Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099456

RESUMEN

Multiplexed spatial profiling of mRNAs has recently gained traction as a tool to explore the cellular diversity and the architecture of tissues. We propose a sensitive, open-source, simple and flexible method for the generation of in-situ expression maps of hundreds of genes. We exploit direct ligation of padlock probes on mRNAs, coupled with rolling circle amplification and hybridization-based in situ combinatorial barcoding, to achieve high detection efficiency, high throughput and large multiplexing. We validate the method across a number of species, and show its use in combination with orthogonal methods such as antibody staining, highlighting its potential value for developmental and tissue biology studies. Finally, we provide an end-to-end computational workflow that covers the steps of probe design, image processing, data extraction, cell segmentation, clustering and annotation of cell types. By enabling easier access to high-throughput spatially resolved transcriptomics, we hope to encourage a diversity of applications and the exploration of a wide range of biological questions.

2.
Cytometry A ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101554

RESUMEN

Imaging flow cytometry, which combines the advantages of flow cytometry and microscopy, has emerged as a powerful tool for cell analysis in various biomedical fields such as cancer detection. In this study, we develop multiplex imaging flow cytometry (mIFC) by employing a spatial wavelength division multiplexing technique. Our mIFC can simultaneously obtain brightfield and multi-color fluorescence images of individual cells in flow, which are excited by a metal halide lamp and measured by a single detector. Statistical analysis results of multiplex imaging experiments with resolution test lens, magnification test lens, and fluorescent microspheres validate the operation of the mIFC with good imaging channel consistency and micron-scale differentiation capabilities. A deep learning method is designed for multiplex image processing that consists of three deep learning networks (U-net, very deep super resolution, and visual geometry group 19). It is demonstrated that the cluster of differentiation 24 (CD24) imaging channel is more sensitive than the brightfield, nucleus, or cancer antigen 125 (CA125) imaging channel in classifying the three types of ovarian cell lines (IOSE80 normal cell, A2780, and OVCAR3 cancer cells). An average accuracy rate of 97.1% is achieved for the classification of these three types of cells by deep learning analysis when all four imaging channels are considered. Our single-detector mIFC is promising for the development of future imaging flow cytometers and for the automatic single-cell analysis with deep learning in various biomedical fields.

3.
bioRxiv ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39071419

RESUMEN

Localization of mRNAs to dendrites is a fundamental mechanism by which neurons achieve spatiotemporal control of gene expression. Translationally repressed neuronal mRNA transport granules, also referred to as ribonuclear proteins (RNPs), have been shown to be trafficked as single or low copy number RNPs and as larger complexes with multiple copies and/or species of mRNAs. However, there is little evidence of either population in intact neuronal circuits. Using single molecule fluorescence in situ hybridization studies in the dendrites of adult rat and mouse hippocampus, we provide evidence that supports the existence of multi-transcript RNPs with the constituents varying in amounts for each RNA species. By competing-off fluorescently labeled probe with serial increases of unlabeled probe, we detected stepwise decreases in Arc RNP number and fluorescence intensity, suggesting Arc RNAs localize to dendrites in both low- and multiple-copy number RNPs. When probing for multiple mRNAs, we find that localized RNPs are heterogeneous in size and colocalization patterns that vary per RNA. Further, localized RNAs that are targeted by the same trans-acting element (FMRP) display greater levels of colocalization compared to an RNA not targeted by FMRP. Simultaneous visualization and assessment of colocalization using highly multiplexed imaging of a dozen mRNA species targeted by FMRP demonstrates that dendritic RNAs are mostly trafficked as heteromeric cargoes of multiple types of RNAs (at least one or more RNAs). Moreover, the composition of these RNA cargoes correlates with the abundance of the transcripts even after accounting for expression. Collectively, these results suggest that dendritic RNPs are packaged as heterogeneous co-assemblies of different mRNAs and that RNP contents may be driven, at least partially, by highly abundant dendritic RNAs; a model that favors efficiency over fine-tuned control for sustaining long-distance trafficking of thousands of messenger molecules.

