Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.281
Filtrar
1.
Diagn. tratamento ; 29(3): 118-26, jul-set. 2024.
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1561640

RESUMEN

Contexto e objetivo: A transmissão de doenças por mosquitos afeta a população e a economia de todo o mundo. Há um número considerável de doenças que podem ser transmitidas por mosquitos, com destaque para a malária e a dengue, endêmica em regiões tropicais. Evidentemente, medidas preventivas são imprescindíveis para a redução da transmissão. Avaliar as evidências de efetividade das telas de proteção com e sem inseticida para prevenção de doenças transmitidas por mosquitos. Métodos: Trata-se de sinopse baseada em evidências. Procedeu-se à busca por estudos que associavam o uso de telas de proteção contra mosquitos à redução do contágio de doenças transmitidas por mosquitos em três bases de dados: PubMed (1966-2024), Portal BVS (1982-2024) e Epistemonikos (2024) e também no metabuscador de evidências TRIP DATABASE (2024). O desfecho de análise envolveu a efetividade das telas de proteção na redução de doenças transmitidas por mosquitos. Resultados: Foram encontradas 307 citações. Seis estudos (1 revisão sistemática e 5 ensaios clínicos) foram incluídos. Discussão: A maioria dos estudos envolveu a colocação de telas de proteção com inseticida, havendo evidência de alta certeza para redução de mortalidade por malária e redução na entrada de mosquitos nas habitações, mesmo com redes sem inseticida. Conclusões: Embora não haja robustez na evidência da efetividade das telas de proteção sem inseticidas contra mosquitos transmissores de doenças, o que demanda a necessidade de realização de novos estudos prospectivos, parece lícita e benéfica a utilização de telas de proteção em regiões endêmicas para doenças transmitidas por esses vetores.

2.
Pest Manag Sci ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017029

RESUMEN

BACKGROUND: Controlling the spread of arboviral diseases remains a considerable challenge due to the rapid development of insecticide resistance in Aedes mosquitoes. This study evaluated the effects of boric acid-containing toxic sugar bait (TSB) on field populations of resistant Aedes aegypti mosquitoes. In addition, this study examined the flight activity and wing beat frequency and amplitude of males and the flight activity, fecundity, and insemination of females after pairing with males exposed to TSB. The population dynamics of Aedes mosquitoes under imbalanced sex ratios were examined to simulate realistic field conditions for male suppression under the effect of TSB. RESULTS: The mortality of male mosquitoes was consistently high within 24 h after exposure. By contrast, the mortality of female mosquitoes was inconsistent, with over 70% mortality observed at 168 h. The flight activity and wing beat amplitude of treated males were significantly lower than those of controls, but no significant difference in wing beat frequency was detected. The fecundity and insemination of treated female mosquitoes were lower than those of controls. A simulation study indicated that considerably low male population densities led to mating failures, triggering a mate-finding Allee effect and resulting in persistently low population levels. CONCLUSION: Boric acid-containing TSB could effectively complement current chemical intervention approaches to control resistant mosquito populations. TSB is effective in reducing field male populations and impairing male flight activity and female-seeking behavior, resulting in decreased fecundity and insemination. Male suppression due to TSB potentially results in a small mosquito population. © 2024 Society of Chemical Industry.

3.
Cureus ; 16(6): e62486, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39015861

RESUMEN

The West Nile virus (WNV) is the leading cause of mosquito-borne disease in the United States. Bell's palsy (BP) is a clinical syndrome associated with viral infections, but an association with West Nile virus (WNV) is not well-described, with only two cases reported in the literature. We present a case of a 68-year-old woman presenting with fevers and encephalopathy. Cerebrospinal fluid was positive for WNV. Following improvement, she developed facial weakness and was diagnosed with BP secondary to the WNV infection. Identifying BP associated with WNV infection may have significant clinical implications, but further studies are needed to fully characterize a causative relationship.

