Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.368
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000160

RESUMEN

222 nm far-ultraviolet (F-UV) light has a bactericidal effect similar to deep-ultraviolet (D-UV) light of about a 260 nm wavelength. The cytotoxic effect of 222 nm F-UV has not been fully investigated. DLD-1 cells were cultured in a monolayer and irradiated with 222 nm F-UV or 254 nm D-UV. The cytotoxicity of the two different wavelengths of UV light was compared. Changes in cell morphology after F-UV irradiation were observed by time-lapse imaging. Differences in the staining images of DNA-binding agents Syto9 and propidium iodide (PI) and the amount of cyclobutane pyrimidine dimer (CPD) were examined after UV irradiation. F-UV was cytotoxic to the monolayer culture of DLD-1 cells in a radiant energy-dependent manner. When radiant energy was set to 30 mJ/cm2, F-UV and D-UV showed comparable cytotoxicity. DLD-1 cells began to expand immediately after 222 nm F-UV light irradiation, and many cells incorporated PI; in contrast, PI uptake was at a low level after D-UV irradiation. The amount of CPD, an indicator of DNA damage, was higher in cells irradiated with D-UV than in cells irradiated with F-UV. This study proved that D-UV induced apoptosis from DNA damage, whereas F-UV affected membrane integrity in monolayer cells.


Asunto(s)
Apoptosis , Membrana Celular , Neoplasias del Colon , Daño del ADN , Rayos Ultravioleta , Humanos , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Apoptosis/efectos de la radiación , Dímeros de Pirimidina/metabolismo
2.
Chem Asian J ; : e202400284, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953124

RESUMEN

Dicarboxylate metallosurfactants (AASM), synthesized by mixing N-dodecyl aminomalonate, -aspartate and -glutamate with CaCl2, MnCl2 and CdCl2, were characterized by XRD, FTIR, and NMR spectroscopy. Layered structures, formed by metallosurfactants, were evidenced from differential scanning calorimetry and thermogravimetric analyses. Solvent-spread monolayer of AASM in combination with soyphosphatidylcholine (SPC) and cholesterol (CHOL) were studied using Langmuir surface balance. With increasing mole fraction of AASM mean molecular area increased and passed through maxima at ~60 mol% of AASMs, indicating molecular packing reorganization. Systems with 20 and 60 mol% AASM exhibited positive deviations from ideal behavior signifying repulsive interaction between the AASM and SPC, while synergistic interactions were established from the negative deviation at other combinations. Dynamic surface elasticity increased with increasing surface pressure signifying formation of rigid monolayer. Transition of monolayer from gaseous to liquid expanded to liquid condensed state was established by Brewster angle microscopic studies. Stability of the hybrid vesicles, formed by AASM+SPC+CHOL, was established by monitoring their size, zeta potential and polydispersity index values over 100 days. Size and spherical morphology of hybrid vesicles were confirmed by transmission electron microscopic studies. Biocompatibility of the hybrid vesicles were established by cytotoxicity studies revealing their possible applications in drug delivery and imaging.

3.
ACS Appl Mater Interfaces ; 16(26): 33838-33845, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961574

RESUMEN

Perovskite photodetectors, devices that convert light to electricity, require good extraction and low noise levels to maximize the signal-to-noise ratio. Self-assembling monolayers (SAMs) have been shown to be effective hole transport materials thanks to their atomic layer thickness, transparency, and energetic alignment with the valence band of the perovskite. While efforts are being made to reduce noise levels via the active layer, little has been done to reduce noise via SAM interfacial engineering. Herein, we report hybrid perovskite photodetectors with high detectivity by blending two different SAMs (2-PACz and Me-4PACz). We find that with a 1:1 2-PACz:Me-4PACz ratio (by weight), the devices achieved a low noise of 1 × 10-13 A Hz-1/2, a high responsivity of 0.41 A W-1 at 710 nm, and a specific detectivity of 6.4 × 1011 Jones at 710 nm at -0.5 V, outperforming its two counterparts. In addition to the improved noise levels in these devices, impedance spectroscopy revealed that higher recombination lifetimes of 0.85 µs were achieved for the 1:1 2-PACz:Me-4PACz-based photodetectors, confirming their low defect density.

