Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 835
Filtrar
1.
Int Immunopharmacol ; 139: 112590, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996778

RESUMEN

BACKGROUND: Neonatal necrotizing enterocolitis (NEC) is one of the most prevalent and severe intestinal emergencies in newborns. The inflammatory activation of macrophages is associated with the intestinal injury of NEC. The neuroimmune regulation mediated by α7 nicotinic acetylcholine receptor (α7nAChR) plays an important role in regulating macrophage activation and inflammation progression, but in NEC remains unclear. This study aims to explore the effect of macrophage α7nAChR on NEC. METHODS: Mice NEC model were conducted with high-osmolarity formula feeding, hypoxia, and cold stimulation. The α7nAChR agonist PNU-282987 and mTOR inhibitor rapamycin were treated by intraperitoneal injections in mice. The expression and distribution of macrophages, α7nAChR, and phospho-mammalian target of rapamycin (p-mTOR) in the intestines of NEC patients and mice was assessed using immunohistochemistry, immunofluorescence, and flow cytometry. The expression of NLRP3, activated caspase-1 and IL-1ß in mice intestines was detected by flow cytometry, western blot or ELISA. In vitro, the mouse RAW264.7 macrophage cell line was also cultured followed by various treatments. Expression of p-mTOR, NLRP3, activated caspase-1, and IL-1ß in macrophages was determined. RESULTS: Macrophages accumulated in the intestines and the expression of α7nAChR in the mucosal and submucosal layers of the intestines was increased in both the NEC patients and mice. The p-mTOR and CD68 were increased and co-localized in intestines of NEC patients. In vitro, α7nAChR agonist PNU-282987 significantly reduced the increase of NLRP3, activated caspase-1, and IL-1ß in macrophages. PNU-282987 also significantly reduced the increase of p-mTOR. The effect was blocked by AMPK inhibitor compound C. The expression of NLRP3, activated caspase-1, and IL-1ß was inhibited after mTOR inhibitor rapamycin treatment. In NEC model mice, PNU-282987 reduced the expression of p-mTOR, NLRP3, activated caspase-1, and IL-1ß in the intestine. Meanwhile, rapamycin significantly attenuated NLRP3 activation and the release of IL-1ß. Moreover, the proportion of intestinal macrophages and intestinal injury decreased after PNU-282987 treatment. CONCLUSION: Macrophage α7nAChR activation mitigates NLRP3 inflammasome activation by modulating mTOR phosphorylation, and subsequently alleviates intestinal inflammation and injury in NEC.

2.
J Mol Med (Berl) ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002004

RESUMEN

Physiological root resorption of deciduous teeth is a normal phenomenon occurring during the developmental stages of children. Previous research has indicated the pivotal role of the inflammatory microenvironment in this process, although the specific mechanisms remain unclear. This study is aimed at elucidating the involvement of the alpha7 nicotinic acetylcholine receptors (α7 nAChR)-autophagy axis in the regulation of the inflammatory microenvironment during physiological root resorption in deciduous teeth. Samples were collected from deciduous teeth at various stages of physiological root resorption, and deciduous dental pulp stem cells (DDPSCs) were isolated and cultured during the mid-phase of root resorption. The findings revealed a substantial infiltration of the pulp of deciduous teeth at the mid-phase of root resorption, characterized by elevated expression levels of α7 nAChR and IL-1ß. Significantly increased IL-1ß and α7 nAChR expressions were observed in DDPSCs during the mid-phase of root resorption, with α7 nAChR demonstrating a regulatory effect on IL-1ß. Moreover, evidence suggested that mechanical stress may act as a trigger, regulating autophagy and IL-1 expression via α7 nAChR. In conclusion, mechanical stress was identified as a regulator of autophagy in DDPSCs through α7 nAChR, influencing the expression of IL-1ß and contributing to the formation of the inflammatory microenvironment. This mechanism plays a crucial role in the physiological root resorption of deciduous teeth. KEY MESSAGES: The pulp of deciduous teeth at mid-phase of root resorption was heavily infiltrated with high expression of α7nAChR and IL-1ß. α7 nAChR acts as an initiating factor to regulate IL-1ß through autophagy in DDPSCs. Mechanical stress can regulate autophagy of DDPSCs through α7 nAChR and thus affect IL-1ß expression and inflammatory microenvironment formation in physiological root resorption in deciduous teeth.