4.
J Econ Entomol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970358

RESUMEN

Insects are a promising source of high-quality protein, and the insect farming industry will lead to higher sustainability when it overcomes scaling up, cost effectiveness, and automation. In contrast to insect farming (raising and breeding insects as livestock), wild insect harvesting (collecting agricultural insect pests), may constitute a simple sustainable animal protein supplementation strategy. For wild harvest to be successful sufficient insect biomass needs to be collected while simultaneously avoiding the collection of nontarget insects. We assessed the performance of the USDA Biomass Harvest Trap (USDA-BHT) device to collect flying insect biomass and as a mosquito surveillance tool. The USDA-BHT device was compared to other suction traps commonly used for mosquito surveillance (Centers for Disease Control and Prevention (CDC) light traps, Encephalitis virus surveillance traps, and Biogents Sentinel traps). The insect biomass harvested in the USDA-BHT was statistically higher than the one harvested in the other traps, however the mosquito collections between traps were not statistically significantly different. The USDA-BHT collected some beneficial insects, although it was observed that their collection was minimized at night. These findings coupled with the fact that sorting time to separate the mosquitoes from the other collected insects was significantly longer for the USDA-BHT, indicate that the use of this device for insect biomass collection conflicts with its use as an efficient mosquito surveillance tool. Nevertheless, the device efficiently collected insect biomass, and thus can be used to generate an alternative protein source for animal feed.

5.
Acta Trop ; 257: 107321, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972559

RESUMEN

Fragmented landscapes in Mexico, characterized by a mix of agricultural, urban, and native vegetation cover, presents unique ecological characteristics that shape the mosquito community composition and mosquito-borne diseases. The extent to which landscape influences mosquito populations and mosquito-borne diseases is still poorly understood. This work assessed the effect of landscape metrics -agriculture, urban, and native vegetation cover- on mosquito diversity and arbovirus presence in fragmented tropical deciduous forests in Central Mexico during 2021. Among the 21 mosquito species across six genera we identified, Culex quinquefasciatus was the most prevalent species, followed by Aedes aegypti, Ae. albopictus, and Ae. epactius. Notably, areas with denser native vegetation cover displayed higher mosquito species richness, which could have an impact on phenomena such as the dilution effect. Zika and dengue virus were detected in 85% of captured species, with first reports of DENV in several Aedes species and ZIKV in multiple Aedes and Culex species. These findings underscore the necessity of expanding arbovirus surveillance beyond Ae. aegypti and advocate for a deeper understanding of vector ecology in fragmented landscapes to adequately address public health strategies.

6.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 321-328, 2024 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-38952321

RESUMEN

More than 80% of the world's populations are at risk of vector-borne diseases, with mosquito-borne diseases as a significant global public health problem. Mosquito populations control is critical to interrupting the transmission of mosquito-borne diseases. This review summarizes the physical attributes, smell, vision, touch, and hearing of mosquitoes to unravel the preferences of female mosquitoes, and describes the mechanisms underlying the best male mating by female mosquitoes, so as to provide new insights into management of mosquito-borne diseases.


Asunto(s)
Culicidae , Animales , Femenino , Masculino , Culicidae/fisiología , Conducta Sexual Animal/fisiología , Mosquitos Vectores/fisiología
7.
Parasit Vectors ; 17(1): 289, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971773

