Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Asian Nat Prod Res ; 26(1): 146-153, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38419338

RESUMEN

White matter lesions (WMLs), characterized by focal demyelination or myelination disorders, are commonly present in cerebral small vessel disease and various neurological diseases. Multiple etiologies lead to WMLs. However, there is no specific therapy or effective drugs for relieving WMLs. Natural products and their derivatives originate from bacterial, fungal, plant, and marine animal sources, many of which have multiple therapeutic targets. Compared to single target compounds, natural products and their derivatives are promising to be developed as better drugs to attenuate WMLs. Thus, this review attempts to summarize the status of natural products and their derivatives (2010-to date) alleviating cerebral white matter lesions for the discovery of new drugs.


Asunto(s)
Productos Biológicos , Sustancia Blanca , Animales , Sustancia Blanca/patología , Productos Biológicos/farmacología
2.
Curr Neurovasc Res ; 20(4): 453-463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817523

RESUMEN

BACKGROUND: The AKT/mTOR/p70S6K pathway has been shown to potentially promote spinal cord injury (SCI) repair in rats. However, its exact mechanism and beyond needs to be further explored. OBJECTIVE: This study aims to explore the AKT/mTOR/p70S6K pathway in oligodendrocyte precursor cell (OPC) differentiation, microglial polarization differentiation, and the role of these in myelin regeneration in vitro. METHODS: The isolation, induction and characterization of rat primary neuronal stem cells, OPCs and oligodendrocytes were investigated with immunofluorescence and RT-qPCR. Then, the role of AKT/mTOR/p70S6K signaling was explored using western blotting and immunofluorescence, the effect on myelination was examined with OPC-dorsal root ganglion (DRG) neurons co-culture, and the influence of M1/M2 polarization status of microglia on myelin formation was also observed by adding M1/M2 supernatants into OPC-DRG neurons co-culture. RESULTS: Activation of the AKT/mTOR/p70S6K pathway elevated the expression of oligodendrocyte differentiation markers, including MBP, PLP and MOG, which also promoted the colocalization of MBP and NFH in OPC-DRG neurons co-culture. More interestingly, stimulation of the AKT/mTOR/p70S6K pathway facilitated M2 polarization of rat microglia. M2 polarization of microglia enhanced OPC differentiation to oligodendrocytes and myelin formation. CONCLUSION: Our findings highlight the potential of targeting the AKT/mTOR/p70S6K pathway in promoting oligodendrocyte differentiation and myelin regeneration in neurological disorders such as SCI.


Asunto(s)
Vaina de Mielina , Traumatismos de la Médula Espinal , Ratas , Animales , Vaina de Mielina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/farmacología , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo , Oligodendroglía/metabolismo , Diferenciación Celular , Traumatismos de la Médula Espinal/metabolismo
3.
Neurosci Res ; 187: 45-51, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36347403

RESUMEN

Each oligodendrocyte (OC) forms myelin approximately in around 10 different axons to coordinate information transfer by regulating conduction velocity in the central nervous system (CNS). In the classical view, myelin has been considered a static structure that rarely turns over under healthy conditions because myelin tightly holds axons by their laminar complex structure. However, in recent decades, the classical views of static myelin have been renewed with pioneering studies that showed plastic changes in myelin throughout life with new experiences, such as the acquisition of new motor skills and the formation of memory. These changes in myelin regulate conduction velocity to optimize the temporal pattern of neuronal circuit activity among distinct brain regions associated with skill learning and memory. Here, we introduce pioneering studies and discuss the implications of plastic myelin on neural circuits and brain function.


Asunto(s)
Axones , Vaina de Mielina , Axones/fisiología , Oligodendroglía/fisiología , Neuronas , Encéfalo
4.
Front Cell Neurosci ; 16: 976002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204450