4.
J Mol Model ; 30(8): 249, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967854

RESUMEN

CONTEXT: Various toxic gasses are being released into the environment with the increasing industrialization. However, detecting these gasses at low concentrations has become one of the main challenges in environmental monitoring and protection. Thus, developing sensors with high performance to detect toxic gasses is of utmost significance. For this purpose, researchers have introduced 2D materials thanks to their unique electronic qualities and large specific surface area. Within this piece of research, a hexagonal boron phosphide monolayer (h-BPML) is employed as the substrate material. The adhesion behavior of ambient nitrogen-containing toxic gasses, i.e., N2O, NH3, NO2, and NO, onto the h-BPML is investigated through DFT computations. The adhesion energy values for gasses NO and NO2 were calculated to be - 0.509 and - 0.694 eV on the h-BPML, respectively. Meanwhile, the absorbed energy values for gasses NH3 and N2O were found to be - 0.326 and - 0.119 eV, respectively. The recovery time, DOS, workfunction, and Bader charges were computed based on four optimal adhesion structures. After the absorption of NO on the h-BPML, the value of workfunction of a monolayer decreased from 1.54 to 0.47 eV. This amount of decrease was the greatest among the other gasses absorbed. By comparing the investigated parameters, it can be concluded that the h-BPML has a greater tendency to interact with NO gas compared to other gasses, and it can be proposed as a sensor for NO gas. METHOD: Within this piece of research, the sensitivity of the h-BPML to four nitrogenous toxic gasses, namely, N2O, NH3, NO2, and NO, was investigated using the DFT with HSE06 hybrid functional by using GAMESS software. For this purpose, we computed the DOS, workfunction, and the Bader charges for the four adhesion systems with most stability.

5.
Small ; : e2402189, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973106

RESUMEN

2D magnets are expected to give new insights into the fundamentals of magnetism, host novel quantum phases, and foster development of ultra-compact spintronics. However, the scarcity of 2D magnets often makes a bottleneck in the research efforts, prompting the search for new magnetic systems and synthetic routes. Here, an unconventional approach is adopted to the problem, graphenization - stabilization of layered honeycomb materials in the 2D limit. Tetragonal GdAlSi, stable in the bulk, in ultrathin films gives way to its layered counterpart - graphene-like anionic AlSi layers coupled to Gd cations. A series of inch-scale films of layered GdAlSi on silicon is synthesized, down to a single monolayer, by molecular beam epitaxy. Graphenization induces an easy-plane ferromagnetic order in GdAlSi. The magnetism is controlled by low magnetic fields, revealing its 2D nature. Remarkably, it exhibits a non-monotonic evolution with the number of monolayers. The results provide a fresh platform for research on 2D magnets by design.

6.
Nano Lett ; 24(27): 8277-8286, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949123

RESUMEN

The controlled vapor-phase synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) is essential for functional applications. While chemical vapor deposition (CVD) techniques have been successful for transition metal sulfides, extending these methods to selenides and tellurides often faces challenges due to uncertain roles of hydrogen (H2) in their synthesis. Using CVD growth of MoSe2 as an example, this study illustrates the role of a H2-free environment during temperature ramping in suppressing the reduction of MoO3, which promotes effective vaporization and selenization of the Mo precursor to form MoSe2 monolayers with excellent crystal quality. As-synthesized MoSe2 monolayer-based field-effect transistors show excellent carrier mobility of up to 20.9 cm2/(V·s) with an on-off ratio of 7 × 107. This approach can be extended to other TMDs, such as WSe2, MoTe2, and MoSe2/WSe2 in-plane heterostructures. Our work provides a rational and facile approach to reproducibly synthesize high-quality TMD monolayers, facilitating their translation from laboratory to manufacturing.