4.
Cancer Cell ; 42(8): 1415-1433.e12, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39029466

RESUMEN

The tumor microenvironment (TME) has a significant impact on tumor growth and immunotherapy efficacies. However, the precise cellular interactions and spatial organizations within the TME that drive these effects remain elusive. Using advanced multiplex imaging techniques, we have discovered that regulatory T cells (Tregs) accumulate around lymphatic vessels in the peripheral tumor stroma. This localized accumulation is facilitated by mature dendritic cells enriched in immunoregulatory molecules (mregDCs), which promote chemotaxis of Tregs, establishing a peri-lymphatic Treg-mregDC niche. Within this niche, mregDCs facilitate Treg activation, which in turn restrains the trafficking of tumor antigens to the draining mesenteric lymph nodes, thereby impeding the initiation of anti-tumor adaptive immune responses. Disrupting Treg recruitment to mregDCs inhibits tumor progression. Our study provides valuable insights into the organization of TME and how local crosstalk between lymphoid and myeloid cells suppresses anti-tumor immune responses.


Asunto(s)
Células Dendríticas , Linfocitos T Reguladores , Microambiente Tumoral , Linfocitos T Reguladores/inmunología , Animales , Microambiente Tumoral/inmunología , Ratones , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Vasos Linfáticos/inmunología , Vasos Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ganglios Linfáticos/inmunología , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/metabolismo
5.
Res Sq ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38978567

RESUMEN

Identifying cell types and states remains a time-consuming, error-prone challenge for spatial biology. While deep learning is increasingly used, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we developed TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data. TACIT uses unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000-cells; 51-cell types) from three niches (brain, intestine, gland), TACIT outperformed existing unsupervised methods in accuracy and scalability. Integrating TACIT-identified cell types with a novel Shiny app revealed new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discovered under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.

6.
J Nanobiotechnology ; 22(1): 356, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902773

RESUMEN

BACKGROUND: Ultrasound and photoacoustic (US/PA) imaging is a promising tool for in vivo visualization and assessment of drug delivery. However, the acoustic properties of the skull limit the practical application of US/PA imaging in the brain. To address the challenges in targeted drug delivery to the brain and transcranial US/PA imaging, we introduce and evaluate an intracerebral delivery and imaging strategy based on the use of laser-activated perfluorocarbon nanodroplets (PFCnDs). METHODS: Two specialized PFCnDs were developed to facilitate blood‒brain barrier (BBB) opening and contrast-enhanced US/PA imaging. In mice, PFCnDs were delivered to brain tissue via PFCnD-induced BBB opening to the right side of the brain. In vivo, transcranial US/PA imaging was performed to evaluate the utility of PFCnDs for contrast-enhanced imaging through the skull. Ex vivo, volumetric US/PA imaging was used to characterize the spatial distribution of PFCnDs that entered brain tissue. Immunohistochemical analysis was performed to confirm the spatial extent of BBB opening and the accuracy of the imaging results. RESULTS: In vivo, transcranial US/PA imaging revealed localized photoacoustic (PA) contrast associated with delivered PFCnDs. In addition, contrast-enhanced ultrasound (CEUS) imaging confirmed the presence of nanodroplets within the same area. Ex vivo, volumetric US/PA imaging revealed PA contrast localized to the area of the brain where PFCnD-induced BBB opening had been performed. Immunohistochemical analysis revealed that the spatial distribution of immunoglobulin (IgG) extravasation into the brain closely matched the imaging results. CONCLUSIONS: Using our intracerebral delivery and imaging strategy, PFCnDs were successfully delivered to a targeted area of the brain, and they enabled contrast-enhanced US/PA imaging through the skull. Ex vivo imaging, and immunohistochemistry confirmed the accuracy and precision of the approach.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Medios de Contraste , Fluorocarburos , Rayos Láser , Nanopartículas , Técnicas Fotoacústicas , Animales , Barrera Hematoencefálica/metabolismo , Fluorocarburos/química , Medios de Contraste/química , Ratones , Técnicas Fotoacústicas/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Ultrasonografía/métodos , Masculino
7.
Front Immunol ; 15: 1414298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938577