RESUMEN

BACKGROUND: The current rise of new innovative tools for mosquito control, such as the release of transgenic mosquitoes carrying a dominant lethal gene and Wolbachia-based strategies, necessitates a massive production of mosquitoes in the insectary. However, currently laboratory rearing depends on vertebrate blood for egg production and maintenance. This practice raises ethical concerns, incurs logistical and cost limitations, and entails potential risk associated with pathogen transmission and blood storage. Consequently, an artificial blood-free diet emerges as a desirable alternative to address these challenges. This study aims to evaluate the effects of a previously formulated artificial blood-free diet (herein referred to as BLOODless) on Anopheles gambiae (An. gambiae s.s.; IFAKARA) gonotrophic parameters and fitness compared with bovine blood. METHODS: The study was a laboratory-based comparative evaluation of the fitness, fecundity and fertility of An. gambiae s.s. (IFAKARA) reared on BLOODless versus vertebrate blood from founder generation (F0) to eighth generation (F8). A total of 1000 female mosquitoes were randomly selected from F0, of which 500 mosquitoes were fed with bovine blood (control group) and the other 500 mosquitoes were fed with BLOODless diet (experimental group). The feeding success, number of eggs per female, hatching rate and pupation rate were examined post-feeding. Longevity and wing length were determined as fitness parameters for adult male and female mosquitoes for both populations. RESULTS: While blood-fed and BLOODless-fed mosquitoes showed similar feeding success, 92.3% [95% confidence interval (CI) 89.7-94.9] versus 93.6% (95% CI 90.6-96.6), respectively, significant differences emerged in their reproductive parameters. The mean number of eggs laid per female was significantly higher for blood-fed mosquitoes (P < 0.001) whereas BLOODless-fed mosquitoes had significantly lower hatching rates [odds ratio (OR) 0.17, 95% CI 0.14-0.22, P < 0.001]. Wing length and longevity were similar between both groups. CONCLUSIONS: This study demonstrates the potential of the BLOODless diet as a viable and ethical alternative to vertebrate blood feeding for rearing An. gambiae s.s. This breakthrough paves the way for more efficient and ethical studies aimed at combating malaria and other mosquito-borne diseases.


Asunto(s)
Anopheles , Dieta , Fertilidad , Animales , Anopheles/fisiología , Femenino , Dieta/veterinaria , Masculino , Bovinos , Control de Mosquitos/métodos , Aptitud Genética , Sangre , Mosquitos Vectores/fisiología , Mosquitos Vectores/genética , Reproducción
8.
Pathog Glob Health ; : 1-11, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972071

RESUMEN

Climate change may increase the risk of dengue and yellow fever transmission by urban and sylvatic mosquito vectors. Previous research primarily focused on Aedes aegypti and Aedes albopictus. However, dengue and yellow fever have a complex transmission cycle involving sylvatic vectors. Our aim was to analyze how the distribution of areas favorable to both urban and sylvatic vectors could be modified as a consequence of climate change. We projected, to future scenarios, baseline distribution models already published for these vectors based on the favorability function, and mapped the areas where mosquitoes' favorability could increase, decrease or remain stable in the near (2041-2060) and distant (2061-2080) future. Favorable areas for the presence of dengue and yellow fever vectors show little differences in the future compared to the baseline models, with changes being perceptible only at regional scales. The model projections predict dengue vectors expanding in West and Central Africa and in South-East Asia, reaching Borneo. Yellow fever vectors could spread in West and Central Africa and in the Amazon. In some locations of Europe, the models suggest a reestablishment of Ae. aegypti, while Ae. albopictus will continue to find new favorable areas. The results underline the need to focus more on vectors Ae. vittatus, Ae. luteocephalus and Ae. africanus in West and Central sub-Saharan Africa, especially Cameroon, Central Africa Republic, and northern Democratic Republic of Congo; and underscore the importance of enhancing entomological monitoring in areas where populations of often overlooked vectors may thrive as a result of climate changes.