3.
Biomed Pharmacother ; 177: 117105, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002438

RESUMEN

Lung adenocarcinoma (LUAD) is the leading cause of cancer death worldwide, with high incidence and low survival rates. Nicotinic acetylcholine receptors play an important role in the progression of LUAD. In this study, a screening of 17 nicotinic acetylcholine receptor allosteric agents revealed that spinosad effectively suppressed the proliferation of LUAD cells. The experiments demonstrated that spinosad induced cell cycle arrest in the G1 phase and stimulated apoptosis, thereby impeding the growth of LUAD and enhancing the responsiveness to gefitinib in vitro and vivo. Mechanistic insights obtained through transcriptome sequencing, Co-IP, and protein immunoblots indicated that spinosad disrupted the interaction between CHRNA5 and EGFR, thereby inhibiting the formation of downstream complexes and activation of the EGFR signaling pathway. The supplementation of exogenous acetylcholine showed to mitigate the inhibition of LUAD cell proliferation induced by spinosad. This study elucidates the therapeutic effects and mechanisms of spinosad in LUAD, and offers a theoretical and experimental foundation for novel LUAD treatments.

4.
J Cell Biochem ; : e30630, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014907

RESUMEN

There are presently no acknowledged therapeutic targets or official drugs for the treatment of muscle fatigue. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is expressed in skeletal muscle, with an unknown role in muscle endurance. Here, we try to explore whether α7nAChR could act as a potential therapeutic target for the treatment of muscle fatigue. Results showed that nicotine and PNU-282987 (PNU), as nonspecific and specific agonists of α7nAChR, respectively, could both significantly increase C57BL6/J mice treadmill-running time in a time- and dose-dependent manner. The improvement effect of PNU on running time and ex vivo muscle fatigue index disappeared when α7nAChR deletion. RNA sequencing revealed that the differential mRNAs affected by PNU were enriched in glycolysis/gluconeogenesis signaling pathways. Further studies found that PNU treatment significantly elevates glycogen content and ATP level in the muscle tissues of α7nAChR+/+ mice but not α7nAChR-/- mice. α7nAChR activation specifically increased endogenous glycogen-targeting protein orosomucoid (ORM) expression both in vivo skeletal muscle tissues and in vitro C2C12 skeletal muscle cells. In ORM1 deficient mice, the positive effects of PNU on running time, glycogen and ATP content, as well as muscle fatigue index, were abolished. Therefore, the activation of α7nAChR could enhance muscle endurance via elevating endogenous anti-fatigue protein ORM and might act as a promising therapeutic strategy for the treatment of muscle fatigue.

5.
Bio Protoc ; 14(13): e5024, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39011369

RESUMEN

Adult mammals lack the ability to regenerate retinal neurons after injury. However, in previous studies from this lab, topical application of the selective alpha7 nicotinic acetylcholine receptor (nAChR) agonist, PNU-282987, has been associated with an increase in the number of retinal neurons in adult murine models both in the presence and absence of injury to the retina. Additionally, studies assaying mitotic markers have shown a substantial increase in the amount of mitotically active and proliferating cells with the topical application of the alpha7 nAChR agonist. However, these previous studies were performed using fluorescent immunolabeling and subsequent confocal microscopy, thus limiting the number of antibodies that can be multiplexed. As a result, we have developed a flow cytometry method that allows for the multiplexing and analysis of multiple external and internal markers in dissociated retinal cells. In this paper, a step-by-step protocol is described for the labeling of multiple retinal cell types such as retinal ganglion cells, rod photoreceptors, and Müller glia, concurrently with Müller glia-derived progenitor cells that arise after treatment with PNU-282987. Key features • Neurogenesis in the adult mammalian retina. • Flow cytometry of retinal cells. • PNU-282987-induced mitotic activity in the retina. • Dissociation of the retina for flow cytometry analysis. Graphical overview Schematic demonstrating the protocol for preparation of retinal cells for flow cytometry analysis. (A) Adult mice (3-6 months) are subjected to topical PBS eyedrop treatment containing DMSO (control groups) or PNU-282987 (experimental groups). Both eyedrop treatments contain 1 mg/mL of BrdU to label proliferating cells. After treatment, mice are euthanized, and retinae are harvested for dissociation using papain. (B) Dissociated retina cells are fixed and permeabilized before aliquots are taken for cell counts on a hemocytometer. After determining the number of cells present, conjugated antibodies and unconjugated primary antibodies are added at the appropriate dilutions. Fluorescent secondary antibodies are added for markers that are unconjugated. Cells are then subjected to flow cytometric analysis using a BD LSRFortessa.

