Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurotherapeutics ; 21(2): e00319, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262101

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the death of upper and lower motor neurons (MNs). Excessive neuronal excitability has been implicated in MN degeneration; thus, modulation of hyperexcitability appears as a promising therapeutic strategy. Potassium channels are attractive targets since they can be activated at subthreshold voltages and can regulate neuronal excitability. In this study, we assayed the effects of N-(6-Chloro-pyridin-3-yl)-3,4-difluorobenzamide compound, known as ICA-27243, as a potential treatment for ALS. ICA-27243 is a highly selective Kv7.2/7.3 opener used mainly in epilepsy models. In the in vitro model of spinal cord organotypic cultures (SCOCs) exposed to acute excitotoxicity, ICA-27243 prevented MN degeneration at a dose-of 10 â€‹µM. Administration of ICA-27243 to transgenic SOD1G93A ALS mice improved the decline of neuromuscular function, maintained locomotion and coordination in the rotarod, decreased spinal MN death and attenuated glial reactivity. In conclusion, we report here for the first time that ICA-27243 is an effective treatment for ALS, emphasizing the potential of targeting Kv channels to reduce neuronal hyperexcitability.


Asunto(s)
Esclerosis Amiotrófica Lateral , Benzamidas , Enfermedades Neurodegenerativas , Piridinas , Ratones , Animales , Ratones Transgénicos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Superóxido Dismutasa-1/genética , Neuronas Motoras , Médula Espinal , Modelos Animales de Enfermedad , Superóxido Dismutasa
2.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743175

RESUMEN

Motor neuron diseases (MNDs) include sporadic and hereditary neurological disorders characterized by progressive degeneration of motor neurons (MNs). Sigma-1 receptor (Sig-1R) is a protein enriched in MNs, and mutations on its gene lead to various types of MND. Previous studies have suggested that Sig-1R is a target to prevent MN degeneration. In this study, two novel synthesized Sig-1R ligands, coded EST79232 and EST79376, from the same chemical series, with the same scaffold and similar physicochemical properties but opposite functionality on Sig-1R, were evaluated as neuroprotective compounds to prevent MN degeneration. We used an in vitro model of spinal cord organotypic cultures under chronic excitotoxicity and two in vivo models, the spinal nerve injury and the superoxide dismutase 1 (SOD1)G93A mice, to characterize the effects of these Sig-1R ligands on MN survival and modulation of glial reactivity. The antagonist EST79376 preserved MNs in vitro and after spinal nerve injury but was not able to improve MN death in SOD1G93A mice. In contrast, the agonist EST79232 significantly increased MN survival in the three models of MN degeneration evaluated and had a mild beneficial effect on motor function in SOD1G93A mice. In vivo, Sig-1R ligand EST79232 had a more potent effect on preventing MN degeneration than EST79376. These data further support the interest in Sig-1R as a therapeutic target for neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Ligandos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuroprotección , Receptores sigma , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Receptor Sigma-1
3.
J Neuroimmunol ; 353: 577517, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33582398

RESUMEN

Inflammation and tissue infiltration by various immune cells play a significant role in the pathogenesis of neurons suffering the central nervous systems diseases. Although brachial plexus root avulsion (BPRA) leads to dramatic motoneurons (MNs) death and permanent loss of function, however, the knowledge gap on cytokines and glial reaction in the spinal cord injury is still existing. The current study is sought to investigate the alteration of specific cytokine expression patterns of the BPRA injured spinal cord during an acute and subacute period. The cytokine assay, transmission electron microscopy, and histological staining were utilized to assess cytokine network alteration, ultrastructure morphology, and glial activation and MNs loss within two weeks post-injury on a mouse unilateral BPRA model. The BPRA injury caused a progressively spinal MNs loss, reduced the alpha-(α) MNs synaptic inputs, whereas enhanced glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule-1 (IBA-1), F4/80 expression in ipsilateral but not the contralateral spinal segments. Additionally, cytokine assays revealed BPRA significantly altered the level of CXCL1, ICAM1, IP10, MCP-5, MIP1-α, and CD93. Notably, the elevated MIP1-α was mainly expressed in the injured spinal MNs. While the re-distribution of CD93 expression, from the cytoplasm to the nucleus, occasionally occurred at neurons of the ipsilateral spinal segment after injury. Overall, these findings suggest that the inflammatory cytokines associated with glial cell activation might contribute to the pathophysiology of the MNs death caused by nerve roots injury.