9.
Acta Trop ; : 107324, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009235

RESUMEN

Mosquito-borne diseases are a known tropical phenomenon. This review was conducted to assesses the mechanisms through which climate change impacts mosquito-borne diseases in temperate regions. Articles were searched from PubMed, Scopus, Web of Science, and Embase databases. Identification criteria were scope (climate change and mosquito-borne diseases), region (temperate), article type (peer-reviewed), publication language (English), and publication years (since 2015). The WWH (who, what, how) framework was applied to develop the research question and thematic analyses identified the mechanisms through which climate change affects mosquito-borne diseases. While temperature ranges for disease transmission vary per mosquito species, all are viable for temperate regions, particularly given projected temperature increases. Zika, chikungunya, and dengue transmission occurs between 18 - 34°C (peak at 26 - 29°C). West Nile virus establishment occurs at monthly average temperatures between 14 - 34.3°C (peak at 23.7 - 25°C). Malaria establishment occurs when the consecutive average daily temperatures are above 16°C until the sum is above 210°C. The identified mechanisms through which climate change affects the transmission of mosquito-borne diseases in temperate regions include: changes in the development of vectors and pathogens; changes in mosquito habitats; extended transmission seasons; changes in geographic spread; changes in abundance and behaviours of hosts; reduced abundance of mosquito predators; interruptions to control operations; and influence on other non-climate factors. Process and stochastic approaches as well as dynamic and spatial models exist to predict mosquito population dynamics, disease transmission, and climate favorability. Future projections based on the observed relations between climate factors and mosquito-borne diseases suggest that mosquito-borne disease expansion is likely to occur in temperate regions due to climate change. While West Nile virus is already established in some temperate regions, Zika, dengue, chikungunya, and malaria are also likely to become established over time. Moving forward, more research is required to model future risks by incorporating climate, environmental, sociodemographic, and mosquito-related factors under changing climates.

10.
Aquat Toxicol ; 273: 107013, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38996481

RESUMEN

Insects with aquatic larval and terrestrial adult life stages are a key component of coupled aquatic-terrestrial ecosystems. Thus, stressors applied to water bodies adversely affecting those larvae have the potential to influence the riparian zone through altered emergence, with differences in prey availability, timing, or nutrition. In this study, the common model organism Chironomus riparius, a species of Chironomidae (Diptera), was used. This selection was further motivated by its wide distribution in European freshwaters and its importance as prey for terrestrial predators. A stressor of high importance in this context is the globally used mosquito control agent Bacillus thuringiensis var. israelensis (Bti) which has been shown to affect Chironomidae. Here, we investigated the ability of chironomid populations to adapt to a regularly applied stressor, leading to a reduced impact of Bti. Therefore, the initial sensitivity of laboratory populations of C. riparius was investigated under the influence of field-relevant Bti treatments (three doses × two application days) and different food sources (high-quality TetraMin vs. low-quality Spirulina). Following a chronic exposure to Bti over six months, the sensitivity of pre-exposed and naïve populations was re-evaluated. Food quality had a strong impact on emergence timing and nutrient content. In addition, alterations in emergence time as well as protein and lipid contents of chronically exposed populations indicated a selection for individuals of advantageous energetics, potentially leading to a more efficient development while combating Bti. Signs of adaptation could be confirmed in five out of 36 tested scenarios suggesting adaptation to Bti at the population level. Adaptive responses of one or several species could theoretically (via eco-evolutionary dynamics) result in a community shift, favouring the prevalence of Bti-tolerant species. (In)direct effects of Bti and the adaptive responses at both population and community levels could affect higher trophic levels and may determine the fate of meta-ecosystems.

11.
Parasit Vectors ; 17(1): 282, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956638

RESUMEN

BACKGROUND: Mosquitoes are carriers of tropical diseases, thus demanding a comprehensive understanding of their behaviour to devise effective disease control strategies. In this article we show that machine learning can provide a performance assessment of 2D and 3D machine vision techniques and thereby guide entomologists towards appropriate experimental approaches for behaviour assessment. Behaviours are best characterised via tracking-giving a full time series of information. However, tracking systems vary in complexity. Single-camera imaging yields two-component position data which generally are a function of all three orthogonal components due to perspective; however, a telecentric imaging setup gives constant magnification with respect to depth and thereby measures two orthogonal position components. Multi-camera or holographic techniques quantify all three components. METHODS: In this study a 3D mosquito mating swarm dataset was used to generate equivalent 2D data via telecentric imaging and a single camera at various imaging distances. The performance of the tracking systems was assessed through an established machine learning classifier that differentiates male and non-male mosquito tracks. SHAPs analysis has been used to explore the trajectory feature values for each model. RESULTS: The results reveal that both telecentric and single-camera models, when placed at large distances from the flying mosquitoes, can produce equivalent accuracy from a classifier as well as preserve characteristic features without resorting to more complex 3D tracking techniques. CONCLUSIONS: Caution should be exercised when employing a single camera at short distances as classifier balanced accuracy is reduced compared to that from 3D or telecentric imaging; the trajectory features also deviate compared to those from the other datasets. It is postulated that measurement of two orthogonal motion components is necessary to optimise the accuracy of machine learning classifiers based on trajectory data. The study increases the evidence base for using machine learning to determine behaviours from insect trajectory data.