6.
J Ethnopharmacol ; : 118509, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971346

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Alpha 7 nicotinic acetylcholine receptor (α7nAChR)-mediated astrocytic activation is closely related to central sensitization of chronic migraine (CM). Xiongzhi Dilong decoction (XZDL), originated from Xiongzhi Shigao decoction of Yi-zong-jin-jian, has been confirmed to relieve CM in experiment and clinic. However, its underlying mechanism for treating CM has not been elucidated. AIM OF THE STUDY: To reveal the underlying mechanisms of XZDL to alleviate CM in vivo focusing mainly on α7nAChR-mediated astrocytic activation and central sensitization in TNC. MATERIALS AND METHODS: CM rat model was established by subcutaneous injection of nitroglycerin (NTG) recurrently, and treated with XZDL simultaneously. Migraine-like behaviors of rats (ear redness, head scratching, and cage climbing) and pain-related reactions (mechanical hind-paw withdrawal threshold) of rats were evaluated before and after NTG injection and XZDL administration at different points in time for nine days. The immunofluorescence single and double staining were applied to detect the levels of CGRP, c-Fos, GFAP and α7nAChR in NTG-induced CM rats. ELISA kits were employed to quantify levels of TNF-α, IL-1ß, and IL-6 in medulla oblongata of CM rats. The expression levels of target proteins were examined using western blotting. Finally, methyllycaconitine citrate (MLA, a specific antagonist of α7nAChR) was applied to further validate the mechanisms of XZDL in vivo. RESULTS: XZDL significantly attenuated the pain-related behaviors of the NTG-induced CM rats, manifesting as constraints of aberrant migraine-like behaviors including elongated latency of ear redness and decreased numbers of head scratching and cage climbing, and increment of mechanical withdrawal threshold. Moreover, XZDL markedly lowered levels of CGRP and c-Fos, as well as inflammatory cytokines (IL-1ß, IL-6 and TNF-α) in CM rats. Furthermore, XZDL significantly enhanced α7nAChR expression and its co-localization with GFAP, while markedly inhibited the expression of GFAP and the activation of JAK2/STAT3/NF-κB pathway in the TNC of CM rats. Finally, blocking α7nAChR with MLA reversed the effects of XZDL on astrocytic activation, central sensitization, and the pain-related behaviors in vivo. CONCLUSION: XZDL inhibited astrocytic activation and central sensitization in NTG-induced CM rats by facilitating α7nAChR expression and suppressing JAK2/STAT3/NF-κB pathway, implying that the regulation of α7nAChR-mediated astrocytic activation represents a novel mechanism of XZDL for relieving CM.