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is one of the most common tumor entities worldwide, with human papillomavirus (HPV) infection contributing to cancer development. Conventional therapies achieve only limited efficiency, especially in recurrent or metastatic HNSCC. As the immune landscape decisively impacts the survival of patients and treatment efficacy, this study comprehensively investigated the immunological tumor microenvironment (TME) and its association with patient outcome, with special focus on several dendritic cell (DC) and T lymphocyte subpopulations. Therefore, formalin-fixed paraffin-embedded tumor samples of 56 HNSCC patients, who have undergone resection and adjuvant radiotherapy, were analyzed by multiplex immunohistochemistry focusing on the detailed phenotypic characterization and spatial distribution of DCs, CD8+ T cells, and T-helper cell subsets in different tumor compartments. Immune cell densities and proportions were correlated with clinical characteristics of the whole HNSCC cohort and different HPV- or hypoxia-associated subcohorts. Tumor stroma was highly infiltrated by plasmacytoid DCs and T lymphocytes. Among the T-helper cells and CD8+ T cells, stromal regulatory T cells and intraepithelial exhausted CD8+ T cells expressing programmed cell death protein-1 (PD-1+) and/or lymphocyte-activation gene-3 (LAG-3+) were the predominant phenotypes, indicating an immunosuppressive TME. HPV-associated tumors showed significantly higher infiltration of type I and type II conventional DCs (cDC1, cDC2) as well as several CD8+ T cell phenotypes including exhausted, activated, and proliferating T cells. On the contrary, tumors with hypoxia-associated gene signatures exhibited reduced infiltration for these immune cells. By multivariate Cox regression, immune-related prognostic factors were identified. Patient clusters defined by high infiltration of DCs and T lymphocytes combined with HPV positivity or low hypoxia showed significantly prolonged survival. Thereby, cDC1 and CD8+ T cells emerged as independent prognostic factors for local and distant recurrence. These results might contribute to the implementation of an immune cell infiltration score predicting HNSCC patients' survival and such patient stratification might improve the design of future individualized radiochemo-(immuno)therapies.


Asunto(s)
Linfocitos T CD8-positivos , Células Dendríticas , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Humanos , Células Dendríticas/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Masculino , Femenino , Linfocitos T CD8-positivos/inmunología , Persona de Mediana Edad , Microambiente Tumoral/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/virología , Neoplasias de Cabeza y Cuello/mortalidad , Anciano , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Pronóstico , Adulto , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología
8.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895230

RESUMEN

Identifying cell types and states remains a time-consuming and error-prone challenge for spatial biology. While deep learning is increasingly used, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we developed TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data, using unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000-cells; 51-cell types) from three niches (brain, intestine, gland), TACIT outperformed existing unsupervised methods in accuracy and scalability. Integration of TACIT-identified cell with a novel Shiny app revealed new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discover under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.

9.
J Am Heart Assoc ; 13(12): e034990, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38842292

RESUMEN

BACKGROUND: Previous studies using animal models and cultured cells suggest that vascular smooth muscle cells (SMCs) and inflammatory cytokines are important players in atherogenesis. Validating these findings in human disease is critical to designing therapeutics that target these components. Multiplex imaging is a powerful tool for characterizing cell phenotypes and microenvironments using biobanked human tissue sections. However, this technology has not been applied to human atherosclerotic lesions and needs to first be customized and validated. METHODS AND RESULTS: For validation, we created an 8-plex imaging panel to distinguish foam cells from SMC and leukocyte origins on tissue sections of early human atherosclerotic lesions (n=9). The spatial distribution and characteristics of these foam cells were further analyzed to test the association between SMC phenotypes and inflammation. Consistent with previous reports using human lesions, multiplex imaging showed that foam cells of SMC origin outnumbered those of leukocyte origin and were enriched in the deep intima, where the lipids accumulate in early atherogenesis. This new technology also found that apoptosis or the expression of pro-inflammatory cytokines were not more associated with foam cells than with nonfoam cells in early human lesions. More CD68+ SMCs were present among SMCs that highly expressed interleukin-1ß. Highly inflamed SMCs showed a trend of increased apoptosis, whereas leukocytes expressing similar levels of cytokines were enriched in regions of extracellular matrix remodeling. CONCLUSIONS: The multiplex imaging method can be applied to biobanked human tissue sections to enable proof-of-concept studies and validate theories based on animal models and cultured cells.