7.
Sci Rep ; 14(1): 16636, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025941

RESUMEN

In therapies, curcumin is now commonly formulated in liposomal form, administered through injections or creams. This enhances its concentration at the cellular level compared to its natural form ingestion. Due to its hydrophobic nature, curcumin is situated in the lipid part of the membrane, thereby modifying its properties and influencing processes The aim of the research was to investigate whether the toxicity of specific concentrations of curcumin, assessed through biochemical tests for the SK-N-SH and H-60 cell lines, is related to structural changes in the membranes of these cells, caused by the localization of curcumin in their hydrophobic regions. Biochemical tests were performed using spectrophotometric methods. Langmuir technique were used to evaluate the interaction of the curcumin with the studied lipids. Direct introduction of curcumin into the membranes alters their physicochemical parameters. The extent of these changes depends on the initial properties of the membrane. In the conducted research, it has been demonstrated that curcumin may exhibit toxicity to human cells. The mechanism of this toxicity is related to its localization in cell membranes, leading to their dysfunction. The sensitivity of cells to curcumin presence depends on the saturation level of their membranes; the more rigid the membrane, the lower the concentration of curcumin causes its disruption.


Asunto(s)
Membrana Celular , Curcumina , Neuroblastoma , Curcumina/farmacología , Curcumina/química , Humanos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patología , Línea Celular Tumoral , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Leucemia/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Interacciones Hidrofóbicas e Hidrofílicas
8.
Adv Mater ; : e2313694, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023387

RESUMEN

The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling-bond-free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width-scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2 nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field-effect transistor (FET) transport measurements. Monolayer WSe2 nanoribbons are passivated with amorphous WOxSey at the edges, which is achieved using nanolithography and a controlled remote O2 plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated-edge nanoribbon FETs exhibit 10 ± 6 times higher field-effect mobility than the open-edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSey edge passivation minimizes edge disorder and enhances the material quality of WSe2 nanoribbons. Owing to its simplicity and effectiveness, oxidation-based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond-silicon electronics and optoelectronics.

9.
Colloids Surf B Biointerfaces ; 241: 113995, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38870647

RESUMEN

The interaction between nucleotide molecules and lipid molecules plays important roles in cell activities, but the molecular mechanism is very elusive. In the present study, a small but noticeable interaction between the negatively charged phosphatidylethanolamine (PE) and Guanosine monophosphate (GMP) molecules was observed from the PE monolayer at the air/water interface. As shown by the sum frequency generation (SFG) spectra and Pi-A isotherm of the PE monolayer, the interaction between the PE and GMP molecules imposes very small changes to the PE molecules. However, the Brewster angle microscopy (BAM) technique revealed that the assembly conformations of PE molecules are significantly changed by the adsorption of GMP molecules. By comparing the SFG spectra of PE monolayers after the adsorption of GMP, guanosine and guanine, it is also shown that the hydrogen bonding effect plays an important role in the nucleotide-PE interactions. These results provide fundamental insight into the structure changes during the nucleotide-lipid interaction, which may shed light on the molecular mechanism of viral infection, DNA drug delivery, and cell membrane curvature control in the brain or neurons.

10.
Small ; : e2403728, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873904

RESUMEN

A lot of experimental studies are conducted on theoretically predicted thermoelectric 2D materials. Such materials can pave the way for charging ultra-thin electronic devices, self-charging wearable devices, and medical implants. This study systematically explores the thermoelectric attributes of bulk and 2D nanostructured Tin Telluride (SnTe), employing experimental investigations and theoretical analyses based on semiclassical Boltzmann transport theory. The bulk SnTe is synthesized through flame melting, while the 2D SnTe is produced via liquid phase exfoliation. The comprehensive assessment of thermoelectric properties integrated experimental measurements utilizing a Physical Property Measurement System and theoretical calculations from the BoltzTraP code. Experimental thermoelectric studies show a high ZT of 0.17 for 2D SnTe when compared to bulk (0.005) at room temperature. This rise in ZT is due to the high Seebeck coefficient and low thermal conductivity of nanostructured 2D SnTe. Density functional theory (DFT) studies reveal the contribution of the density of states (DOS) and energy bandgap in enhancing the Seebeck coefficient and lowering thermal conductivity by interface scattering.