7.
Neurobiol Learn Mem ; 213: 107959, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964600

RESUMEN

Adolescence is characterized by a critical period of maturation and growth, during which regions of the brain are vulnerable to long-lasting cognitive disturbances. Adolescent exposure to nicotine can lead to deleterious neurological and psychological outcomes. Moreover, the nicotinic acetylcholine receptor (nAChR) has been shown to play a functionally distinct role in the development of the adolescent brain. CHRNA2 encodes for the α2 subunit of nicotinic acetylcholine receptors associated with CA1 oriens lacunosum moleculare GABAergic interneurons and is associated with learning and memory. Previously, we found that adolescent male hypersensitive CHRNA2L9'S/L9' mice had impairments in learning and memory during a pre-exposure-dependent contextual fear conditioning task that could be rescued by low-dose nicotine exposure. In this study, we assessed learning and memory in female adolescent hypersensitive CHRNA2L9'S/L9' mice exposed to saline or a subthreshold dose of nicotine using a hippocampus-dependent task of pre-exposure-dependent contextual fear conditioning. We found that nicotine-treated wild-type female mice had significantly greater improvements in learning and memory than both saline-treated wild-type mice and nicotine-treated CHRNA2L9'S/L9' female mice. Thus, hyperexcitability of CHRNA2 in female adolescent mice ablated the nicotine-mediated potentiation of learning and memory seen in wild-types. Our results indicate that nicotine exposure during adolescence mediates sexually dimorphic patterns of learning and memory, with wild-type female adolescents being more susceptible to the effects of sub-threshold nicotine exposure. To understand the mechanism underlying sexually dimorphic behavior between hyperexcitable CHRNA2 mice, it is critical that further research be conducted.

8.
J Med Virol ; 96(7): e29768, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978388

RESUMEN

The vagus nerve circuit, operating through the alpha-7 nicotinic acetylcholine receptor (α7 nAChR), regulates the inflammatory response by influencing immune cells. However, the role of vagal-α7 nAChR signaling in influenza virus infection is unclear. In particular, does vagal-α7 nAChR signaling impact the infection of alveolar epithelial cells (AECs), the primary target cells of influenza virus? Here, we demonstrated a distinct role of α7 nAChR in type II AECs compared to its role in immune cells during influenza infection. We found that deletion of Chrna7 (encoding gene of α7 nAChR) in type II AECs or disruption of vagal circuits reduced lung influenza infection and protected mice from influenza-induced lung injury. We further unveiled that activation of α7 nAChR enhanced influenza infection through PTP1B-NEDD4L-ASK1-p38MAPK pathway. Mechanistically, activation of α7 nAChR signaling decreased p38MAPK phosphorylation during infection, facilitating the nuclear export of influenza viral ribonucleoproteins and thereby promoting infection. Taken together, our findings reveal a mechanism mediated by vagal-α7 nAChR signaling that promotes influenza viral infection and exacerbates disease severity. Targeting vagal-α7 nAChR signaling may offer novel strategies for combating influenza virus infections.


Asunto(s)
Pulmón , Infecciones por Orthomyxoviridae , Transducción de Señal , Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Nervio Vago/metabolismo , Ratones , Infecciones por Orthomyxoviridae/virología , Pulmón/virología , Pulmón/patología , Ratones Endogámicos C57BL , Células Epiteliales Alveolares/virología , Células Epiteliales Alveolares/metabolismo , Humanos , Ratones Noqueados
9.
FASEB Bioadv ; 6(7): 177-188, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38974115

RESUMEN

Eggs not only contain all the molecules necessary to nurture new life but are also rich in nutrients such as high-quality protein. For example, epidemiologic studies have shown that egg intake is positively correlated with cognitive function. Thus, we specifically examined the effect of ovalbumin, a major protein present in egg whites, on cognitive function. First, we found that an orally administered enzymatic digest of ovalbumin improves cognitive function in mice fed a high-fat diet. Then, we narrowed down candidate peptides based on the prediction of peptide production according to enzyme-substrate specificity and comprehensive peptide analysis of the digest. We found that three peptides, namely ILPEY, LYRGGLEP, and ILELP, improve cognitive function after oral administration. We also showed that ILPEY, LYRGGLEP, and ILELP were present in the digest and named them ovomemolins A (OMA), B, and C, respectively. Notably, ovomemolins are the first peptides derived from egg whites that have been shown to improve cognitive function. The cognitive improvement induced by OMA, the most abundant of the peptides in the digest, was inhibited by methyllycaconitine, an antagonist of α7nAChR, which is known to be related to memory. These results suggest that OMA improves cognitive function through the acetylcholine system. After OMA administration, brain-derived neurotrophic factor (BDNF) mRNA expression and the number of 5-bromo-2'-deoxyuridine-positive cells suggested that OMA increases hippocampal BDNF expression and neurogenesis.

