Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.658
Filtrar
1.
PeerJ ; 12: e17633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948208

RESUMEN

Wheat stem rust, which is caused by Puccinia graminis f. sp. tritici (Pgt), is a highly destructive disease that affects wheat crops on a global scale. In this study, the reactions of 150 bread wheat varieties were evaluated for natural Pgt infection at the adult-plant stage in the 2019-2020 and 2020-2021 growing seasons, and they were analyzed using specific molecular markers to detect stem rust resistance genes (Sr22, Sr24, Sr25, Sr26, Sr31, Sr38, Sr50, and Sr57). Based on phenotypic data, the majority of the varieties (62%) were resistant or moderately resistant to natural Pgt infection. According to molecular results, it was identified that Sr57 was present in 103 varieties, Sr50 in nine varieties, Sr25 in six varieties, and Sr22, Sr31, and Sr38 in one variety each. Additionally, their combinations Sr25 + Sr50, Sr31 + Sr57, Sr38 + Sr50, and Sr38 + Sr57 were detected in these varieties. On the other hand, Sr24 and Sr26 were not identified. In addition, many varieties had low stem rust scores, including a large minority that lacked Sr57. These varieties must have useful resistance to stem rust and could be the basis for selecting greater, possibly durable resistance.


Asunto(s)
Resistencia a la Enfermedad , Variación Genética , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/microbiología , Triticum/genética , Triticum/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Puccinia/patogenicidad , Variación Genética/genética , Tallos de la Planta/microbiología , Tallos de la Planta/inmunología , Tallos de la Planta/genética , Genes de Plantas , Basidiomycota/patogenicidad
2.
Water Res ; 261: 122056, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38996733

RESUMEN

The emission of methane (CH4) from streams and rivers contributes significantly to its global inventory. The production of CH4 is traditionally considered as a strictly anaerobic process. Recent investigations observed a "CH4 paradox" in oxic waters, suggesting the occurrence of oxic methane production (OMP). Human activities promoted dissolved organic carbon (DOC) in streams and rivers, providing significant substrates for CH4 production. However, the underlying DOC molecular markers of CH4 production in river systems are not well known. The identification of these markers will help to reveal the mechanism of methanogenesis. Here, Fourier transform ion cyclotron mass spectrometry and other high-quality DOC characterization, ecosystem metabolism, and in-situ net CH4 production rate were employed to investigate molecular markers attributing to riverine dissolved CH4 production across different land uses. We show that endogenous CH4 production supports CH4 oversaturation and positively correlates with DOC concentrations and gross primary production. Furthermore, sulfur (S)-containing molecules, particularly S-aliphatics and S-peptides, and fatty acid-like compounds (e.g., acetate homologs) are characterized as markers of water-column aerobic and anaerobic CH4 production. Watershed characterization, including riverine discharge, allochthonous DOC input, turnover, as well as autochthonous DOC, affects the CH4 production. Our study helps to understand riverine aerobic or anaerobic CH4 production relating to DOC molecular characteristics across different land uses.

3.
Antimicrob Agents Chemother ; : e0004424, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046237

RESUMEN

The emergence and spread of chloroquine-resistant Plasmodium vivax have necessitated the assessment of alternative blood schizonticidal drugs. In Vietnam, chloroquine-resistant P. vivax malaria has been reported. In an open-label, single-arm trial, the safety, tolerability, and efficacy of pyronaridine-artesunate (Pyramax, PA) was evaluated in Dak Nong province, Vietnam. A 3-day course of PA was administered to adults and children (≥20 kg) infected with P. vivax. Patients also received primaquine (0.25 mg/kg daily for 14 days). PA was well tolerated with transient asymptomatic increases in liver transaminases. The per-protocol proportion of patients with day 42 PCR-unadjusted adequate clinical and parasitological response was 96.0% (95% CI, 84.9%-99.0%, n = 48/50). The median parasite clearance time was 12 h (range, 12-36 h), with a median fever clearance time of 24 h (range, 12-60 h). Single nucleotide polymorphisms (SNPs) as potential genetic markers of reduced drug susceptibility were analyzed in three putative drug resistance markers, Pvcrt-o, Pvmdr1, and PvK12. Insertion at position K10 of the Pvcrt-o gene was found in 74.6% (44/59) of isolates. Pvmdr1 SNPs at Y976F and F1076L were present in 61% (36/59) and 78% (46/59), respectively. Amplification of Pvmdr1 gene (two copies) was found in 5.1% (3/59) of parasite samples. Only 5.1% (3/59) of isolates had mutation 552I of the PvK12 gene. Overall, PA rapidly cleared P. vivax blood asexual stages and was highly efficacious in treating vivax malaria, with no evidence of artemisinin resistance found. PA provides an alternative to chloroquine treatment for vivax malaria in Vietnam. CLINICAL TRIALS: This study is registered with the Australian New Zealand Clinical Trials Registry as ACTRN12618001429246.