11.
Sci Rep ; 14(1): 13792, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877027

RESUMEN

This study systematically explores the influence of charged impurities on static screening in monolayer graphene and extends the investigation to AA-stacked and AB-stacked bilayer graphene (BLG). Applying the random phase approximation (RPA), monolayer graphene displays unique beating Friedel oscillations (FOs) in inter-valley and intra-valley channels. Shifting to BLG, the study emphasizes layer-specific responses on each layer by considering self-consistent field interactions between layers. It also explores the derived multimode FOs, elucidating distinctions from monolayer behavior. In AA-stacked BLG, distinct metallic screening behaviors are revealed, uncovering unique oscillatory patterns in induced charge density, providing insights into static Coulomb scattering effects between two Dirac cones. The exploration extends to AB-stacked BLG, unveiling layer-specific responses of parabolic bands in multimode FOs with increasing Fermi energy. This comprehensive investigation, integrating RPA considerations, significantly advances our understanding of layer-dependent static screening in the broader context of FOs in graphene, providing valuable contributions to the field of condensed matter physics.

12.
Sci Rep ; 14(1): 13486, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866902

RESUMEN

Monolayer materials typically display intriguing temperature-dependent dielectric and optical properties, which are crucial for improving the structure and functionality of associated devices. Due to its unique photoelectric capabilities, monolayer WSe2 has recently received a lot of attention in the fields of atomically thin electronics and optoelectronics. In this work, we focus on the evolution of the temperature-dependent dielectric function (ε = ε1 + i ε2) of monolayer WSe2 over energies from 0.74 to 6.40 eV and temperatures from 40 to 350 K. We analyze the second derivatives of ε with respect to energy to accurately locate the critical points (CP). The dependence of the observed CP energies on temperature is consistent with the alternative domination of the declining exciton binding energy as the temperature increases.

13.
Nanomaterials (Basel) ; 14(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38869542

RESUMEN

Fentanyl (FTN) and synthetic analogs of FTN continue to ravage populations across the globe, including in the United States where opioids are increasingly being used and abused and are causing a staggering and growing number of overdose deaths each year. This growing pandemic is worsened by the ease with which FTN can be derivatized into numerous derivatives. Understanding the chemical properties/behaviors of the FTN class of compounds is critical for developing effective chemical detection schemes using nanoparticles (NPs) to optimize important chemical interactions. Halogen bonding (XB) is an intermolecular interaction between a polarized halogen atom on a molecule and e--rich sites on another molecule, the latter of which is present at two or more sites on most fentanyl-type structures. Density functional theory (DFT) is used to identify these XB acceptor sites on different FTN derivatives. The high toxicity of these compounds necessitated a "fragmentation" strategy where smaller, non-toxic molecules resembling parts of the opioids acted as mimics of XB acceptor sites present on intact FTN and its derivatives. DFT of the fragments' interactions informed solution measurements of XB using 19F NMR titrations as well as electrochemical measurements of XB at self-assembled monolayer (SAM)-modified electrodes featuring XB donor ligands. Gold NPs, known as monolayer-protected clusters (MPCs), were also functionalized with strong XB donor ligands and assembled into films, and their interactions with FTN "fragments" were studied using voltammetry. Ultimately, spectroscopy and TEM analysis were combined to study whole-molecule FTN interactions with the functionalized MPCs in solution. The results suggested that the strongest XB interaction site on FTN, while common to most of the drug's derivatives, is not strong enough to induce NP-aggregation detection but may be better exploited in sensing schemes involving films.