10.
Int Immunopharmacol ; 138: 112555, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943973

RESUMEN

The most common and serious complication among hospitalized and critically ill patients is sepsis-associated acute kidney damage (S-AKI), which raises the risk of comorbidities and is linked to a high mortality rate. Cholinergic anti-inflammatory pathway (CAP), an anti-inflammatory pathway mediated by the vagus nerve, acetylcholine, and α7 nicotinic acetylcholine receptors (α7nAChRs), offers new perspectives for the treatment of S-AKI. In this study, we investigated the role of CAP and α7nAChR in kidney injury by employing an LPS-induced septic kidney injury mouse model and GTS-21 intervention. C57BL/6 mice were injected with LPS, with or without GTS-21, in different subgroups. Kidney function was assessed by plasma creatinine, histology, and markers of kidney injury 24 h after intervention. The results demonstrated that GTS-21 could inhibit the systemic inflammatory response and directly protect the tubular cell injury from LPS. To explore the novel gene involved in this response, RNA sequencing of the renal proximal tubular epithelial cell (HK-2), pretreated with LPS and GTS-21, was conducted. The results indicate that GTS-21 administration reduces LPS-induced cytokines and chemokines secretion by HK-2, including CCL20, a potent chemokine attracting monocytes/macrophages. Furthermore, a macrophage transmigration assay revealed that GTS-21 inhibits macrophage transmigration by downregulating the expression of CCL20 in HK-2 cells. In conclusion, GTS-21, as an α7nAChR agonist, emerges as a noteworthy and versatile treatment for S-AKI. Its dual function of directly protecting renal tubular cells and regulating inflammatory responses represents a major advancement in the treatment of sepsis-induced AKI. This finding might pave the way for novel approaches to improving patient outcomes and reducing death rates in sepsis-related complications.

11.
J Affect Disord ; 362: 114-125, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944290

RESUMEN

BACKGROUND: Growing evidence highlights the role of the spleen-brain axis in inflammation-associated depression. The α7-subtype of nicotinic acetylcholine receptor (α7 nAChR, encoded by the Chrna7 gene) is implicated in systemic inflammation, with Chrna7 knock-out (KO) mice displaying depression-like behaviors. Yet, the influence of spleen nerve on depression-like behaviors in these KO mice remains to be elucidated. METHODS: We investigated the effects of the splenic nerve denervation (SND) on depression-like behaviors, the protein expression in the prefrontal cortex (PFC), and the gut microbiota composition in Chrna7 KO mice. RESULTS: SND markedly alleviated depression-like behaviors and the reduced expression of GluA1 and postsynaptic density protein-95 (PSD-95) in the PFC of Chrna7 KO mice. No changes in α-diversity of gut microbiota were noted among the control, KO + sham, and KO + SND groups. However, significant differences in ß-diversity of gut microbiota were noted among the groups. Notable alterations in various microbiota (e.g., Fluviimonas_pallidilutea, Maribacter_arcticus, Parvibacter_caecicola) and plasma metabolites (e.g., helicide, N-acetyl-L-aspartic acid, α-D-galactose 1-phosphate, choline, creatine) were observed between KO + sham and KO + SND groups. Interestingly, correlations were found between the relative abundance of specific microbiota and other outcomes, including synaptic proteins, metabolites and behavioral data. LIMITATIONS: The underlying mechanisms remain to be fully understood. CONCLUSIONS: Our findings indicate that the splenic nerve contributes to depression-like phenotypes in Chrna7 KO mice via the spleen-gut-brain axis.