Asunto(s)
Neuropatías del Plexo Braquial/inmunología , Neuropatías del Plexo Braquial/patología , Citocinas/inmunología , Neuroglía/inmunología , Radiculopatía/inmunología , Animales , Plexo Braquial/inmunología , Plexo Braquial/lesiones , Plexo Braquial/patología , Neuropatías del Plexo Braquial/etiología , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/patología , Neuroglía/metabolismo , Radiculopatía/complicaciones
4.
Exp Neurol ; 337: 113576, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359475

RESUMEN

The pathophysiology of Amyotrophic Lateral Sclerosis (ALS), a disease caused by the gradual degeneration of motoneurons, is still largely unknown. Insufficient neurotrophic support has been cited as one of the causes of motoneuron cell death. Neurotrophic factors such as BDNF have been evaluated in ALS human clinical trials, but yielded disappointing results attributed to the poor pharmacokinetics and pharmacodynamics of BDNF. In the inherited ALS G93A SOD1 animal model, deletion of the BDNF receptor TrkB.T1 delays spinal cord motoneuron cell death and muscle weakness through an unknown cellular mechanism. Here we show that TrkB.T1 is expressed ubiquitously in the spinal cord and its deletion does not change the SOD1 mutant spinal cord inflammatory state suggesting that TrkB.T1 does not influence microglia or astrocyte activation. Although TrkB.T1 knockout in astrocytes preserves muscle strength and co-ordination at early stages of disease, its specific conditional deletion in motoneurons or astrocytes does not delay motoneuron cell death during the early stage of the disease. These data suggest that TrkB.T1 may limit the neuroprotective BDNF signaling to motoneurons via a non-cell autonomous mechanism providing new understanding into the reasons for past clinical failures and insights into the design of future clinical trials employing TrkB agonists in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Glicoproteínas de Membrana/genética , Proteínas Tirosina Quinasas/genética , Receptor trkB/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/psicología , Animales , Señalización del Calcio , Eliminación de Gen , Interleucina-1beta/metabolismo , Activación de Macrófagos , Glicoproteínas de Membrana/agonistas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Neuronas Motoras/patología , Desempeño Psicomotor , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa-1/genética , Factor de Necrosis Tumoral alfa/metabolismo
5.
Neurobiol Dis ; 132: 104590, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31470106

RESUMEN

While Brain-derived Neurotrophic Factor (BDNF) has long been implicated in treating neurological diseases, recombinant BDNF protein has failed in multiple clinical trials. In addition to its unstable and adhesive nature, BDNF can activate p75NTR, a receptor mediating cellular functions opposite to those of TrkB. We have now identified TrkB agonistic antibodies (TrkB-agoAbs) with several properties superior to BDNF: They exhibit blood half-life of days instead of hours, diffuse centimeters in neural tissues instead millimeters, and bind and activate TrkB, but not p75NTR. In addition, TrkB-agoAbs elicit much longer TrkB activation, reduced TrkB internalization and less intracellular degradation, compared with BDNF. More importantly, some of these TrkB-agoAbs bind TrkB epitopes distinct from that by BDNF, and work cooperatively with endogenous BDNF. Unlike BDNF, the TrkB-agoAbs exhibit a half-life of days/weeks and diffused readily in nerve tissues. We tested one of TrkB-agoAbs further and showed that it enhanced motoneuron survival in the spinal-root avulsion model for motoneuron degeneration in vivo. Thus, TrkB-agoAbs are promising drug candidates for the treatment of neural injury.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Neuronas Motoras/efectos de los fármacos , Degeneración Nerviosa/patología , Fármacos Neuroprotectores/farmacología , Receptor trkB/agonistas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Neuronas Motoras/patología
6.
J Steroid Biochem Mol Biol ; 192: 105385, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31150830

RESUMEN

The Wobbler mouse has been proposed as an experimental model of the sporadic form of amyotrophic lateral sclerosis (ALS). The administration of natural progesterone (PROG) to Wobbler mice attenuates neuropathology, inhibits oxidative stress, enhances the expression of genes involved in motoneuron function, increases survival and restores axonal transport. However, current pharmacological treatments for ALS patients are still partially effective. This encouraged us to investigate if the synthetic progestin norethindrone (NOR), showing higher potency than PROG and used for birth control and hormone therapy might also afford neuroprotection. Two-month-old Wobbler mice (wr/wr) were left untreated or received either a 20 mg pellet of PROG or a 1 mg pellet of NOR for 18 days. Untreated control NFR/NFR mice (background strain for Wobbler) were also employed. Wobblers showed typical clinical and spinal cord abnormalities, while these abnormalities were normalized with PROG treatment. Surprisingly, we found that NOR did not increase immunoreactivity and gene expression for choline-acetyltransferase, drastically decreased GFAP + astrogliosis, favored proinflammatory mediators, promoted the inflammatory phenotype of IBA1+ microglia, increased the receptor for advanced glycation end products (RAGE) mRNA and protein expression and the activity of nitric oxide synthase (NOS)/NADPH diaphorase in the cervical spinal cord. Additionally, NOR treatment produced atrophy of the thymus. The combined negative effects of NOR on clinical assessments (forelimb atrophy and rotarod performance) suggest a detrimental effect on muscle trophism and motor function. These findings reinforce the evidence that the type of progestin used for contraception, endometriosis or replacement therapy, may condition the outcome of preclinical and clinical studies targeting neurodegenerative diseases.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Motoras/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuroprotección/efectos de los fármacos , Noretindrona/farmacología , Progesterona/farmacología , Progestinas/farmacología , Animales , Anticonceptivos Sintéticos Orales/farmacología , Ratones , Neuronas Motoras/patología
7.
J Steroid Biochem Mol Biol ; 174: 201-216, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28951257

