Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39185239

RESUMEN

Hyperphosphorylation of the protein tau is one of the biomarkers of neurodegenerative diseases in the category of tauopathies. However, the molecular level, mechanistic, role of this common post-translational modification (PTM) in enhancing or reducing the aggregation propensity of tau is unclear, especially considering that combinatorial phosphorylation of multiple sites can have complex, non-additive, effects on tau protein aggregation. Since tau proteins stack in register and parallel to elongate into pathological fibrils, phosphoryl groups from adjacent tau strands with 4.8 Å separation must find an energetically favorable spatial arrangement. At first glance, this appears to be an unfavorable configuration due to the proximity of negative charges between phosphate groups from adjacent neighboring tau fibrils. However, this study tests a counterhypothesis that phosphoryl groups within the fibril core-forming segments favorably assemble into highly ordered, hydrogen-bonded, one-dimensionally extended wires under biologically relevant conditions. We selected two phosphorylation sites associated with neurodegeneration, serine 305 (S305p) and tyrosine 310 (Y310p), on a model tau peptide jR2R3-P301L (tau295-313) spanning the R2/R3 splice junction of tau, that readily aggregate into a fibril with characteristics of a seed-competent mini prion. Using multiple quantum spin counting (MQ-SC) by 31P solid-state NMR of phosphorylated jR2R3-P301L tau peptide fibrils, enhanced by dynamic nuclear polarization, we find that at least six phosphorous spins must neatly arrange in 1D within fibrils or in 2D within a protofibril to yield the experimentally observed MQ-coherence orders of four. We found that S305p stabilizes the tau fibrils and leads to more seeding-competent fibrils compared to jR2R3 P301L or Y310p. This study introduces a new concept that phosphorylation of residues within a core forming tau segment can mechanically facilitate fibril registry and stability due a hitherto unrecognized role of phosphoryl groups to form highly ordered, extended, 1D wires that stabilize pathological tau fibrils.

2.
Magn Reson Med ; 92(4): 1440-1455, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38725430

RESUMEN

PURPOSE: To develop a new sequence to simultaneously acquire Cartesian sodium (23Na) MRI and accelerated Cartesian single (SQ) and triple quantum (TQ) sodium MRI of in vivo human brain at 7 T by leveraging two dedicated low-rank reconstruction frameworks. THEORY AND METHODS: The Double Half-Echo technique enables short echo time Cartesian 23Na MRI and acquires two k-space halves, reconstructed by a low-rank coupling constraint. Additionally, three-dimensional (3D) 23Na Multi-Quantum Coherences (MQC) MRI requires multi-echo sampling paired with phase-cycling, exhibiting a redundant multidimensional space. Simultaneous Autocalibrating and k-Space Estimation (SAKE) were used to reconstruct highly undersampled 23Na MQC MRI. Reconstruction performance was assessed against five-dimensional (5D) CS, evaluating structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR), and quantification of tissue sodium concentration and TQ/SQ ratio in silico, in vitro, and in vivo. RESULTS: The proposed sequence enabled the simultaneous acquisition of fully sampled 23Na MRI while leveraging prospective undersampling for 23Na MQC MRI. SAKE improved TQ image reconstruction regarding SSIM by 6% and reduced RMSE by 35% compared to 5D CS in vivo. Thanks to prospective undersampling, the spatial resolution of 23Na MQC MRI was enhanced from 8 × 8 × 15 $$ 8\times 8\times 15 $$ mm3 to 8 × 8 × 8 $$ 8\times 8\times 8 $$ mm3 while reducing acquisition time from 2 × 31 $$ 2\times 31 $$ min to 2 × 23 $$ 2\times 23 $$ min. CONCLUSION: The proposed sequence, coupled with low-rank reconstructions, provides an efficient framework for comprehensive whole-brain sodium MRI, combining TSC, T2*, and TQ/SQ ratio estimations. Additionally, low-rank matrix completion enables the reconstruction of highly undersampled 23Na MQC MRI, allowing for accelerated acquisition or enhanced spatial resolution.


