of cytokine production. Moreover, we constructed a two-gene prediction model with good performance. The expression of CARD16 and MSGT1 was significantly increased in NMAP samples and positively correlated with neutrophil and mast cell infiltration. GSVA results showed that they are mainly upregulated in the T cell receptor complex, immunoglobulin complex circulating, and some immune-related routes. Single-cell analysis indicated that CARD16 was mainly distributed in mixed immune cells and macrophages, and MGST1 was mainly distributed in exocrine glandular cells. CONCLUSIONS: This study presents a novel approach to categorizing NMAP into different clusters based on LMRGs and developing a reliable two-gene biomarker for NMAP.


Asunto(s)
Pancreatitis , Humanos , Pancreatitis/genética , Enfermedad Aguda , Metabolismo de los Lípidos , Biomarcadores
14.
BMC Genomics ; 25(1): 125, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38287255

RESUMEN

BACKGROUND: Diabetic foot ulcer (DFU) is one of the most common and severe complications of diabetes, with vascular changes, neuropathy, and infections being the primary pathological mechanisms. Glutamine (Gln) metabolism has been found to play a crucial role in diabetes complications. This study aims to identify and validate potential Gln metabolism biomarkers associated with DFU through bioinformatics and machine learning analysis. METHODS: We downloaded two microarray datasets related to DFU patients from the Gene Expression Omnibus (GEO) database, namely GSE134431, GSE68183, and GSE80178. From the GSE134431 dataset, we obtained differentially expressed Gln-metabolism related genes (deGlnMRGs) between DFU and normal controls. We analyzed the correlation between deGlnMRGs and immune cell infiltration status. We also explored the relationship between GlnMRGs molecular clusters and immune cell infiltration status. Notably, WGCNA to identify differentially expressed genes (DEGs) within specific clusters. Additionally, we conducted GSVA to annotate enriched genes. Subsequently, we constructed and screened the best machine learning model. Finally, we validated the predictions' accuracy using a nomogram, calibration curves, decision curve analysis (DCA), and the GSE134431, GSE68183, and GSE80178 dataset. RESULTS: In both the DFU and normal control groups, we confirmed the presence of deGlnMRGs and an activated immune response. From the GSE134431 dataset, we obtained 20 deGlnMRGs, including CTPS1, NAGS, SLC7A11, GGT1, GCLM, RIMKLA, ARG2, ASL, ASNS, ASNSD1, PPAT, GLS2, GLUD1, MECP2, ASS1, PRODH, CTPS2, ALDH5A1, DGLUCY, and SLC25A12. Furthermore, two clusters were identified in DFU. Immune infiltration analysis indicated the presence of immune heterogeneity in these two clusters. Additionally, we established a Support Vector Machine (SVM) model based on 5 genes (R3HCC1, ZNF562, MFN1, DRAM1, and PTGDS), which exhibited excellent performance on the external validation datasetGSE134431, GSE68183, and GSE80178 (AUC = 0.929). CONCLUSION: This study has identified five Gln metabolism genes associated with DFU, revealing potential novel biomarkers and therapeutic targets for DFU. Additionally, the infiltration of immune-inflammatory cells plays a crucial role in the progression of DFU.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Pie Diabético/genética , Glutamina , Biología Computacional , Bases de Datos Factuales , Biomarcadores
15.
J Mol Neurosci ; 74(1): 12, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236354

RESUMEN

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with a broad spectrum of symptoms and prognoses. Effective therapy requires understanding this variability. ASD children's cognitive and immunological development may depend on iron homoeostasis. This study employs a machine learning model that focuses on iron metabolism hub genes to identify ASD subgroups and describe immune infiltration patterns. A total of 97 control and 148 ASD samples were obtained from the GEO database. Differentially expressed genes (DEGs) and an iron metabolism gene collection achieved the intersection of 25 genes. Unsupervised cluster analysis determined molecular subgroups in individuals with ASD based on 25 genes related to iron metabolism. We assessed gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, gene set variation analysis (GSVA), and immune infiltration analysis to compare iron metabolism subtype effects. We employed machine learning to identify subtype-predicting hub genes and utilized both training and validation sets to assess gene subtype prediction accuracy. ASD can be classified into two iron-metabolizing molecular clusters. Metabolic enrichment pathways differed between clusters. Immune infiltration showed that clusters differed immunologically. Cluster 2 had better immunological scores and more immune cells, indicating a stronger immune response. Machine learning screening identified SELENBP1 and CAND1 as important genes in ASD's iron metabolism signaling pathway. These genes express in the brain and have AUC values over 0.8, implying significant predictive power. The present study introduces iron metabolism signaling pathway indicators to predict ASD subtypes. ASD is linked to immune cell infiltration and iron metabolism disorders.