4.
Malar J ; 23(1): 219, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049117

RESUMEN

BACKGROUND: Sulfadoxine-pyrimethamine (SP), as a partner to artesunate as ACT is the treatment of choice for uncomplicated P. falciparum infections in the majority of India and SP-resistance has a potential to lead to ACT failure. In the lack of robust surveillance of therapeutic efficacy of SP, validate molecular markers of SP-resistance offer a hint of failing SP. However, studies reporting these validated markers often suffer from certain pitfalls that warrant a careful interpretation. MAIN BODY: Critical analyses of the results and their reported interpretations from a recent study and other studies conducted on the WHO-validated molecular markers of SP-resistance in India were analysed and the main problems with studying and reporting of these markers are presented here. It was noted that almost all studies analysed flawed either on the usage, estimation and/or interpretation of the standardized classification of the studies SP mutations. These flaws not only impart spatiotemporal incomparability of the published data but also have the potential of being misunderstood and wrongly translated. CONCLUSION: Based on this universal problem in studying, reporting and interpreting the data from the studies on molecular markers of SP-resistance, it is stressed that the future studies should be conducted with utmost caution so that robust evidence may be generated and correctly translated to policy.


Asunto(s)
Antimaláricos , Combinación de Medicamentos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , India , Resistencia a Medicamentos/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Humanos , Malaria Falciparum/tratamiento farmacológico
5.
BMC Genomics ; 25(1): 665, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961324

RESUMEN

Indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are the main methods used to control mosquito populations for malaria prevention. The efficacy of these strategies is threatened by the spread of insecticide resistance (IR), limiting the success of malaria control. Studies of the genetic evolution leading to insecticide resistance could enable the identification of molecular markers that can be used for IR surveillance and an improved understanding of the molecular mechanisms associated with IR. This study used a weighted gene co-expression network analysis (WGCNA) algorithm, a systems biology approach, to identify genes with similar co-expression patterns (modules) and hub genes that are potential molecular markers for insecticide resistance surveillance in Kenya and Benin. A total of 20 and 26 gene co-expression modules were identified via average linkage hierarchical clustering from Anopheles arabiensis and An. gambiae, respectively, and hub genes (highly connected genes) were identified within each module. Three specific genes stood out: serine protease, E3 ubiquitin-protein ligase, and cuticular proteins, which were top hub genes in both species and could serve as potential markers and targets for monitoring IR in these malaria vectors. In addition to the identified markers, we explored molecular mechanisms using enrichment maps that revealed a complex process involving multiple steps, from odorant binding and neuronal signaling to cellular responses, immune modulation, cellular metabolism, and gene regulation. Incorporation of these dynamics into the development of new insecticides and the tracking of insecticide resistance could improve the sustainable and cost-effective deployment of interventions.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Piretrinas , Biología de Sistemas , Anopheles/genética , Anopheles/efectos de los fármacos , Animales , Resistencia a los Insecticidas/genética , Piretrinas/farmacología , Insecticidas/farmacología , Redes Reguladoras de Genes , Organofosfatos/farmacología , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Kenia , Perfilación de la Expresión Génica
6.
Arch Gerontol Geriatr ; 127: 105553, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38970884