Asunto(s)
Algoritmos , Encéfalo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Relación Señal-Ruido , Sodio , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sodio/química , Procesamiento de Imagen Asistido por Computador/métodos , Isótopos de Sodio , Imagenología Tridimensional/métodos , Simulación por Computador
3.
Nanomaterials (Basel) ; 14(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786828

RESUMEN

In our pursuit of high-power terahertz (THz) wave generation, we propose innovative edge-terminated single-drift region (SDR) multi-quantum well (MQW) impact avalanche transit time (IMPATT) structures based on the AlxGa1-xN/GaN/AlxGa1-xN material system, with a fixed aluminum mole fraction of x = 0.3. Two distinct MQW diode configurations, namely p+-n junction-based and Schottky barrier diode structures, were investigated for their THz potential. To enhance reverse breakdown characteristics, we propose employing mesa etching and nitrogen ion implantation for edge termination, mitigating issues related to premature and soft breakdown. The THz performance is comprehensively evaluated through steady-state and high-frequency characterizations using a self-consistent quantum drift-diffusion (SCQDD) model. Our proposed Al0.3Ga0.7N/GaN/Al0.3Ga0.7N MQW diodes, as well as GaN-based single-drift region (SDR) and 3C-SiC/Si/3C-SiC MQW-based double-drift region (DDR) IMPATT diodes, are simulated. The Schottky barrier in the proposed diodes significantly reduces device series resistance, enhancing peak continuous wave power output to approximately 300 mW and DC to THz conversion efficiency to nearly 13% at 1.0 THz. Noise performance analysis reveals that MQW structures within the avalanche zone mitigate noise and improve overall performance. Benchmarking against state-of-the-art THz sources establishes the superiority of our proposed THz sources, highlighting their potential for advancing THz technology and its applications.

4.
Magn Reson Med ; 92(3): 900-915, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38650306

RESUMEN

PURPOSE: Sodium triple quantum (TQ) signal has been shown to be a valuable biomarker for cell viability. Despite its clinical potential, application of Sodium TQ signal is hindered by complex pulse sequences with long scan times. This study proposes a method to approximate the TQ signal using a single excitation pulse without phase cycling. METHODS: The proposed method is based on a single excitation pulse and a comparison of the free induction decay (FID) with the integral of the FID combined with a shifting reconstruction window. The TQ signal is calculated from this FID only. As a proof of concept, the method was also combined with a multi-echo UTE imaging sequence on a 9.4 T preclinical MRI scanner for the possibility of fast TQ MRI. RESULTS: The extracted Sodium TQ signals of single-pulse and spin echo FIDs were in close agreement with theory and TQ measurement by traditional three-pulse sequence (TQ time proportional phase increment [TQTPPI)]. For 2%, 4%, and 6% agar samples, the absolute deviations of the maximum TQ signals between SE and theoretical (time proportional phase increment TQTPPI) TQ signals were less than 1.2% (2.4%), and relative deviations were less than 4.6% (6.8%). The impact of multi-compartment systems and noise on the accuracy of the TQ signal was small for simulated data. The systematic error was <3.4% for a single quantum (SQ) SNR of 5 and at maximum <2.5% for a multi-compartment system. The method also showed the potential of fast in vivo SQ and TQ imaging. CONCLUSION: Simultaneous SQ and TQ MRI using only a single-pulse sequence and SQ time efficiency has been demonstrated. This may leverage the full potential of the Sodium TQ signal in clinical applications.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Sodio , Imagen por Resonancia Magnética/métodos , Sodio/química , Procesamiento de Señales Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Relación Señal-Ruido , Animales
5.
NMR Biomed ; 37(5): e5106, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38263738