Asunto(s)
Trastorno del Espectro Autista , Niño , Humanos , Trastorno del Espectro Autista/genética , Homeostasis , Encéfalo , Bases de Datos Factuales , Hierro
16.
J Gene Med ; 26(1): e3575, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37548130

RESUMEN

BACKGROUND: The present study was designed to screen key microRNA (miRNA)-target gene networks for ovarian cancer (OC) and to classify and construct a risk assessment system for OC based on the target genes. METHODS: OC sample data of The Cancer Genome Atlas dataset and GSE26193, GSE30161, GSE63885 and GSE9891 datasets were retrospectively collected. Pearson correlation analysis and targeted analysis of miRNA and target gene were performed to screen key miRNA-target gene networks. Target genes associated with the prognosis of OC were screened from key miRNA-target gene networks for consensus clustering and least absolute shrinkage and selection operator-based regression machine learning analysis of OC samples. RESULTS: Twenty target genes of 2651 key miRNA-target gene pairs had significant prognostic correlation in each OC cohort, and OC was divided into three clusters. There were differences in prognostic outcome, biological pathways, immune cell abundance and susceptibility to immune checkpoint blockade (ICB) therapy and anti-tumor drugs among the three molecular clusters. S2 exhibited the least advantage in prognosis and immunotherapy response rate in the three molecular clusters, and the pathways regulating immunity, hypoxia, metabolism and promoting malignant progression of cancer, as well as infiltrating immune and stromal cell population abundance, were the highest in this cluster. An eight-target gene prognostic model was created, and the risk index obtained by using this model not only significantly distinguished the immune characteristics of the sample, but also predicted the response of the sample to ICB treatment, and helped to screen 36 potential anti-OC drugs. CONCLUSIONS: The present study provides a classification strategy for OC based on prognostic target genes in key miRNA-target gene networks, and creates a risk assessment system for predicting prognosis and response to ICB therapy in OC patients, providing molecular basis for prognosis and precise treatment of OC.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , MicroARNs/genética , Pronóstico , Redes Reguladoras de Genes , Estudios Retrospectivos , Neoplasias Ováricas/genética
17.
Front Mol Biosci ; 10: 1202371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046810

RESUMEN

Objective: To investigate the potential association between Anoikis-related genes, which are responsible for preventing abnormal cellular proliferation, and rheumatoid arthritis (RA). Methods: Datasets GSE89408, GSE198520, and GSE97165 were obtained from the GEO with 282 RA patients and 28 healthy controls. We performed differential analysis of all genes and HLA genes. We performed a protein-protein interaction network analysis and identified hub genes based on STRING and cytoscape. Consistent clustering was performed with subgrouping of the disease. SsGSEA were used to calculate immune cell infiltration. Spearman's correlation analysis was employed to identify correlations. Enrichment scores of the GO and KEGG were calculated with the ssGSEA algorithm. The WGCNA and the DGIdb database were used to mine hub genes' interactions with drugs. Results: There were 26 differentially expressed Anoikis-related genes (FDR = 0.05, log2FC = 1) and HLA genes exhibited differential expression (P < 0.05) between the disease and control groups. Protein-protein interaction was observed among differentially expressed genes, and the correlation between PIM2 and RAC2 was found to be the highest; There were significant differences in the degree of immune cell infiltration between most of the immune cell types in the disease group and normal controls (P < 0.05). Anoikis-related genes were highly correlated with HLA genes. Based on the expression of Anoikis-related genes, RA patients were divided into two disease subtypes (cluster1 and cluster2). There were 59 differentially expressed Anoikis-related genes found, which exhibited significant differences in functional enrichment, immune cell infiltration degree, and HLA gene expression (P < 0.05). Cluster2 had significantly higher levels in all aspects than cluster1 did. The co-expression network analysis showed that cluster1 had 51 hub differentially expressed genes and cluster2 had 72 hub differentially expressed genes. Among them, three hub genes of cluster1 were interconnected with 187 drugs, and five hub genes of cluster2 were interconnected with 57 drugs. Conclusion: Our study identified a link between Anoikis-related genes and RA, and two distinct subtypes of RA were determined based on Anoikis-related gene expression. Notably, cluster2 may represent a more severe state of RA.

18.
Aging (Albany NY) ; 15(19): 10389-10406, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37801482

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative condition causing cognitive decline. Oxidative stress (OS) is believed to contribute to neuronal death and dysfunction in AD. We conducted a study to identify differentially expressed OS-related genes (DEOSGs) through bioinformatics analysis and experimental validation, aiming to develop a diagnostic model for AD. We analyzed the GSE33000 dataset to identify OS regulator expression profiles and create molecular clusters (C1 and C2) associated with immune cell infiltration using 310 AD samples. Cluster analysis revealed significant heterogeneity in immune infiltration. The 'WGCNA' algorithm identified cluster-specific and disease-specific differentially expressed genes (DGEs). Four machine learning models (random forest (RF), support vector machine (SVM), generalized linear model (GLM) and extreme gradient boosting (XGB)) were compared, with GLM performing the best (AUC = 0.812). Five DEOSGs (NFKBIA, PLCE1, CLIC1, SLCO4A1, TRAF3IP2) were identified based on the GLM model. AD subtype prediction accuracy was validated using nomograms and calibration curves. External datasets (GSE122063 and GSE106241) confirmed the expression levels and clinical significance of important genes. Experimental validation through RT-qPCR showed increased expression of NFKBIA, CLIC1, SLCO4A1, TRAF3IP2, and decreased expression of PLCE1 in the temporal cortex of AD mice. This study provides insights for AD research and treatment, particularly focusing on the five model-related DEOSGs.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Algoritmos , Calibración , Muerte Celular , Biomarcadores
19.
Front Genet ; 14: 1251999, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745847