Asunto(s)
Aprendizaje Automático , Animales , Masculino , Culicidae/clasificación , Culicidae/fisiología , Imagenología Tridimensional/métodos , Mosquitos Vectores/fisiología , Mosquitos Vectores/clasificación , Conducta Animal , Femenino
12.
Geohealth ; 8(7): e2023GH000784, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962698

RESUMEN

Machine learning methods have seen increased application to geospatial environmental problems, such as precipitation nowcasting, haze forecasting, and crop yield prediction. However, many of the machine learning methods applied to mosquito population and disease forecasting do not inherently take into account the underlying spatial structure of the given data. In our work, we apply a spatially aware graph neural network model consisting of GraphSAGE layers to forecast the presence of West Nile virus in Illinois, to aid mosquito surveillance and abatement efforts within the state. More generally, we show that graph neural networks applied to irregularly sampled geospatial data can exceed the performance of a range of baseline methods including logistic regression, XGBoost, and fully-connected neural networks.

13.
Bioorg Chem ; 150: 107591, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38964147

RESUMEN

Some heterocycles bearing a benzo[h]quinoline moiety were synthesized through treating a 3-((2-chlorobenzo[h]quinolin-3-yl)methylene)-5-(p-tolyl)furan-2(3H)-one with four nitrogen nucleophiles comprising ammonium acetate, benzylamine, dodecan-1-amine, and 1,2-diaminoethane. Also, thiation reactions of furanone and pyrrolinone derivatives were investigated. The insecticidal activity of these compounds against mosquito larvae (Culex pipiens L.) was evaluated. All tested compounds exhibited significant larvicidal activity, surpassing that of the conventional insecticide chlorpyrifos. In silico docking analysis revealed that these compounds may act as acetyl cholinesterase (AChE) inhibitors, potentially explaining their larvicidal effect. Additionally, interactions with other neuroreceptors, such as nicotinic acetylcholine receptor and sodium channel voltage-gated alpha subunit were also predicted. The results obtained from this study reflected the potential of benzo[h]quinoline derivatives as promising candidates for developing more effective and sustainable mosquito control strategies. The ADME (absorption, distribution, metabolism, and excretion) analyses displayed their desirable drug-likeness and oral bioavailability properties.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38965178

RESUMEN

Since the first autochthonous transmission of West Nile Virus was detected in Germany (WNV) in 2018, it has become endemic in several parts of the country and is continuing to spread due to the attainment of a suitable environment for vector occurrence and pathogen transmission. Increasing temperature associated with a changing climate has been identified as a potential driver of mosquito-borne disease in temperate regions. This scenario justifies the need for the development of a spatially and temporarily explicit model that describes the dynamics of WNV transmission in Germany. In this study, we developed a process-based mechanistic epidemic model driven by environmental and epidemiological data. Functional traits of mosquitoes and birds of interest were used to parameterize our compartmental model appropriately. Air temperature, precipitation, and relative humidity were the key climatic forcings used to replicate the fundamental niche responsible for supporting mosquito population and infection transmission risks in the study area. An inverse calibration method was used to optimize our parameter selection. Our model was able to generate spatially and temporally explicit basic reproductive number (R0) maps showing dynamics of the WNV occurrences across Germany, which was strongly associated with the deviation from daily means of climatic forcings, signaling the impact of a changing climate in vector-borne disease dynamics. Epidemiological data for human infections sourced from Robert Koch Institute and animal cases collected from the Animal Diseases Information System (TSIS) of the Friedrich-Loeffler-Institute were used to validate model-simulated transmission rates. From our results, it was evident that West Nile Virus is likely to spread towards the western parts of Germany with the rapid attainment of environmental suitability for vector mosquitoes and amplifying host birds, especially short-distance migratory birds. Locations with high risk of WNV outbreak (Baden-Württemberg, Bavaria, Berlin, Brandenburg, Hamburg, North Rhine-Westphalia, Rhineland-Palatinate, Saarland, Saxony-Anhalt and Saxony) were shown on R0 maps. This study presents a path for developing an early warning system for vector-borne diseases driven by climate change.