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by progressive death of motoneurons. The Wobbler (WR) mouse is a preclinical model sharing neuropathological similarities with human ALS. We have shown that progesterone (PROG) prevents the progression of motoneuron degeneration. We now studied if allopregnanolone (ALLO), a reduced metabolite of PROG endowed with gabaergic activity, also prevents WR neuropathology. Sixty-day old WRs remained untreated or received two steroid treatment regimens in order to evaluate the response of several parameters during early or prolonged steroid administration. ALLO was administered s.c. daily for 5days (4mg/kg) or every other day for 32days (3, 3mg/kg), while another group of WRs received a 20mg PROG pellet s.c. for 18 or 60days. ALLO administration to WRs increased ALLO serum levels without changing PROG and 5 alpha dihydroprogesterone (5α-DHP), whereas PROG treatment increased PROG, 5α-DHP and ALLO. Untreated WRs showed higher basal levels of serum 5α-DHP than controls. In the cervical spinal cord we studied markers of oxidative stress or associated to trophic responses. These included nitric oxide synthase (NOS) activity, motoneuron vacuolation, MnSOD immunoreactivity (IR), brain derived neurotrophic factor (BDNF) and TrkB mRNAs, p75 neurotrophin receptor (p75NTR) and, cell survival or death signals such as pAKT and the stress activated kinase JNK. Untreated WRs showed a reduction of MnSOD-IR and BDNF/TrkB mRNAs, associated to high p75NTR in motoneurons, neuronal and glial NOS hyperactivity and neuronal vacuolation. Also, low pAKT, mainly in young WRs, and a high pJNK in the old stage characterized WRs spinal cord. Except for MnSOD and BDNF, these alterations were prevented by an acute ALLO treatment, while short-term PROG elevated MnSOD. Moreover, after chronic administration both steroids enhanced MnSOD-IR and BDNF mRNA, while attenuated pJNK and NOS in glial cells. Long-term PROG also increased pAKT and reduced neuronal NOS, parameters not modulated by chronic ALLO. Clinically, both steroids improved muscle performance. Thus, ALLO was able to reduce neuropathology in this model. Since high oxidative stress activates p75NTR and pJNK in neurodegeneration, steroid reduction of these molecules may provide adequate neuroprotection. These data yield the first evidence that ALLO, a gabaergic neuroactive steroid, brings neuroprotection in a model of motoneuron degeneration.


Asunto(s)
Degeneración Nerviosa/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Pregnanolona/uso terapéutico , Esclerosis Amiotrófica Lateral , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Colina O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Fármacos Neuroprotectores/sangre , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa/metabolismo , Pregnanolona/sangre , Pregnanolona/farmacología , Progesterona/sangre , Progesterona/farmacología , Progesterona/uso terapéutico , Receptor trkB/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/metabolismo
8.
Neurobiol Aging ; 36(2): 1140-50, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25443289

RESUMEN

Adenosine 5'-monophosphate-activated protein kinase (AMPK) is a master regulator of energy balance. As energy imbalance is documented as a key pathologic feature of amyotrophic lateral sclerosis (ALS), we investigated AMPK as a pharmacologic target in SOD1(G93A) mice. We noted a strong activation of AMPK in lumbar spinal cords of SOD1(G93A) mice. Pharmacologic activation of AMPK has shown protective effects in neuronal "preconditioning" models. We tested the hypothesis that "preconditioning" with a small molecule activator of AMPK, latrepirdine, exerts beneficial effects on disease progression. SOD1(G93A) mice (n = 24 animals per group; sex and litter matched) were treated with latrepirdine (1 µg/kg, intraperitoneal) or vehicle from postnatal day 70 to 120. Treatment with latrepirdine increased AMPK activity in primary mouse motor neuron cultures and in SOD1(G93A) lumbar spinal cords. Mice "preconditioned" with latrepirdine showed a delayed symptom onset and a significant increase in life span (p < 0.01). Our study suggests that "preconditioning" with latrepirdine may represent a possible therapeutic strategy for individuals harboring ALS-associated gene mutations who are at risk for developing ALS.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/prevención & control , Indoles/administración & dosificación , Superóxido Dismutasa/genética , Proteínas Quinasas Activadas por AMP/fisiología , Esclerosis Amiotrófica Lateral/enzimología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Progresión de la Enfermedad , Metabolismo Energético , Activación Enzimática/efectos de los fármacos , Femenino , Inyecciones Intraperitoneales , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/enzimología , Neuronas Motoras/patología , Mutación , Riesgo , Médula Espinal/enzimología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
9.
Neurobiol Dis ; 70: 99-107, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24956542