RESUMEN

Sarcopenia is a progressive age-related muscle disease characterized by low muscle strength, quantity and quality, and low physical performance. The clinical overlap between these subphenotypes (reduction in muscle strength, quantity and quality, and physical performance) was evidenced, but the genetic overlap is still poorly investigated. Herein, we investigated whether there is a genetic overlap amongst sarcopenia subphenotypes in the search for more effective molecular markers for this disease. For that, a Bioinformatics approach was used to identify and characterize pleiotropic effects at the genome, loci and gene levels using Genome-wide association study results. As a result, a high genetic correlation was identified between gait speed and muscle strength (rG=0.5358, p=3.39 × 10-8). Using a Pleiotropy-informed conditional and conjunctional false discovery rate method we identified two pleiotropic loci for muscle strength and gait speed, one of them was nearby the gene PHACTR1. Moreover, 11 pleiotropic loci and 25 genes were identified for muscle mass and muscle strength. Lastly, using a gene-based GWAS approach three candidate genes were identified in the overlap of the three Sarcopenia subphenotypes: FTO, RPS10 and CALCR. The current study provides evidence of genetic overlap and pleiotropy among sarcopenia subphenotypes and highlights novel candidate genes and molecular markers associated with the risk of sarcopenia.

7.
Plants (Basel) ; 13(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38999716

RESUMEN

Genome-wide association studies (GWASs) allow for inferences about the relationships between genomic variants and phenotypic traits in natural or breeding populations. However, few have used this methodology in Coffea arabica. We aimed to identify chromosomal regions with significant associations between SNP markers and agronomic traits in C. arabica. We used a coffee panel consisting of 195 plants derived from 13 families in F2 generations and backcrosses of crosses between leaf rust-susceptible and -resistant genotypes. The plants were phenotyped for 18 agronomic markers and genotyped for 21,211 SNP markers. A GWAS enabled the identification of 110 SNPs with significant associations (p < 0.05) for several agronomic traits in C. arabica: plant height, plagiotropic branch length, number of vegetative nodes, canopy diameter, fruit size, cercosporiosis incidence, and rust incidence. The effects of each SNP marker associated with the traits were analyzed, such that they can be used for molecular marker-assisted selection. For the first time, a GWAS was used for these important agronomic traits in C. arabica, enabling applications in accelerated coffee breeding through marker-assisted selection and ensuring greater efficiency and time reduction. Furthermore, our findings provide preliminary knowledge to further confirm the genomic loci and potential candidate genes contributing to various structural and disease-related traits of C. arabica.

8.
Br J Haematol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039697

RESUMEN

The use of IPSS-M provides a wealth of molecular information in newly diagnosed myelodysplastic syndromes (MDS) patients. Besides the prognostic implications, molecular markers will also help to choose therapeutic options and may also be informative to determine the depth of response. Duployez and Preudhomme provide a comprehensive overview of this area of research, which is particularly complex in MDS. Commentary on: Duployez et al. Monitoring molecular changes in the management of myelodysplastic syndromes. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19614.

9.
Mol Biol Rep ; 51(1): 878, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083078

RESUMEN

BACKGROUND: Saccharosydne procerus serves as a significant alternative host for parasitoids of the important rice pest, rice planthoppers. Rearing S. procerus on the water bamboo plants near rice field can provide a parasitic site for parasitic wasps during the idle period of rice fields, thereby stabilizing the number of parasitoids and suppressing the number of rice planthoppers in the field. However, limited understanding of genetic diversity of S. procerus restricts its application. Therefore, this study aims to analyze the genetic diversity of S. procerus in Hunan region. METHODS: In this study, 16 geographical populations of the S. procerus from the Hunan region were used. After screening, ISSR primers were employed for polymorphism detection. POPGENE32 software was used for genetic diversity analysis, and UPGMA clustering was applied for statistical analysis of different geographical populations to generate an evolutionary tree. RESULTS: Eleven ISSR primers were screened, resulting in the detection of 194 amplification locus, of which 126 were polymorphic. The average percentage of polymorphic locus was 64.95%. The mean Nei's gene diversity (H) was 0.2475, the mean Shannon's Information index (I) was 0.3708, and the Genetic diversity index among populations (Gst) was 0.3800. Cluster analysis identified three groups, with most populations concentrated in the second group, indicating no clear genetic structure. This suggests that the 16 populations of S. procerus exhibit high levels of genetic diversity.