RESUMEN

PURPOSE: Both sodium T1 triple quantum (TQ) signal and T1 relaxation pathways have a unique sensitivity to the sodium molecular environment. In this study an inversion recovery time proportional phase increment (IRTQTPPI) pulse sequence was investigated for simultaneous and reliable quantification of sodium TQ signal and bi-exponential T1 relaxation times. METHODS: The IRTQTPPI sequence combines inversion recovery TQ filtering and time proportional phase increment. The reliable and reproducible results were achieved by the pulse sequence optimized in three ways: (1) optimization of the nonlinear fit for the determination of both T1-TQ signal and T1 relaxation times; (2) suppression of unwanted signals by assessment of four different phase cycles; (3) nonlinear sampling during evolution time for optimal scan time without any compromises in fit accuracy. The relaxation times T1 and T2 and the TQ signals from IRTQTPPI and TQTPPI were compared between 9.4 and 21.1 T. The motional environment of the sodium nuclei was evaluated by calculation of correlation times and nuclear quadrupole interaction strengths. RESULTS: Reliable measurements of the T1-TQ signals and T1 bi-exponential relaxation times were demonstrated. The fit parameters for all four phase cycles were in good agreement with one another, with a negligible influence of unwanted signals. The agar samples yielded normalized T1-TQ signals from 3% to 16% relative to single quantum (SQ) signals at magnetic fields of both 9.4 and 21.1 T. In comparison, the normalized T2-TQ signal was in the range 15%-35%. The TQ/SQ signal ratio was decreased at 21.1 T as compared with 9.4 T for both T1 and T2 relaxation pathways. The bi-exponential T1 relaxation time separation ranged from 15 to 18 ms at 9.4 T and 15 to 21 ms at 21.1 T. The T2 relaxation time separation was larger, ranging from 28 to 35 ms at 9.4 T and 37 to 40 ms at 21.1 T. CONCLUSION: The IRTQTPPI sequence, while providing a less intensive TQ signal than TQTPPI, allows a simultaneous and reliable quantification of both the T1-TQ signal and T1 relaxation times. The unique sensitivities of the T1 and T2 relaxation pathways to different types of molecular motion provide a deeper understanding of the sodium MR environment.


Asunto(s)
Imagen por Resonancia Magnética , Sodio , Imagen por Resonancia Magnética/métodos
6.
Magn Reson Med ; 91(3): 926-941, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37881829

RESUMEN

PURPOSE: Sodium (23 Na) multi-quantum coherences (MQC) MRI was accelerated using three-dimensional (3D) and a dedicated five-dimensional (5D) compressed sensing (CS) framework for simultaneous Cartesian single (SQ) and triple quantum (TQ) sodium imaging of in vivo human brain at 3.0 and 7.0 T. THEORY AND METHODS: 3D 23 Na MQC MRI requires multi-echo paired with phase-cycling and exhibits thus a multidimensional space. A joint reconstruction framework to exploit the sparsity in all imaging dimensions by extending the conventional 3D CS framework to 5D was developed. 3D MQC images of simulated brain, phantom and healthy brain volunteers obtained from 3.0 T and 7.0 T were retrospectively and prospectively undersampled. Performance of the CS models were analyzed by means of structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR) and signal quantification of tissue sodium concentration and TQ/SQ ratio. RESULTS: It was shown that an acceleration of three-fold, leading to less than 2 × 10 $$ 2\times 10 $$ min of scan time with a resolution of 8 × 8 × 20 mm 3 $$ 8\times 8\times 20\;{\mathrm{mm}}^3 $$ at 3.0 T, are possible. 5D CS improved SSIM by 3%, 5%, 1% and reduced RMSE by 50%, 30%, 8% for in vivo SQ, TQ, and TQ/SQ ratio maps, respectively. Furthermore, for the first time prospective undersampling enabled unprecedented high resolution from 8 × 8 × 20 mm 3 $$ 8\times 8\times 20\;{\mathrm{mm}}^3 $$ to 6 × 6 × 10 mm 3 $$ 6\times 6\times 10\;{\mathrm{mm}}^3 $$ MQC images of in vivo human brain at 7.0 T without extending acquisition time. CONCLUSION: 5D CS proved to allow up to three-fold acceleration retrospectively on 3.0 T data. 2-fold acceleration was demonstrated prospectively at 7.0 T to reach higher spatial resolution of 23 Na MQC MRI.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Sodio , Procesamiento de Imagen Asistido por Computador/métodos
7.
Micromachines (Basel) ; 14(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37893363