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons in the spinal cord, brainstem and motor cortex. Mutations in the superoxide dismutase 1 (SOD1) gene represent a frequent genetic determinant and recapitulate a disease phenotype similar to ALS when expressed in mice. Previous studies using SOD1(G93A) transgenic mice have suggested a paracrine mechanism of neuronal loss, in which cytokines and other toxic factors released from astroglia or microglia trigger motoneuron degeneration. Several pro-inflammatory cytokines activate death receptors and may downstream from this activate the Bcl-2 family protein, Bid. We here sought to investigate the role of Bid in astrocyte activation and non-cell autonomous motoneuron degeneration. We found that spinal cord Bid protein levels increased significantly during disease progression in SOD1(G93A) mice. Subsequent experiments in vitro indicated that Bid was expressed at relatively low levels in motoneurons, but was enriched in astrocytes and microglia. Bid was strongly induced in astrocytes in response to pro-inflammatory cytokines or exposure to lipopolysaccharide. Experiments in bid-deficient astrocytes or astrocytes treated with a small molecule Bid inhibitor demonstrated that Bid was required for the efficient activation of transcription factor nuclear factor-κB in response to these pro-inflammatory stimuli. Finally, we found that conditioned medium from wild-type astrocytes, but not from bid-deficient astrocytes, was toxic when applied to primary motoneuron cultures. Collectively, our data demonstrate a new role for the Bcl-2 family protein Bid as a mediator of astrocyte activation during neuroinflammation, and suggest that Bid activation may contribute to non-cell autonomous motoneuron degeneration in ALS.


Asunto(s)
Astrocitos/inmunología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral , Animales , Células del Asta Anterior/fisiología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/antagonistas & inhibidores , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Muerte Celular/fisiología , Células Cultivadas , Humanos , Lipopolisacáridos , Ratones Noqueados , Ratones Transgénicos , Microglía/inmunología , Neuronas Motoras/fisiología , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Neuroinmunomodulación/fisiología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
10.
J Neurophysiol ; 109(11): 2803-14, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23486205

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by dysfunction and degeneration of motoneurons starting in adulthood. Recent studies using cell or animal models document that astrocytes expressing disease-causing mutations of human superoxide dismutase 1 (hSOD1) contribute to the pathogenesis of ALS by releasing a neurotoxic factor(s). Neither the mechanism by which this neurotoxic factor induces motoneuron death nor its cellular site of action has been elucidated. Here we show that acute exposure of primary wild-type spinal cord cultures to conditioned medium derived from astrocytes expressing mutant SOD1 (ACM-hSOD1(G93A)) increases persistent sodium inward currents (PC(Na)), repetitive firing, and intracellular calcium transients, leading to specific motoneuron death days later. In contrast to TTX, which paradoxically increased twofold the amplitude of calcium transients and killed motoneurons, reduction of hyperexcitability by other specific (mexiletine) and nonspecific (spermidine and riluzole) blockers of voltage-sensitive sodium (Na(v)) channels restored basal calcium transients and prevented motoneuron death induced by ACM-hSOD1(G93A). These findings suggest that riluzole, the only FDA-approved drug with known benefits for ALS patients, acts by inhibiting hyperexcitability. Together, our data document that a critical element mediating the non-cell-autonomous toxicity of ACM-hSOD1(G93A) on motoneurons is increased excitability, an observation with direct implications for therapy of ALS.


Asunto(s)
Potenciales de Acción , Astrocitos/metabolismo , Neuronas Motoras/efectos de los fármacos , Mutación , Superóxido Dismutasa/genética , Animales , Calcio/metabolismo , Señalización del Calcio , Muerte Celular , Células Cultivadas , Medios de Cultivo Condicionados/toxicidad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/fisiología , Ratas , Ratas Sprague-Dawley , Sodio/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...