Asunto(s)
Variación Genética , Filogenia , China , Variación Genética/genética , Animales , Polimorfismo Genético , Repeticiones de Microsatélite/genética , Hemípteros/genética , Oryza/genética , Oryza/parasitología , Genética de Población/métodos
10.
Genes (Basel) ; 15(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062684

RESUMEN

INTRODUCTION: Renal cell carcinoma is one of the ten more common malignant tumors worldwide, with a high incidence and mortality rate. Kidney cancer frequently presents at an advanced stage, and it is almost invariably fatal. Much progress has been made in identifying molecular targets for therapy in the hope of improving survival rates, but still, we have no good markers for early detection or progression of the disease. Von Hippel Lindau syndrome (VHL) is an autosomal dominant cancer hereditary syndrome in which affected individuals are at risk of developing bilateral and multifocal renal cell carcinomas (RCC) as well as other tumors. These patients provide an ideal platform to investigate the potential of urinary exosomal miRNA biomarkers in the early development of ccRCC, as these patients are regularly imaged and tumors are actively monitored until the tumor reaches 3 cm before surgical excision. This allows for pre- and post-surgical urine collection and comparison to excised tumor tissues. Studying different biomarkers in urine can provide comprehensive molecular profiling available to patients and physicians and can be a great source of additional tumor genetic information. METHODS: Pre- and postoperative urine samples were obtained from a cohort of VHL patients undergoing surveillance and surgical excision of ccRCCs, and exosomes were extracted. MicroRNA-Seq analysis was performed on miRNA extracted from both urine-derived exosomes and FFPE material from excised ccRCCs. RESULTS: MicroRNA-Seq analysis highlighted a significant difference in the urinary exosome-derived miRNA expression profiles between VHL patients and normal control individuals. This included decreased expression of the miR-320 family, such as miR-320a, known to be decreased in sporadic ccRCC and suppressed by the HIF1α transcription factor activated by the loss of the VHL gene. MiR-542-5p represented a potential marker of VHL-associated ccRCC that was lowly expressed in normal control urinary exosomes, significantly increased in the preoperative urinary exosomes of tumor-bearing VHL patients, and subsequently reduced to normal levels of expression after tumor excision. In concordance with this, the expression of miR-542-5p was increased in the VHL-associated ccRCC in comparison to the normal kidney. CONCLUSIONS: This study shows the potential for miRNA profiling of exosomes from readily available biofluids to both distinguish VHL patient urine from normal control urine microRNAs and to provide biomarkers for the presence of VHL syndrome-associated ccRCC. Further validation studies are necessary to demonstrate the utility of urinary exosome-derived miRNAs as biomarkers in kidney cancer.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Exosomas , Neoplasias Renales , MicroARNs , Enfermedad de von Hippel-Lindau , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/orina , Exosomas/genética , Exosomas/metabolismo , Enfermedad de von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/orina , Enfermedad de von Hippel-Lindau/complicaciones , MicroARNs/orina , MicroARNs/genética , Femenino , Neoplasias Renales/genética , Neoplasias Renales/orina , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/orina , Biomarcadores de Tumor/genética , Adulto , Regulación Neoplásica de la Expresión Génica , Anciano
11.
Foods ; 13(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063323

RESUMEN

Extra virgin olive oil (EVOO) is a precious and healthy ingredient of Mediterranean cuisine. Due to its high nutritional value, the interest of consumers in the composition of EVOO is constantly increasing, making it a product particularly exposed to fraud. Therefore, there is a need to properly valorize high-quality EVOO and protect it from fraudulent manipulations to safeguard consumer choices. In our study, we used a straightforward and easy method to assess the molecular traceability of 28 commercial EVOO samples based on the use of SSR molecular markers. A lack of correspondence between the declared origin of the samples and the actual origin of the detected varieties was observed, suggesting possible adulteration. This result was supported by the identification of private alleles based on a large collection of national and international olive varieties and the search for them in the molecular profile of the analyzed samples. We demonstrated that the proposed method is a rapid and straightforward approach for identifying the composition of an oil sample and verifying the correspondence between the origin of olives declared on the label and that of the actual detected varieties, allowing the detection of possible adulterations.