12.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928421

RESUMEN

Neuropathic pain, which refers to pain caused by a lesion or disease of the somatosensory system, represents a wide variety of peripheral or central disorders. Treating neuropathic pain is quite demanding, primarily because of its intricate underlying etiological mechanisms. The central nervous system relies on microglia to maintain balance, as they are associated with serving primary immune responses in the brain next to cell communication. Ferroptosis, driven by phospholipid peroxidation and regulated by iron, is a vital mechanism of cell death regulation. Neuroinflammation can be triggered by ferroptosis in microglia, which contributes to the release of inflammatory cytokines. Conversely, neuroinflammation can induce iron accumulation in microglia, resulting in microglial ferroptosis. Accumulating evidence suggests that neuroinflammation, characterized by glial cell activation and the release of inflammatory substances, significantly exacerbates the development of neuropathic pain. By inhibiting microglial ferroptosis, it may be possible to prevent neuroinflammation and subsequently alleviate neuropathic pain. The activation of the homopentameric α7 subtype of the neuronal nicotinic acetylcholine receptor (α7nAChR) has the potential to suppress microglial activation, transitioning M1 microglia to an M2 phenotype, facilitating the release of anti-inflammatory factors, and ultimately reducing neuropathic pain. Recent years have witnessed a growing recognition of the regulatory role of α7nAChR in ferroptosis, which could be a potential target for treating neuropathic pain. This review summarizes the mechanisms related to α7nAChR and the progress of ferroptosis in neuropathic pain according to recent research. Such an exploration will help to elucidate the relationship between α7nAChR, ferroptosis, and neuroinflammation and provide new insights into neuropathic pain management.


Asunto(s)
Ferroptosis , Microglía , Neuralgia , Enfermedades Neuroinflamatorias , Receptor Nicotínico de Acetilcolina alfa 7 , Neuralgia/metabolismo , Neuralgia/etiología , Neuralgia/patología , Humanos , Animales , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Microglía/metabolismo , Microglía/patología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Inflamación/metabolismo , Inflamación/patología
13.
Front Cell Infect Microbiol ; 14: 1394713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836054

RESUMEN

The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4ß2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.


Asunto(s)
Glicoproteínas , Virus de la Rabia , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Virus de la Rabia/fisiología , Virus de la Rabia/metabolismo , Humanos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Oocitos/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Interacciones Huésped-Patógeno , Unión Proteica , Rabia/metabolismo , Rabia/virología , Acetilcolina/metabolismo , Acetilcolina/farmacología , Neurotoxinas/metabolismo , Neurotoxinas/farmacología
14.
Front Mol Biosci ; 11: 1392689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859932

RESUMEN

Introduction: The purpose of this study is to delineate anti-inflammatory and antioxidant potential of varenicline, a cigarette smoking cessation aid, on decreasing lipopolysaccharide (LPS)-elevated proinflammatory cytokines in RAW 264.7 murine macrophage cultures which we showed earlier to occur via cholinergic anti-inflammatory pathway (CAP) activation. To this end, we investigated the possible suppressive capacity of varenicline on LPS-regulated cyclooxygenase (COX-1 and COX-2) via α7 nicotinic acetylcholine receptor (α7nAChR) activation using the same in vitro model. Materials and Methods: In order to test anti-inflammatory effectiveness of varenicline, the levels of COX isoforms and products (PGE2, 6-keto PGF1α, a stable analog of PGI2, and TXA2) altered after LPS administration were determined by Enzyme Linked Immunosorbent Assay (ELISA). The antioxidant effects of varenicline were assessed by measuring reductions in reactive oxygen species (ROS) using a fluorometric intracellular ROS assay kit. We further investigated the contribution of nAChR subtypes by using non-selective and/or selective α7nAChR antagonists. The results were compared with that of conventional anti-inflammatory medications, such as ibuprofen, celecoxib and dexamethasone. Results: Varenicline significantly reduced LPS-induced COX-1, COX-2 and prostaglandin levels and ROS to an extent similar to that observed with anti-inflammatory agents used. Discussion: Significant downregulation in LPS-induced COX isoforms and associated decreases in PGE2, 6-keto PGF1α, and TXA2 levels along with reduction in ROS may be partly mediated via varenicline-activated α7nAChRs.