Asunto(s)
Aterosclerosis , Fenotipo , Humanos , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/diagnóstico por imagen , Células Espumosas/patología , Células Espumosas/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Citocinas/metabolismo , Leucocitos/patología , Leucocitos/metabolismo , Apoptosis
10.
Front Cell Dev Biol ; 12: 1346778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808224

RESUMEN

Background: Mitochondrial health has gained attention in a number of diseases, both as an indicator of disease state and as a potential therapeutic target. The quality and amount of mitochondrial DNA (mtDNA) and RNA (mtRNA) can be important indicators of mitochondrial and cell health, but are difficult to measure in complex tissues. Methods: mtDNA and mtRNA in zebrafish retina samples were fluorescently labeled using RNAscope™ in situ hybridization, then mitochondria were stained using immunohistochemistry. Pretreatment with RNase was used for validation. Confocal images were collected and analyzed, and relative amounts of mtDNA and mtRNA were reported. Findings regarding mtDNA were confirmed using qPCR. Results: Signals from probes detecting mtDNA and mtRNA were localized to mitochondria, and were differentially sensitive to RNase. This labeling strategy allows for quantification of relative mtDNA and mtRNA levels in individual cells. As a demonstration of the method in a complex tissue, single photoreceptors in zebrafish retina were analyzed for mtDNA and mtRNA content. An increase in mtRNA but not mtDNA coincides with proliferation of mitochondria at night in cones. A similar trend was measured in rods. Discussion: Mitochondrial gene expression is an important component of cell adaptations to disease, stress, or aging. This method enables the study of mtDNA and mtRNA in single cells of an intact, complex tissue. The protocol presented here uses commercially-available tools, and is adaptable to a range of species and tissue types.

11.
Mater Today Bio ; 26: 101026, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38525311

RESUMEN

The accurate detection of multiplex collagen biomarkers is vital for diagnosing and treating various critical diseases such as tumors and fibrosis. Despite the attractive optical properties of quantum dots (QDs), it remains technically challenging to create stable and specific QDs-based probes for multiplex biological imaging. We report for the first time the construction of multi-color QDs-based peptide probes for the simultaneous fingerprinting of multiplex collagen biomarkers in connective tissues. A bipeptide system composed of a glutathione (GSH) host peptide and a collagen-targeting guest peptide (CTP) has been developed, yielding CTP-QDs probes that exhibit exceptional luminescence stability when exposed to ultraviolet irradiation and mildly acidic conditions. The versatile bipeptide system allows for facile one-pot synthesis of high-quality multicolor CTP-QDs probes, exhibiting superior selectivity in targeting critical collagen biomarkers including denatured collagen, type I collagen, type II collagen, and type IV collagen. The multicolor CTP-QDs probes have demonstrated remarkable efficacy in simultaneously fingerprinting multiple collagen types in diverse connective tissues, irrespective of their status, whether affected by injury, diseases, or undergoing remodeling processes. The innovative multicolor CTP-QDs probes offer a robust toolkit for the multiplex fingerprinting of the collagen suprafamily, demonstrating significant potential in the diagnosis and treatment of collagen-related diseases.

12.
Biol Imaging ; 4: e2, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516631

RESUMEN

Imaging platforms for generating highly multiplexed histological images are being continually developed and improved. Significant improvements have also been made in the accuracy of methods for automated cell segmentation and classification. However, less attention has focused on the quantification and analysis of the resulting point clouds, which describe the spatial coordinates of individual cells. We focus here on a particular spatial statistical method, the cross-pair correlation function (cross-PCF), which can identify positive and negative spatial correlation between cells across a range of length scales. However, limitations of the cross-PCF hinder its widespread application to multiplexed histology. For example, it can only consider relations between pairs of cells, and cells must be classified using discrete categorical labels (rather than labeling continuous labels such as stain intensity). In this paper, we present three extensions to the cross-PCF which address these limitations and permit more detailed analysis of multiplex images: topographical correlation maps can visualize local clustering and exclusion between cells; neighbourhood correlation functions can identify colocalization of two or more cell types; and weighted-PCFs describe spatial correlation between points with continuous (rather than discrete) labels. We apply the extended PCFs to synthetic and biological datasets in order to demonstrate the insight that they can generate.