12.
Heliyon ; 10(11): e31650, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845887

RESUMEN

The genus Allium is the most diverse, with cultivated crops such as onion, garlic, bunching onion, chives, leeks, and shallots, and several wild and semi-domesticated Allium species utilized as minor vegetables. These minor species are the genetic resources for various abiotic and biotic stresses. To employ underutilized species in breeding programmes, the magnitude of the genetic background of cultivated and semi-domesticated alliums, the phylogeny and diversity of the population must be known. In this study, nineteen SSR markers were employed to study the divergence and population structure of 95 Allium accessions which includes species, varieties, and interspecific hybrids, yielded 92 polymorphic loci, averaging 4.84 loci per SSR. PIC values range between 0.24 (ACM 018) and 0.98 (ACM 099). The cross transferability of ACM markers among Allium species ranges from 1.33 to 10.53 per cent, which is relatively low. The genotypes investigated were clustered into four primary clusters A, B, C, and D with 13 sub clusters I-XIII, conferring to the clustering results. The population structure investigations also found that K is a peak at value 4, implying that the population is predominantly segregated into four distinct groups, which associates the clustering pattern. The employed SSR markers adeptly unravel the complexities of diversity within alliums, holding promise for refining future breeding programs targeting elite progenies.

13.
Front Plant Sci ; 15: 1385332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863552

RESUMEN

Camelina sativa, commonly referred to as camelina or false flax, has emerged as a promising cover crop with the potential to mitigate climate change-a pressing global challenge that demands urgent and sustainable solutions. Belonging to the Brassicaceae family and native to Europe and Central Asia, camelina is an oilseed crop known for its resilience in diverse climates, including arid and semi-arid regions, making it adaptable to various environments. A breeding program started from a study of six winter varieties and five spring varieties of camelina is described: these genetic materials were characterized by SSRs molecular markers and by GBS technique. Molecular data clearly showed all spring varieties were genetically similar and distinguishable from the winter varieties, which, in turn, clustered together. Using molecular data, parental varieties belonging to the two different clusters were selected to generate new genetic variability. The new variety obtained, selected through the bulk method based on three parameters: yield, earliness, and weight of 1000 seeds, has allowed the generation of the new genetic material provisionally named C1244. Chemical characterization was performed (bromatological and glucosinolates analysis) to better describe C1244 in comparison with benchmark varieties. The new variety exhibited early maturity, similar to spring varieties, making this genetic material promising for use in intercropping systems, a high weight of 1000 seeds (1.46 g) which improves and facilitates seeding/harvesting operations and a high oil content (33.62%) akin to winter varieties making it valuable for human and animal food purposes.

14.
J Appl Genet ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922510

RESUMEN

The Trigonella species possess medicinal, nutraceutical and pharmaceutical properties due to the presence of many bioactive compounds. Its therapeutic effects are mostly valuable in medicine, cosmetics and the functional food industry. Correct genetic characterisation of plant material is needed to increase the potential of Trigonella species by breeding and conservation programs. The aim of this study was to develop a reliable marker system to support the morphological and phytochemical analysis in Trigonella taxonomic research, species identification and characterization as well as determination of the interspecific variation within this genus along with relationships between species. For this purpose, flow cytometry and SCoT molecular markers were combined. Flow cytometric analyses revealed that Trigonella species possess very small and small genomes. The range of genome sizes was from 1.10 to 5.76 pg/2C, with most species possessing very small genomes (< 2.8 pg/2C). In seeds of 14 species endopolyploid nuclei were detected. Flow cytometric analysis of genome size enabled quick identification of four out of 20 species, while combined with endopolyploidy detection in seeds, facilitated distinction of the next seven species. ScoT molecular markers helped to identify closely related species with similar genome size and cell cycle activity. Therefore, flow cytometry was proposed as the first-choice method for quick accession screening, while the more detailed genetic classification was obtained using SCoT molecular markers.