RESUMEN

In this paper, in order to address the problem of electron leakage in AlGaN ultra-violet light-emitting diodes, we have proposed an electron-blocking free layer AlGaN ultra-violet (UV) light-emitting diode (LED) using polarization-engineered heart-shaped AlGaN quantum barriers (QB) instead of conventional barriers. This novel structure has decreased the downward band bending at the interconnection between the consecutive quantum barriers and also flattened the electrostatic field. The parameters used during simulation are extracted from the referred experimental data of conventional UV LED. Using the Silvaco Atlas TCAD tool; version 8.18.1.R, we have compared and optimized the optical as well as electrical characteristics of three varying LED structures. Enhancements in electroluminescence at 275 nm (52.7%), optical output power (50.4%), and efficiency (61.3%) are recorded for an EBL-free AlGaN UV LED with heart-shaped Al composition in the barriers. These improvements are attributed to the minimized non-radiative recombination on the surfaces, due to the progressively increasing effective conduction band barrier height, which subsequently enhances the carrier confinement. Hence, the proposed EBL-free AlGaN LED is the potential solution to enhance optical power and produce highly efficient UV emitters.

8.
Micromachines (Basel) ; 13(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36014188

RESUMEN

The defectiveness of InGaN-based quantum wells increases with low indium contents, due to the compressive strain induced by the lattice mismatch between the InGaN and GaN layers, and to the stronger incorporation of defects favored by the presence of indium. Such defects can limit the performance and the reliability of LEDs, since they can act as non-radiative recombination centers, and favor the degradation of neighboring semiconductor layers. To investigate the location of the layers mostly subjected to degradation, we designed a color-coded structure with two quantum wells having different indium contents. By leveraging on numerical simulations, we explained the experimental results in respect of the ratio between the emissions of the two main peaks as a function of current. In addition, to evaluate the mechanisms that limit the reliability of this type of LED, we performed a constant-current stress test at high temperature, during which we monitored the variation in the optical characteristics induced by degradation. By comparing experimental and simulated results, we found that degradation can be ascribed to an increment of traps in the active region. This process occurs in two different phases, with different rates for the two quantum wells. The first phase mainly occurs in the quantum well closer to the p-contact, due to an increment of defectiveness. Degradation follows an exponential trend, and saturates during the second phase, while the quantum well close to the n-side is still degrading, supporting the hypothesis of the presence of a diffusive front that is moving from the p-side towards the n-side. The stronger degradation could be related to a lowering of the injection efficiency, or an increment of SRH recombination driven by a recombination-enhanced defect generation process.

9.
Materials (Basel) ; 15(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454453

RESUMEN

In this paper, we present a comparative analysis of the optical properties of non-polar and polar GaN/AlGaN multi-quantum well (MQW) structures by time-resolved photoluminescence (TRPL) and pressure-dependent studies. The lack of internal electric fields across the non-polar structures results in an improved electron and hole wavefunction overlap with respect to the polar structures. Therefore, the radiative recombination presents shorter decay times, independent of the well width. On the contrary, the presence of electric fields in the polar structures reduces the emission energy and the wavefunction overlap, which leads to a strong decrease in the recombination rate when increasing the well width. Taking into account the different energy dependences of radiative recombination in non-polar and polar structures of the same geometry, and assuming that non-radiative processes are energy independent, we attempted to explain the 'S-shape' behavior of the PL energy observed in polar GaN/AlGaN QWs, and its absence in non-polar structures. This approach has been applied previously to InGaN/GaN structures, showing that the interplay of radiative and non-radiative recombination processes can justify the 'S-shape' in polar InGaN/GaN MQWs. Our results show that the differences in the energy dependences of radiative and non-radiative recombination processes cannot explain the 'S-shape' behavior by itself, and localization effects due to the QW width fluctuation are also important. Additionally, the influence of the electric field on the pressure behavior of the investigated structures was studied, revealing different pressure dependences of the PL energy in non-polar and polar MQWs. Non-polar MQWs generally follow the pressure dependence of the GaN bandgap. In contrast, the pressure coefficients of the PL energy in polar QWs are highly reduced with respect to those of the bulk GaN, which is due to the hydrostatic-pressure-induced increase in the piezoelectric field in quantum structures and the nonlinear behavior of the piezoelectric constant.