15.
Sci Rep ; 14(1): 15421, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965297

RESUMEN

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.


Asunto(s)
Aedes , Imidazoles , Insecticidas , Larva , Aedes/efectos de los fármacos , Animales , Larva/efectos de los fármacos , Imidazoles/toxicidad , Imidazoles/farmacología , Insecticidas/toxicidad , Insecticidas/farmacología , Humanos , Mosquitos Vectores/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Control de Mosquitos/métodos
16.
BMC Public Health ; 24(1): 1781, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965485

RESUMEN

BACKGROUND: Recently, Europe has seen an emergence of mosquito-borne viruses (MBVs). Understanding citizens' perceptions of and behaviours towards mosquitoes and MBVs is crucial to reduce disease risk. We investigated and compared perceptions, knowledge, and determinants of citizens' behavioural intentions related to mosquitoes and MBVs in the Netherlands and Spain, to help improve public health interventions. METHODS: Using the validated MosquitoWise survey, data was collected through participant panels in Spain (N = 475) and the Netherlands (N = 438). Health Belief Model scores measuring behavioural intent, knowledge, and information scores were calculated. Confidence Interval-Based Estimation of Relevance was used, together with potential for change indexes, to identify promising determinants for improving prevention measure use. RESULTS: Spanish participants' responses showed slightly higher intent to use prevention measures compared to those of Dutch participants (29.1 and 28.2, respectively, p 0.03). Most participants in Spain (92.2%) and the Netherlands (91.8%) indicated they used at least one prevention measure, but differences were observed in which types they used. More Spanish participants indicated to have received information on mosquitoes and MBVs compared to Dutch participants. Spanish participants preferred health professional information sources, while Dutch participants favoured government websites. Determinants for intent to use prevention measures included "Knowledge", "Reminders to Use Prevention Measures", and "Information" in the Netherlands and Spain. Determinants for repellent use included "Perceived Benefits" and "Cues to Action", with "Perceived Benefits" having a high potential for behavioural change in both countries. "Self-Efficacy" and "Knowledge" were determinants in both countries for breeding site removal. CONCLUSION: This study found differences in knowledge between the Netherlands and Spain but similarities in determinants for intent to use prevention measures, intent to use repellents and intent to remove mosquito breeding sites. Identified determinants can be the focus for future public health interventions to reduce MBV risks.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Países Bajos , Humanos , España , Estudios Transversales , Adulto , Femenino , Masculino , Persona de Mediana Edad , Animales , Adulto Joven , Culicidae , Mosquitos Vectores , Control de Mosquitos/métodos , Adolescente , Intención , Encuestas y Cuestionarios , Anciano
17.
Sci Total Environ ; : 174847, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025142

RESUMEN

Citizen science has been particularly effective in gathering reliable, timely, large-scale data on the presence and distributions of animal species, including mosquito vectors of human and zoonotic pathogens. This involves the participation of citizen scientists in research projects, with success strongly dependent on the capacity to disseminate project information and engage citizen scientists to contribute their time. Mosquito Alert is a citizen science that aids in the system surveillances of vector mosquitoes. It involves citizen scientists providing expert-validated photos of targeted mosquitoes, along with records of bites and breeding sites. Since 2020 the system has been disseminated throughout Europe. This article uses models to analyze the effect of promotion activities carried out by the Mosquito Alert ITALIA team from October 2020 to December 2022 on the number of citizen scientists recruited and engaged in the project, and their performance in mosquito identification. Results show a high level of citizen scientist recruitment (N > 18.000; 37 % of overall European participants). This was achieved mostly through articles generated by ad hoc press releases detailing the app's goals and functioning. Press releases were more effective when carried out at the beginning and end of the mosquito season and when mosquito's public health significance was emphasized. Despite the high number of records received (N > 20.000), only 30 % of registered participants sent records, and the probability of a participant sending a record dropped off quickly over time after first registering. Among participants who contributed, ~50 % sent 1 record, ~30 % ≥3 and 4 % >10 records. Participants showed good capacity to identify mosquitoes and improve identification skills with app usage. The results will be valuable for anyone interested in evaluating citizen science, as participation and engagement are seldom quantitatively assessed. Our results are also useful for designing dissemination and education strategies in citizen science projects associated with arthropod vector monitoring.