13.
J Pathol ; 262(3): 271-288, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38230434

RESUMEN

Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Biomarcadores de Tumor/genética , Pronóstico , Fenotipo , Reino Unido , Microambiente Tumoral
14.
Nano Lett ; 24(1): 209-214, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38156794

RESUMEN

Despite the real-time, nonionizing, and cost-effective nature of ultrasound imaging, there is a dearth of methods to visualize two or more populations of contrast agents simultaneously─a technique known as multiplex imaging. Here, we present a new approach to multiplex ultrasound imaging using perfluorocarbon (PFC) nanodroplets. The nanodroplets, which undergo a liquid-to-gas phase transition in response to an acoustic trigger, act as activatable contrast agents. This work characterized the dynamic responses of two PFC nanodroplets with boiling points of 28 and 56 °C. These characteristic responses were then used to demonstrate that the relative concentrations of the two populations of PFC nanodroplets could be accurately measured in the same imaging volume within an average error of 1.1%. Overall, the findings indicate the potential of this approach for multiplex ultrasound imaging, allowing for the simultaneous visualization of multiple molecular targets simultaneously.


Asunto(s)
Medios de Contraste , Fluorocarburos , Ultrasonografía/métodos , Transición de Fase , Acústica
15.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38113074

RESUMEN

Optimizing and benchmarking data reduction methods for dynamic or spatial visualization and interpretation (DSVI) face challenges due to many factors, including data complexity, lack of ground truth, time-dependent metrics, dimensionality bias and different visual mappings of the same data. Current studies often focus on independent static visualization or interpretability metrics that require ground truth. To overcome this limitation, we propose the MIBCOVIS framework, a comprehensive and interpretable benchmarking and computational approach. MIBCOVIS enhances the visualization and interpretability of high-dimensional data without relying on ground truth by integrating five robust metrics, including a novel time-ordered Markov-based structural metric, into a semi-supervised hierarchical Bayesian model. The framework assesses method accuracy and considers interaction effects among metric features. We apply MIBCOVIS using linear and nonlinear dimensionality reduction methods to evaluate optimal DSVI for four distinct dynamic and spatial biological processes captured by three single-cell data modalities: CyTOF, scRNA-seq and CODEX. These data vary in complexity based on feature dimensionality, unknown cell types and dynamic or spatial differences. Unlike traditional single-summary score approaches, MIBCOVIS compares accuracy distributions across methods. Our findings underscore the joint evaluation of visualization and interpretability, rather than relying on separate metrics. We reveal that prioritizing average performance can obscure method feature performance. Additionally, we explore the impact of data complexity on visualization and interpretability. Specifically, we provide optimal parameters and features and recommend methods, like the optimized variational contractive autoencoder, for targeted DSVI for various data complexities. MIBCOVIS shows promise for evaluating dynamic single-cell atlases and spatiotemporal data reduction models.


Asunto(s)
Benchmarking , Análisis de la Célula Individual , Teorema de Bayes , Análisis de la Célula Individual/métodos
16.
Patterns (N Y) ; 4(12): 100879, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106614

RESUMEN

A major challenge in the spatial analysis of multiplex imaging (MI) data is choosing how to measure cellular spatial interactions and how to relate them to patient outcomes. Existing methods to quantify cell-cell interactions do not scale to the rapidly evolving technical landscape, where both the number of unique cell types and the number of images in a dataset may be large. We propose a scalable analytical framework and accompanying R package, DIMPLE, to quantify, visualize, and model cell-cell interactions in the TME. By applying DIMPLE to publicly available MI data, we uncover statistically significant associations between image-level measures of cell-cell interactions and patient-level covariates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...