10.
Nanomicro Lett ; 14(1): 60, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147762

RESUMEN

A novel device structure for thermally activated delayed fluorescence (TADF) top emission organic light-emitting diodes (TEOLEDs) that improves the viewing angle characteristics and reduces the efficiency roll-off is presented. Furthermore, we describe the design and fabrication of a cavity-suppressing electrode (CSE), Ag (12 nm)/WO3 (65 nm)/Ag (12 nm) that can be used as a transparent cathode. While the TADF-TEOLED fabricated using the CSE exhibits higher external quantum efficiency (EQE) and improved angular dependency than the device fabricated using the microcavity-based Ag electrode, it suffers from low color purity and severe efficiency roll-off. These drawbacks can be reduced by using an optimized multi-quantum well emissive layer (MQW EML). The CSE-based TADF-TEOLED with an MQW EML fabricated herein exhibits a high EQE (18.05%), high color purity (full width at half maximum ~ 59 nm), reduced efficiency roll-off (~ 46% at 1000 cd m-2), and low angular dependence. These improvements can be attributed to the synergistic effect of the CSE and MQW EML. An optimized transparent CSE improves charge injection and light outcoupling with low angular dependence, and the MQW EML effectively confines charges and excitons, thereby improving the color purity and EQE significantly. The proposed approach facilitates the optimization of multiple output characteristics of TEOLEDs for future display applications.

11.
Materials (Basel) ; 14(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34501025

RESUMEN

In this paper, ab initio calculations are used to determine polarization difference in zinc blende (ZB), hexagonal (H) and wurtzite (WZ) AlN-GaN and GaN-InN superlattices. It is shown that a polarization difference exists between WZ nitride compounds, while for H and ZB lattices the results are consistent with zero polarization difference. It is therefore proven that the difference in Berry phase spontaneous polarization for bulk nitrides (AlN, GaN and InN) obtained by Bernardini et al. and Dreyer et al. was not caused by the different reference phase. These models provided absolute values of the polarization that differed by more than one order of magnitude for the same material, but they provided similar polarization differences between binary compounds, which agree also with our ab initio calculations. In multi-quantum wells (MQWs), the electric fields are generated by the well-barrier polarization difference; hence, the calculated electric fields are similar for the three models, both for GaN/AlN and InN/GaN structures. Including piezoelectric effect, which can account for 50% of the total polarization difference, these theoretical data are in satisfactory agreement with photoluminescence measurements in GaN/AlN MQWs. Therefore, the three models considered above are equivalent in the treatment of III-nitride MQWs and can be equally used for the description of the electric properties of active layers in nitride-based optoelectronic devices.

12.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803623

RESUMEN

Exosomes are attracting attention as new biomarkers for monitoring the diagnosis and prognosis of certain diseases. Colorimetric-based lateral-flow assays have been previously used to detect exosomes, but these have the disadvantage of a high limit of detection. Here, we introduce a new technique to improve exosome detection. In our approach, highly bright multi-quantum dots embedded in silica-encapsulated nanoparticles (M-QD-SNs), which have uniform size and are brighter than single quantum dots, were applied to the lateral flow immunoassay method to sensitively detect exosomes. Anti-CD63 antibodies were introduced on the surface of the M-QD-SNs, and a lateral flow immunoassay with the M-QD-SNs was conducted to detect human foreskin fibroblast (HFF) exosomes. Exosome samples included a wide range of concentrations from 100 to 1000 exosomes/µL, and the detection limit of our newly designed system was 117.94 exosome/µL, which was 11 times lower than the previously reported limits. Additionally, exosomes were selectively detected relative to the negative controls, liposomes, and newborn calf serum, confirming that this method prevented non-specific binding. Thus, our study demonstrates that highly sensitive and quantitative exosome detection can be conducted quickly and accurately by using lateral immunochromatographic analysis with M-QD-SNs.