RESUMEN

Objective: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the world, and its pathogenesis is not fully understood. Disulfidptosis is the most recently reported form of cell death and may be associated with NAFLD progression. Our study aimed to explore the molecular clusters associated with disulfidptosis in NAFLD and to construct a predictive model. Methods: First, we analyzed the expression profile of the disulfidptosis regulators and immune characteristics in NAFLD. Using 104 NAFLD samples, we investigated molecular clusters based on differentially expressed disulfidptosis-related genes, along with the related immune cell infiltration. Cluster-specific differentially expressed genes were then identified by using the WGCNA method. We also evaluated the performance of four machine learning models before choosing the optimal machine model for diagnosis. Nomogram, calibration curves, decision curve analysis, and external datasets were used to confirm the prediction effectiveness. Finally, the expression levels of the biomarkers were assessed in a mouse model of a high-fat diet. Results: Two differentially expressed DRGs were identified between healthy and NAFLD patients. We revealed the expression profile of DRGs in NAFLD and the correlation with 22 immune cells. In NAFLD, two clusters of molecules connected to disulfidptosis were defined. Significant immunological heterogeneity was shown by immune infiltration analysis among the various clusters. A significant amount of immunological infiltration was seen in Cluster 1. Functional analysis revealed that Cluster 1 differentially expressed genes were strongly linked to energy metabolism and immune control. The highest discriminatory performance was demonstrated by the SVM model, which had a higher area under the curve, relatively small residual and root mean square errors. Nomograms, calibration curves, and decision curve analyses were used to show how accurate the prediction of NAFLD was. Further analysis revealed that the expression of three model-related genes was significantly associated with the level of multiple immune cells. In animal experiments, the expression trends of DDO, FRK and TMEM19 were consistent with the results of bioinformatics analysis. Conclusion: This study systematically elucidated the complex relationship between disulfidptosis and NAFLD and developed a promising predictive model to assess the risk of disease in patients with disulfidptosis subtypes and NAFLD.

20.
Front Endocrinol (Lausanne) ; 14: 1189513, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645416

RESUMEN

Background: Diabetic osteoporosis exhibits heterogeneity at the molecular level. Ferroptosis, a controlled form of cell death brought on by a buildup of lipid peroxidation, contributes to the onset and development of several illnesses. The aim was to explore the molecular subtypes associated with ferroptosis in diabetic osteoporosis at the molecular level and to further elucidate the potential molecular mechanisms. Methods: Integrating the CTD, GeneCards, FerrDb databases, and the microarray data of GSE35958, we identified ferroptosis-related genes (FRGs) associated with diabetic osteoporosis. We applied unsupervised cluster analysis to divide the 42 osteoporosis samples from the GSE56814 microarray data into different subclusters based on FRGs. Subsequently, FRGs associated with two ferroptosis subclusters were obtained by combining database genes, module-related genes of WGCNA, and differentially expressed genes (DEGs). Eventually, the key genes from FRGs associated with diabetic osteoporosis were identified using the least absolute shrinkage and selection operator (LASSO), Boruta, support vector machine recursive feature elimination (SVM - RFE), and extreme gradient boosting (XGBoost) machine learning algorithms. Based on ROC curves of external datasets (GSE56815), the model's efficiency was examined. Results: We identified 15 differentially expressed FRGs associated with diabetic osteoporosis. In osteoporosis, two distinct molecular clusters related to ferroptosis were found. The expression results and GSVA analysis indicated that 15 FRGs exhibited significantly different biological functions and pathway activities in the two ferroptosis subclusters. Therefore, we further identified 17 FRGs associated with diabetic osteoporosis between the two subclusters. The results of the comprehensive analysis of 17 FRGs demonstrated that these genes were heterogeneous and had a specific interaction between the two subclusters. Ultimately, the prediction model had a strong foundation and excellent AUC values (0.84 for LASSO, 0.84 for SVM - RFE, 0.82 for Boruta, and 0.81 for XGBoost). IDH1 is a common gene to all four algorithms thus being identified as a key gene with a high AUC value (AUC = 0.698). Conclusions: As a ferroptosis regulator, IDH1 is able to distinguish between distinct molecular subtypes of diabetic osteoporosis, which may offer fresh perspectives on the pathogenesis of the disease's clinical symptoms and prognostic heterogeneity.


Asunto(s)
Diabetes Mellitus , Ferroptosis , Osteoporosis , Humanos , Ferroptosis/genética , Algoritmos , Muerte Celular , Aprendizaje Automático , Osteoporosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...