15.
Front Immunol ; 15: 1388998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863705

RESUMEN

Background: Neuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the central nervous system (CNS), playing critical roles in brain function. Antigenicity of nAChRs has been well demonstrated with antibodies to ganglionic AChR subtypes (i.e., subunit α3 of α3ß4-nAChR) and muscle AChR autoantibodies, thus making nAChRs candidate autoantigens in autoimmune CNS disorders. Antibodies to several membrane receptors, like NMDAR, have been identified in autoimmune encephalitis syndromes (AES), but many AES patients have yet to be unidentified for autoantibodies. This study aimed to develop of a cell-based assay (CBA) that selectively detects potentially pathogenic antibodies to subunits of the major nAChR subtypes (α4ß2- and α7-nAChRs) and its use for the identification of such antibodies in "orphan" AES cases. Methods: The study involved screening of sera derived from 1752 patients from Greece, Turkey and Italy, who requested testing for AES-associated antibodies, and from 1203 "control" patients with other neuropsychiatric diseases, from the same countries or from Germany. A sensitive live-CBA with α4ß2-or α7-nAChR-transfected cells was developed to detect antibodies against extracellular domains of nAChR major subunits. Flow cytometry (FACS) was performed to confirm the CBA findings and indirect immunohistochemistry (IHC) to investigate serum autoantibodies' binding to rat brain tissue. Results: Three patients were found to be positive for serum antibodies against nAChR α4 subunit by CBA and the presence of the specific antibodies was quantitatively confirmed by FACS. We detected specific binding of patient-derived serum anti-nAChR α4 subunit antibodies to rat cerebellum and hippocampus tissue. No serum antibodies bound to the α7-nAChR-transfected or control-transfected cells, and no control serum antibodies bound to the transfected cells. All patients positive for serum anti-nAChRs α4 subunit antibodies were negative for other AES-associated antibodies. All three of the anti-nAChR α4 subunit serum antibody-positive patients fall into the AES spectrum, with one having Rasmussen encephalitis, another autoimmune meningoencephalomyelitis and another being diagnosed with possible autoimmune encephalitis. Conclusion: This study lends credence to the hypothesis that the major nAChR subunits are autoimmune targets in some cases of AES and establishes a sensitive live-CBA for the identification of such patients.


Asunto(s)
Autoanticuerpos , Receptores Nicotínicos , Humanos , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Receptores Nicotínicos/inmunología , Animales , Masculino , Femenino , Ratas , Adulto , Persona de Mediana Edad , Enfermedades del Sistema Nervioso Central/inmunología , Anciano , Adulto Joven , Encefalitis/inmunología , Adolescente , Neuronas/inmunología , Neuronas/metabolismo
16.
Biomed Pharmacother ; 177: 117007, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906020

RESUMEN

This study demonstrates the potential of gelatin nanoparticles as a nanodelivery system for antagonists of nicotinic acetylcholine receptors (nAChRs) to improve chemotherapy efficacy and reduce off-target effects. Too often, chemotherapy for lung cancer does not lead to satisfactory results. Therefore, new approaches directed at multiple pharmacological targets in cancer therapy are being developed. Following the activation of nAChRs (e.g. by nicotine), cancer cells begin to proliferate and become more resistant to chemotherapy-induced apoptosis. This work shows that the 3-alkylpyridinium salt, APS7, a synthetic analog of a toxin from the marine sponge Haliclona (Rhizoneira) sarai, acts as an nAChR antagonist that inhibits the pro-proliferative and anti-apoptotic effects of nicotine on A549 human lung adenocarcinoma cells. In this study, gelatin-based nanoparticles filled with APS7 (APS7-GNPs) were prepared and their effects on A549 cells were compared with that of free APS7. Both APS7 and APS7-GNPs inhibited Ca2+ influx and increased the efficacy of cisplatin chemotherapy in nicotine-stimulated A549 cells. However, significant benefits from APS7-GNPs were observed - a stronger reduction in the proliferation of A549 lung cancer cells and a much higher selectivity in cytotoxicity towards cancer cells compared with non-tumorigenic lung epithelial BEAS-2B cells.

17.
Mol Ther ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822526

RESUMEN

Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.