13.
Nanoscale Res Lett ; 14(1): 170, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31115700

RESUMEN

Deep ultraviolet AlGaN-based nanorod (NR) arrays were fabricated by nanoimprint lithography and top-down dry etching techniques from a fully structural LED wafer. Highly ordered periodic structural properties and morphology were confirmed by scanning electron microscopy and transmission electron microscopy. Compared with planar samples, cathodoluminescence measurement revealed that NR samples showed 1.92-fold light extraction efficiency (LEE) enhancement and a 12.2-fold internal quantum efficiency (IQE) enhancement for the emission from multi-quantum wells at approximately 277 nm. The LEE enhancement can be attributed to the well-fabricated nanostructured interface between the air and the epilayers. Moreover, the reduced quantum-confined stark effect accounted for the great enhancement in IQE.

14.
Adv Sci (Weinh) ; 5(6): 1700955, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29938172

RESUMEN

Growth and characterization of advanced group IV semiconductor materials with CMOS-compatible applications are demonstrated, both in photonics. The investigated GeSn/SiGeSn heterostructures combine direct bandgap GeSn active layers with indirect gap ternary SiGeSn claddings, a design proven its worth already decades ago in the III-V material system. Different types of double heterostructures and multi-quantum wells (MQWs) are epitaxially grown with varying well thicknesses and barriers. The retaining high material quality of those complex structures is probed by advanced characterization methods, such as atom probe tomography and dark-field electron holography to extract composition parameters and strain, used further for band structure calculations. Special emphasis is put on the impact of carrier confinement and quantization effects, evaluated by photoluminescence and validated by theoretical calculations. As shown, particularly MQW heterostructures promise the highest potential for efficient next generation complementary metal-oxide-semiconductor (CMOS)-compatible group IV lasers.

15.
J Biomol NMR ; 70(3): 187-202, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29564579

RESUMEN

Carr-Purcell-Meiboom-Gill (CPMG) type relaxation dispersion experiments are now routinely used to characterise protein conformational dynamics that occurs on the µs to millisecond (ms) timescale between a visible major state and 'invisible' minor states. The exchange rate(s) ([Formula: see text]), population(s) of the minor state(s) and the absolute value of the chemical shift difference [Formula: see text] (ppm) between different exchanging states can be extracted from the CPMG data. However the sign of [Formula: see text] that is required to reconstruct the spectrum of the 'invisible' minor state(s) cannot be obtained from CPMG data alone. Building upon the recently developed triple quantum (TQ) methyl [Formula: see text] CPMG experiment (Yuwen in Angew Chem 55:11490-11494, 2016) we have developed pulse sequences that use carbon detection to generate and evolve single quantum (SQ), double quantum (DQ) and TQ coherences from methyl protons in the indirect dimension to measure the chemical exchange-induced shifts of the SQ, DQ and TQ coherences from which the sign of [Formula: see text] is readily obtained for two state exchange. Further a combined analysis of the CPMG data and the difference in exchange induced shifts between the SQ and DQ resonances and between the SQ and TQ resonances improves the estimates of exchange parameters like the population of the minor state. We demonstrate the use of these experiments on two proteins undergoing exchange: (1) the ~ 18 kDa cavity mutant of T4 Lysozyme ([Formula: see text]) and (2) the [Formula: see text] kDa Peripheral Sub-unit Binding Domain (PSBD) from the acetyl transferase of Bacillus stearothermophilus ([Formula: see text]).