RESUMEN

Hypoxic-ischemic (HI) induced perinatal white matter injury (PWMI) is a major cause of neurologic disabilities characterized by selective oligodendroglial death and myelin disruption. Galectin-3 (Gal-3) modulates postnatal subventricular zone gliogenesis and attenuates ischemic injury. However, the association between Gal-3 and myelin formation still remains unclear. In this study, we first perform Gal-3 knockdown (KD) to identify the importance of Gal-3 on myelin formation. Our results show impeded myelin formation, manifested by Olig2/CC1 (+) mature oligodendrocytes number, expression of oligodendroglial maturation-associated markers (MBP and CNPase), and myelin thickness and integrity. Then we perform recombinant Gal-3 (rGal-3) administration by intracerebroventricular injection. Notably, although rGal-3 administration shows no beneficial effect on oligodendrogenesis and myelin formation under normal condition, our results show that rGal-3 administration attenuates cognitive deficits and drives remyelination after PWMI, which are coupled to signs of enhanced myelin resiliency and cognition. Also, our results indicates that the significant increases in substrates for remyelination of rGal-3 administration are accompanied by enhanced Iba-1 (microglia marker)/ Mrc1 (M2 marker) (+) microglia and decreased Iba-1/ iNOS (M1 marker) (+) microglia. Altogether, our data in this research confirm the association between Gal-3 and myelin formation, underscore its position for the capacity for remyelination and restoration of function, and unveils the efficacy of rGal-3 administration with anti-inflammatory phenotype microglia (M2 microglia) activation. Thus, the findings suggest that Gal-3 plays a significant role in myelin formation and remyelination restoration.

5.
Curr Issues Mol Biol ; 44(7): 3208-3237, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35877446

RESUMEN

The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination.

6.
Cells ; 10(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062747

RESUMEN

Axons in the adult mammalian nervous system can extend over formidable distances, up to one meter or more in humans. During development, axonal and dendritic growth requires continuous addition of new membrane. Of the three major kinds of membrane lipids, phospholipids are the most abundant in all cell membranes, including neurons. Not only immature axons, but also severed axons in the adult require large amounts of lipids for axon regeneration to occur. Lipids also serve as energy storage, signaling molecules and they contribute to tissue physiology, as demonstrated by a variety of metabolic disorders in which harmful amounts of lipids accumulate in various tissues through the body. Detrimental changes in lipid metabolism and excess accumulation of lipids contribute to a lack of axon regeneration, poor neurological outcome and complications after a variety of central nervous system (CNS) trauma including brain and spinal cord injury. Recent evidence indicates that rewiring lipid metabolism can be manipulated for therapeutic gain, as it favors conditions for axon regeneration and CNS repair. Here, we review the role of lipids, lipid metabolism and ectopic lipid accumulation in axon growth, regeneration and CNS repair. In addition, we outline molecular and pharmacological strategies to fine-tune lipid composition and energy metabolism in neurons and non-neuronal cells that can be exploited to improve neurological recovery after CNS trauma and disease.


Asunto(s)
Axones/metabolismo , Enfermedades del Sistema Nervioso Central/inmunología , Metabolismo de los Lípidos , Lípidos/química , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Dendritas/metabolismo , Humanos , Lipólisis , Ratones , Mitocondrias/metabolismo , Vaina de Mielina/química , Vaina de Mielina/metabolismo , Regeneración Nerviosa , Neuronas , Regeneración , Transducción de Señal , Traumatismos de la Médula Espinal/metabolismo , Termogénesis , Traumatismos del Sistema Nervioso/metabolismo
7.
J Neurosci Res ; 92(10): 1286-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24903835

RESUMEN

Myelin is a dynamic multilamellar structure that ensheathes axons and is crucial for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes that wrap many layers of plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we found that myosin ID (Myo1d), a class I myosin, is enriched in the rat CNS myelin fraction. Myo1d is an unconventional myosin and has been shown to be involved in membrane trafficking in the recycling pathway in an epithelial cell line. Western blotting revealed that Myo1d expression begins early in myelinogenesis and continues to increase into adulthood. The localization of Myo1d in CNS myelin has not been reported, and the function of Myo1d in vivo remains unknown. To demonstrate the expression of Myo1d in CNS myelin and to begin to explore the function of Myo1d in myelination, we produced a new antibody against Myo1d that has a high titer and specificity for rat Myo1d. By using this antibody, we demonstrated that Myo1d is expressed in rat CNS myelin and is especially abundant in abaxonal and adaxonal regions (the outer and inner cytoplasm-containing loops, respectively), but that expression is low in peripheral nervous system myelin. In culture, Myo1d was expressed in mature rat oligodendrocytes. Furthermore, an increase in expression of Myo1d during maturation of CNS white matter (cerebellum and corpus callosum) was demonstrated by histological analysis. These results suggest that Myo1d may be involved in the formation and/or maintenance of CNS myelin.


Asunto(s)
Althaea/metabolismo , Vaina de Mielina/metabolismo , Miosina Tipo IV/metabolismo , Oligodendroglía/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Proteína Básica de Mielina/metabolismo , Proteína Proteolipídica de la Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Miosina Tipo IV/inmunología , Nervio Óptico/citología , Embarazo , Ratas , Ratas Wistar , Nervio Ciático/citología , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...