18.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38854016

RESUMEN

A better understanding of nicotine neurobiology is needed to reduce or prevent chronic addiction, ameliorate the detrimental effects of nicotine withdrawal, and increase successful cessation of use. Nicotine binds and activates two astrocyte-expressed nicotinic acetylcholine receptors (nAChRs), α4ß2 and α7. We recently found that Protein kinase B-ß (Pkb-ß or Akt2) expression is restricted to astrocytes in mice and humans. To determine if AKT2 plays a role in astrocytic nicotinic responses, we generated astrocyte-specific Akt2 conditional knockout (cKO) and full Akt2 KO mice for in vivo and in vitro experiments. For in vivo studies, we examined mice exposed to chronic nicotine for two weeks in drinking water (200 µg/mL) and following acute nicotine challenge (0.09, 0.2 mg/kg) after 24 hrs. Our in vitro studies used cultured mouse astrocytes to measure nicotine-dependent astrocytic responses. We validated our approaches using lipopolysaccharide (LPS) exposure inducing astrogliosis. Sholl analysis was used to measure glial fibrillary acidic protein responses in astrocytes. Our data show that wild-type (WT) mice exhibit increased astrocyte morphological complexity during acute nicotine exposure, with decreasing complexity during chronic nicotine use, whereas Akt2 cKO mice showed increased astrocyte morphology complexity. In culture, we found that 100µM nicotine was sufficient for morphological changes and blocking α7 or α4ß2 nAChRs prevented observed morphologic changes. Finally, we performed conditioned place preference (CPP) in Akt2 cKO mice and found that astrocytic AKT2 deficiency reduced nicotine preference compared to controls. These findings show the importance of nAChRs and Akt2 signaling in the astrocytic response to nicotine.

19.
Cell Signal ; 121: 111275, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942343

RESUMEN

Keloid formation, characterized by aberrant fibroproliferation and immune dysregulation, remains a challenging clinical concern. This study aims to elucidate the neuroimmune mechanisms underlying keloid pathogenesis and explores the efficacy of a combined treatment approach involving modulation of the α7 nicotinic acetylcholine receptor (α7nAchR), a key player in neural transmission, and programmed death ligand 1 (PD-L1), an immune checkpoint molecule, for keloid intervention. A key innovation lies in the identification of signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) as a potential target gene influenced by this dual treatment. We elucidate the underlying mechanism, wherein the hypoxic keloid microenvironment fosters an upsurge in SCUBE3 secretion. Subsequently, SCUBE3 forms complexes with TGF-ß, initiating the activation of the PI3K/AKT/NF-κB signaling pathway. Notably, SCUBE3 is secreted in the form of exosomes, thereby exerting a profound influence on the differentiation of T cells and macrophages within the keloid milieu. This research not only provides a comprehensive understanding of the molecular mechanisms involved but also offers a promising avenue for the development of targeted therapies to address keloid-associated fibrosis and immune dysregulation. In conclusion, the combined inhibition of α7nAchR and PD-L1 represents a promising therapeutic strategy with SCUBE3 as a pivotal molecular target in the complex landscape of keloid pathophysiology.

20.
J Mol Model ; 30(7): 233, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937296

RESUMEN

CONTEXT: Existing researches confirmed that ß amyloid (Aß) has a high affinity for the α7 nicotinic acetylcholine receptor (α7nAChR), associating closely to Alzheimer's disease. The majority of related studies focused on the experimental reports on the neuroprotective role of Aß fragment (Aßx), however, with a lack of investigation into the most suitable binding region and mechanism of action between Aß fragment and α7nAChR. In the study, we employed four Aß1-42 fragments Aßx, Aß1-16, Aß10-16, Aß12-28, and Aß30-42, of which the first three were confirmed to play neuroprotective roles upon directly binding, to interact with α7nAChR. METHODS: The protein-ligand docking server of CABS-DOCK was employed to obtain the α7nAChR-Aßx complexes. Only the top α7nAChR-Aßx complexes were used to perform all-atom GROMACS dynamics simulation in combination with Charmm36 force field, by which α7nAChR-Aßx interactions' dynamic behavior and specific locations of these different Aßx fragments were identified. MM-PBSA calculations were also done to estimate the binding free energies and the different contributions from the residues in the Aßx. Two distinct results for the first three and fourth Aßx fragments in binding site, strength, key residue, and orientation, account for why the fourth fails to play a neuroprotective role at the molecular level.


Asunto(s)
Péptidos beta-Amiloides , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fragmentos de Péptidos , Unión Proteica , Receptor Nicotínico de Acetilcolina alfa 7 , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Humanos , Sitios de Unión , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...