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Teoría Cuántica , Bacillus/enzimología , Simulación de Dinámica Molecular , Muramidasa/química , Transferasas/química
16.
Nano Lett ; 18(1): 235-240, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29191016

RESUMEN

There is considerable interest in the development of InAsSb-based nanowires for infrared photonics due to their high tunability across the infrared spectral range, high mobility, and integration with silicon electronics. However, optical emission is currently limited to low temperatures due to strong nonradiative Auger and surface recombination. Here, we present a new structure based on conical type II InAsSb/InAs multiquantum wells within InAs nanowires which exhibit bright mid-infrared photoluminescence up to room temperature. The nanowires are grown by catalyst-free selective area epitaxy on silicon. This unique geometry confines the electron-hole recombination to within the quantum wells which alleviates the problems associated with recombination via surface states, while the quantum confinement of carriers increases the radiative recombination rate and suppresses Auger recombination. This demonstration will pave the way for the development of new integrated quantum light sources operating in the technologically important mid-infrared spectral range.

17.
NMR Biomed ; 29(4): 451-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26837061

RESUMEN

The purpose of this work was to explore the origin of oscillations of the T(*)2 decay curve of (39)K observed in studies of (39)K magnetic resonance imaging of the human thigh. In addition to their magnetic dipole moment, spin-3/2 nuclei possess an electric quadrupole moment. Its interaction with non-vanishing electrical field gradients leads to oscillations in the free induction decay and to splitting of the resonance. All measurements were performed on a 7T whole-body MRI scanner (MAGNETOM 7T, Siemens AG, Erlangen, Germany) with customer-built coils. According to the theory of quadrupolar splitting, a model with three Lorentzian-shaped peaks is appropriate for (39)K NMR spectra of the thigh and calf. The frequency shifts of the satellites depend on the angle between the calf and the static magnetic field. When the leg is oriented parallel to the static magnetic field, the satellites are shifted by about 200 Hz. In the thigh, rank-2 double quantum coherences arising from anisotropic quadrupolar interaction are observed by double-quantum filtration with magic-angle excitation. In addition to the spectra, an image of the thigh with a nominal resolution of (16 × 16 × 32) mm(3) was acquired with this filtering technique in 1:17 h. From the line width of the resonances, (39)K transverse relaxation time constants T(*)2, fast = (0.51 ± 0.01) ms and T(*)2, slow = (6.21 ± 0.05) ms for the head were determined. In the thigh, the left and right satellite, both corresponding to the short component of the transverse relaxation time constant, take the following values: T(*)2, fast = (1.56 ± 0.03) ms and T(*)2, fast = (1.42 ± 0.03) ms. The centre line, which corresponds to the slow component, is T(*)2, slow = (9.67 ± 0.04) ms. The acquisition time of the spectra was approximately 10 min. Our results agree well with a non-vanishing electrical field gradient interacting with (39)K nuclei in the intracellular space of muscle tissue.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Músculos/metabolismo , Potasio/metabolismo , Adulto , Femenino , Cabeza , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Muslo
18.
Nanoscale Res Lett ; 10(1): 459, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26625883

RESUMEN

InGaN/GaN multi-quantum wells (MQWs) are grown on (0001) sapphire substrates by metal organic chemical vapor deposition (MOCVD) with special growth parameters to form V-shaped pits simultaneously. Measurements by atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrate the formation of MQWs on both (0001) and ([Formula: see text]) side surface of the V-shaped pits. The latter is known to be a semi-polar surface. Optical characterizations together with theoretical calculation enable us to identify the optical transitions from these MQWs. The layer thickness on ([Formula: see text]) surface is smaller than that on (0001) surface, and the energy level in the ([Formula: see text]) semi-polar quantum well (QW) is higher than in the (0001) QW. As the sample temperature is increased from 15 K, the integrated cathodoluminescence (CL) intensity of (0001) MQWs increases first and then decreases while that of the ([Formula: see text]) MQWs decreases monotonically. The integrated photoluminescence (PL) intensity of (0001) MQWs increases significantly from 15 to 70 K. These results are explained by carrier injection from ([Formula: see text]) to (0001) MQWs due to thermal excitation. It is therefore concluded that the emission efficiency of (0001) MQWs at high temperatures can be greatly improved due to the formation of semi-polar MQWs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...