14.
Nanomaterials (Basel) ; 14(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38869607

RESUMEN

Perfluorododecyl iodide (I-PFC12) is of interest for area-selective deposition (ASD) applications as it exhibits intriguing properties such as ultralow surface energy, the ability to modify silicon's band gap, low surface friction, and suitability for micro-contact patterning. Traditional photolithography is struggling to reach the required critical dimensions. This study investigates the potential of using I-PFC12 as a way to produce contrast between the growth area and non-growth areas of a surface subsequent to extreme ultraviolet (EUV) exposure. Once exposed to EUV, the I-PFC12 molecule should degrade with the help of the photocatalytic substrate, allowing for the subsequent selective deposition of the hard mask. The stability of a vapor-deposited I-PFC12 self-assembled monolayer (SAM) was examined when exposed to ambient light for extended periods of time by using X-ray photoelectron spectroscopy (XPS). Two substrates, SiO2 and TiO2, are investigated to ascertain the suitability of using TiO2 as a photocatalytic active substrate. Following one month of exposure to light, the atomic concentrations showed a more substantial fluorine loss of 10.2% on the TiO2 in comparison to a 6.2% loss on the SiO2 substrate. This more pronounced defluorination seen on the TiO2 is attributed to its photocatalytic nature. Interestingly, different routes to degradation were observed for each substrate. Reference samples preserved in dark conditions with no light exposure for up to three months show little degradation on the SiO2 substrate, while no change is observed on the TiO2 substrate. The results reveal that the I-PFC12 SAM is an ideal candidate for resistless EUV lithography.

15.
J Phys Condens Matter ; 36(38)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38901422

RESUMEN

Transition metal dichalcogenide (TMD/TMDC) monolayers have gained considerable attention in recent years for their unique properties. Some of these properties include direct bandgap emission and strong mechanical and electronic properties. For these reasons, monolayer TMDs have been considered a promising material for next-generation quantum technologies and optoelectronic devices. However, for the field to make more gainful advancements and be implemented in devices, high-quality TMD monolayers need to be produced at a larger scale with high quality. In this article, some of the current means to produce larger-scale semiconducting monolayer TMDs will be reviewed. An emphasis will be given to the technique of molecular beam epitaxy (MBE) for two main reasons: (1) there is a growing body of research using this technique to grow TMD monolayers and (2) there is yet to be a body of work that has summarized the current research for MBE monolayer growth of TMDs.

16.
Adv Mater ; : e2402219, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843883

RESUMEN

Monolayer WTe2 has attracted significant attention for its unconventional superconductivity and topological edge states. However, its air sensitivity poses challenges for studying intrinsic defect structures. This study addresses this issue using a custom-built inert gas interconnected system, and investigate the intrinsic grain boundary (GB) structures of monolayer polycrystalline 1T' WTe2 grown by nucleation-controlled chemical vapor deposition (CVD) method. These findings reveal that GBs in this system are predominantly governed by W-Te rhombi with saturated coordination, resulting in three specific GB prototypes without dislocation cores. The GBs exhibit anisotropic orientations influenced by kinks formed from these fundamental units, which in turn affect the distribution of grains in various shapes within polycrystalline flakes. Scanning tunneling microscopy/spectroscopy (STM/S) analysis further reveals metallic states along the intrinsic 120° twin grain boundary (TGB), consistent with computed band structures. This systematic exploration of GBs in air-sensitive 1T' WTe2 monolayers provides valuable insights into emerging GB-related phenomena.

17.
Adv Mater ; : e2406872, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865488

RESUMEN

Self-assembled monolayers (SAMs) as the hole-selective contact have achieved remarkable success in iodine-based perovskite solar cells (PSCs), while their impact on bromine-based PSCs is limited due to the poor perovskite crystallization behavior and mismatched energy level alignment. Here, a highly efficient SAM of (2-(3,6-diiodo-9H-carbazol-9-yl)ethyl)phosphonic acid (I-2PACz) is employed to address these challenges in FAPbBr3-based PSCs. The incorporation of I atoms into I-2PACz not only releases tensile stress within FAPbBr3 perovskite, promoting oriented crystallization and minimizing defects through halogen-halogen bond, but also optimizes the energy levels alignment at hole-selective interface for enhanced hole extraction. Ultimately, a power conversion efficiency (PCE) of 11.14% is achieved, which stands among the highest reported value for FAPbBr3 PSCs. Furthermore, the semitransparent devices/modules exhibit impressive PCEs of 8.19% and 6.23% with average visible transmittance of 41.98% and 38.99%. Remarkably, after operating at maximum power point for 1000 h, the encapsulated device maintains 93% of its initial PCE. These results demonstrate an effective strategy for achieving high-performance bromine-based PSCs toward further applications.