15.
BMC Biotechnol ; 24(1): 41, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862994

RESUMEN

BACKGROUND: Genetic diversity, population structure, agro-morphological traits, and molecular characteristics, are crucial for either preserving genetic resources or developing new cultivars. Due to climate change, water availability for agricultural use is progressively diminishing. This study used 100 molecular markers (25 TRAP, 22 SRAP, 23 ISTR, and 30 SSR). Additionally, 15 morphological characteristics were utilized to evaluate the optimal agronomic traits of 12 different barley genotypes under arid conditions. RESULTS: Substantial variations, ranging from significant to highly significant, were observed in the 15 agromorphological parameters evaluated among the 12 genotypes. The KSU-B101 barley genotype demonstrated superior performance in five specific traits: spike number per plant, 100-grain weight, spike number per square meter, harvest index, and grain yield. These results indicate its potential for achieving high yields in arid regions. The Sahrawy barley genotype exhibited the highest values across five parameters, namely leaf area, spike weight per plant, spike length, spike weight per square meter, and biological yield, making it a promising candidate for animal feed. The KSU-B105 genotype exhibited early maturity and a high grain count per spike, which reflects its early maturity and ability to produce a high number of grains per spike. This suggests its suitability for both animal feed and human food in arid areas. Based on marker data, the molecular study found that the similarity coefficients between the barley genotypes ranged from 0.48 to 0.80, with an average of 0.64. The dendrogram constructed from these data revealed three distinct clusters with a similarity coefficient of 0.80. Notably, the correlation between the dendrogram and its similarity matrix was high (0.903), indicating its accuracy in depicting the genetic relationships. The combined analysis revealed a moderate correlation between the morphological and molecular analysis, suggesting alignment between the two characterization methods. CONCLUSIONS: The morphological and molecular analyses of the 12 barley genotypes in this study effectively revealed the varied genetic characteristics of their agro-performance in arid conditions. KSU-B101, Sahrawy, and KSU-B105 have emerged as promising candidates for different agricultural applications in arid regions. Further research on these genotypes could reveal their full potential for breeding programs.


Asunto(s)
Genotipo , Hordeum , Hordeum/genética , Variación Genética , Marcadores Genéticos/genética
16.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891980

RESUMEN

The aim of this study was to analyze the survival and growth of intergeneric (Acispenser ruthenus × Huso huso L.) sterbel hybrids obtained by fertilizing sterlet eggs with cryopreserved beluga semen. The rate of embryonic development did not differ between sterbel hybrids (experimental groups) and sterlets (control groups), and the hatching period was identical in all groups. The survival rate of hybrid larvae was higher in the experimental groups than in the control groups. Body weight and body length measurements revealed that sterbel hybrids grew at a faster rate than the control group sterlets. The hybrid origin of sterbels produced with the use of cryopreserved beluga semen was confirmed in a genetic analysis based on species-specific DNA fragments. To the best of the authors' knowledge, this is the first study to analyze the growth of sterbel hybrids derived from cryopreserved semen. The research findings indicate that this type of intergeneric hybridization delivers satisfactory results and can be applied in sturgeon aquaculture.


Asunto(s)
Criopreservación , Peces , Hibridación Genética , Espermatozoides , Animales , Masculino , Peces/genética , Peces/crecimiento & desarrollo , Preservación de Semen/métodos , Desarrollo Embrionario/genética , Quimera/genética , Femenino
17.
J Cereal Sci ; 117: 103897, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38883418

RESUMEN

In this study, we present a modified high throughput phloroglucinol colorimetric assay for the quantification of arabinoxylans (AX) in wheat named PentoQuant. The method was downscaled from a 10 ml glass tube to 2 ml microcentrifuge tube format, resulting in a fivefold increase in throughput while concurrently reducing the overall cost and manual labor required for the analysis. Comparison with established colorimetric assays and gas chromatography validates the modified protocol, demonstrating its superior repeatability, rapidity, and simplicity. The effectiveness of the protocol was tested on 606 unique whole meal (WM) and refined flour (RF) bread wheat samples which revealed the presence of more than a twofold variation in both the soluble (WE-AX) and total (TOT-AX) AX fractions in WM (TOT-AX = 31.9-76.1 mg/g; WE-AX = 4.4-12.6 mg/g) and RF (TOT-AX = 7.7-22.4 mg/g; WE-AX = 3.9-11.4 mg/g). Results obtained from the AX quantification were used to test the effectiveness of four molecular markers associated with AX variation and targeting two major genomic regions on the 1BL and 6BS chromosomes. These markers appeared to be particularly relevant for the WE-AX fraction, providing insights to enable marker-assisted breeding.