18.
Open Biol ; 14(7): 230437, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955221

RESUMEN

Toxorhynchites mosquitoes have an exclusively phytophagous feeding habit as adults, which leads to significant differences in their morphophysiology compared with haematophagous mosquitoes. However, the molecular mechanisms of digestion in this mosquito are not well understood. In this study, RNA sequencing of the posterior midgut (PMG) of the mosquito Toxorhynchites theobaldi was undertaken, highlighting its significance in mosquito digestion. Subsequently, a comparison was made between the differential gene expression of the PMG and that of the anterior midgut. It was found that the most abundant proteases in the PMG were trypsin and chymotrypsin, and the level of gene expression for enzymes essential for digestion (such as serine protease, α-amylase and pancreatic triacylglycerol lipase) and innate immune response (including catalase, cecropin-A2 and superoxide dismutase) was like that of haematophagous mosquitoes. Peritrophin-1 was detected in the entire midgut, with an elevated expression level in the PMG. Based on our findings, it is hypothesized that a non-haematophagic habit might have been exhibited by the ancestor of Tx. theobaldi, and this trait may have been retained. This study represents a pioneering investigation at the molecular level of midgut contents in a non-haematophagous mosquito. The findings offer valuable insights into the evolutionary aspects of feeding habits in culicids.


Asunto(s)
Culicidae , Animales , Culicidae/fisiología , Culicidae/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Transcriptoma , Perfilación de la Expresión Génica , Sistema Digestivo/metabolismo , Digestión , Tracto Gastrointestinal/metabolismo , Filogenia , Conducta Alimentaria
19.
Acta Parasitol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955908

RESUMEN

Heartworm infection is a chronic disease with clinical signs and effects ranging from an asymptomatic condition to severe disease and death. The prevalence of heartworm disease in the state of Rio de Janeiro has been reported to be high (21.3%). The present study was conducted to evaluate the seroprevalence and risk factors of heartworm infection for the canine population with access to veterinary services in different areas of the state of Rio de Janeiro, Brazil. A total of 1787 canine blood samples were obtained from 135 practices across 8 different areas of Rio de Janeiro state (Rio de Janeiro municipality, São Gonçalo municipality, Niterói municipality, Baixada Fluminense, and the northern, southern, eastern, and mountainous areas) and tested for the presence of Dirofilaria immitis antigens and antibodies against several tick-borne disease pathogens using a commercial immunochromatography technique (Vetscan® Flex 4 Rapid Test; Zoetis; NJ USA). Pet owners reported living conditions, physical characteristics, demographics, and clinical signs for evaluation of risk factors for heartworm infection. Only two evaluated risk factors were shown to enhance the risk for D. immitis infection, including having a short hair coat vs. having a medium or long hair coat (OR 2.62) or positive for antibodies to tick-borne disease parasites (OR 3.83). Clinical signs reported for dogs with heartworm disease were typical for that condition. The overall prevalence of heartworm disease in the state was 8.2%, ranging from 2.4% in the mountainous region to 29.4% in the eastern area. It could not be determined if veterinarians were not diligent about dispensing heartworm preventatives or if poor levels of compliance by dog owners were responsible for higher infection rates in some areas of the state.

20.
Ecol Evol ; 14(7): e11670, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957696

RESUMEN

Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...