18.
Angew Chem Int Ed Engl ; : e202408335, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884179

RESUMEN

Charging behavior of molecular Au clusters protected by alkanethiolate (SCnH2n+1 = SCn) is, under electrochemical conditions, significantly affected by the penetration of solvent and electrolyte into the SCn layer. In this study, we estimated the charging energy EC(n) associated with [PtAu24(SCn)18]- + e → [PtAu24(SCn)18]2- (n = 4, 8, 12, and 16) in vacuum using mass-selected, gas-phase anion photoelectron spectroscopy of [PtAu24(SCn)18]z (z = -1 and -2). The EC(n) values of PtAu24(SCn)18 in vacuum are significantly larger than those in solution and decrease with n in contrast to the behavior reported for Au25(SCn)18 in solution. The effective relative permittivity (εm*) of the SCn layer in vacuum is estimated to be 2.3-2.0 based on the double-concentric-capacitor model. Much smaller εm* values in vacuum than those in solution are explained by the absence of solvent/electrolyte penetration into the monolayer. The gradual decrease of εm* with n is ascribed to the appearance of an exposed surface region due to the bundle formation of long alkyl chains.

19.
Materials (Basel) ; 17(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893917

RESUMEN

In a recent breakthrough in the field of two-dimensional (2D) nanomaterials, the first synthesis of a single-atom-thick gold lattice of goldene has been reported through an innovative wet chemical removal of Ti3C2 from the layered Ti3AuC2. Inspired by this advancement, in this communication and for the first time, a comprehensive first-principles investigation using a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations has been conducted to delve into the stability, electronic, mechanical and thermal properties of the single-layer and free-standing goldene. The presented results confirm thermal stability at 700 K as well as remarkable dynamical stability of the stress-free and strained goldene monolayer. At the ground state, the elastic modulus and tensile strength of the goldene monolayer are predicted to be over 226 and 12 GPa, respectively. Through validated MLIP-based molecular dynamics calculations, it is found that at room temperature, the goldene nanosheet can exhibit anisotropic tensile strength over 9 GPa and a low lattice thermal conductivity around 10 ± 2 W/(m.K), respectively. We finally show that the native metallic nature of the goldene monolayer stays intact under large tensile strains. The combined insights from DFT and MLIP-based results provide a comprehensive understanding of the stability, mechanical, thermal and electronic properties of goldene nanosheets.

20.
ACS Appl Mater Interfaces ; 16(24): 31294-31303, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38838350

RESUMEN

Photodetector technology has evolved significantly over the years with the emergence of new active materials. However, there remain trade-offs between spectral sensitivity, operating energy, and, more recently, an ability to harbor additional features such as persistent photoconductivity and bidirectional photocurrents for new emerging application areas such as switchable light imaging and filter-less color discrimination. Here, we demonstrate a self-powered bidirectional photodetector based on molybdenum disulfide/gallium nitride (MoS2/GaN) epitaxial heterostructure. This fabricated detector exhibits self-powered functionality and achieves detection in two discrete wavelength bands: ultraviolet and visible. Notably, it attains a peak responsivity of 631 mAW-1 at a bias of 0V. The device's response to illumination at these two wavelengths is governed by distinct mechanisms, activated under applied bias conditions, thereby inducing a reversal in the polarity of the photocurrent. This work underscores the feasibility of self-powered and bidirectional photocurrent detection but also opens new vistas for technological advancements for future optoelectronic, neuromorphic, and sensing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...