18.
Front Endocrinol (Lausanne) ; 15: 1405142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904052

RESUMEN

Objectives: Thyroid cancer rarely occurs in children and adolescents. Molecular markers such as BRAF, RAS, and RET/PTC have been widely used in adult PTC. It is currently unclear whether these molecular markers have equivalent potential for application in pediatric patients. This study aims to explore the potential utility of a multi-gene conjoint analysis based on next-generation targeted sequencing for pediatric papillary thyroid carcinoma (PTC). Materials and methods: The patients diagnosed with PTC (aged 18 years or younger) in the pediatrics department of Lishui District Hospital of Traditional Chinese Medicine were retrospectively screened. A targeted enrichment and sequencing analysis of 116 genes associated with thyroid cancer was performed on paraffin-embedded tumor tissues and paired paracancerous tissue of fifteen children (average age 14.60) and nine adults (average age 49.33) PTC patients. Demographic information, clinical indicators, ultrasonic imaging information and pathological data were collected. The Kendall correlation test was used to establish a correlation between molecular variations and clinical characteristics in pediatric patients. Results: A sample of 15 pediatric PTCs revealed a detection rate of 73.33% (11/15) for driver gene mutations BRAF V600E and RET fusion. Compared to adult PTCs, the genetic mutation landscape of pediatric PTCs was more complex. Six mutant genes overlap between the two groups, and an additional seventeen unique mutant genes were identified only in pediatric PTCs. There was only one unique mutant gene in adult PTCs. The tumor diameter of pediatric PTCs tended to be less than 4cm (p<0.001), and the number of lymph node metastases was more than five (p<0.001). Mutations in specific genes unique to pediatric PTCs may contribute to the onset and progression of the disease by adversely affecting hormone synthesis, secretion, and action mechanisms, as well as the functioning of thyroid hormone signaling pathways. But, additional experiments are required to validate this hypothesis. Conclusion: BRAF V600E mutation and RET fusion are involved in the occurrence and development of adolescent PTC. For pediatric thyroid nodules that cannot be determined as benign or malignant by fine needle aspiration biopsy, multiple gene combination testing can provide a reference for personalized diagnosis and treatment by clinical physicians.


Asunto(s)
Mutación , Proteínas Proto-Oncogénicas B-raf , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Femenino , Adolescente , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/diagnóstico , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/terapia , Masculino , Niño , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/terapia , Estudios Retrospectivos , Proteínas Proto-Oncogénicas B-raf/genética , Adulto , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Proteínas Proto-Oncogénicas c-ret/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis Mutacional de ADN/métodos
19.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189141, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908536

RESUMEN

Over the past two decades, research into the genetic susceptibility behind pheochromocytoma and paraganglioma (PPGL) has surged, ranking them among the most heritable tumors. Massive sequencing combined with careful patient selection has so far identified more than twenty susceptibility genes, leading to an over-detection of variants of unknown significance (VUS) that require precise molecular markers to determine their pathogenic role. Moreover, some PPGL patients remain undiagnosed, possibly due to mutations in regulatory regions of already known genes or mutations in undiscovered genes. Accurate classification of VUS and identification of new genes require well-defined clinical and molecular markers that allow effective genetic diagnosis of most PPGLs.

20.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928426

RESUMEN

Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.


Asunto(s)
Biomarcadores de Tumor , ADN Mitocondrial , Mitocondrias , Neoplasias de la Tiroides , Humanos , Biomarcadores de Tumor/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/patología , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Mitocondrias/genética , ARN no Traducido/genética , ARN Largo no Codificante/genética , MicroARNs/genética , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...