Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros












Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202412867, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128882

RESUMEN

Red phosphorus anode, attributed to its high specific capacity of 2596 mAh g-1, is expected to improve the energy density of Na-ion batteries. However, the P anode currently is unsatisfactory for practical usage due to the large volume expansion beyond 300%, which brings out uncontrolled brittle failure. To address this challenge, we here design a nacre-like phosphorus anode by resilient graphene oxide staggered together. The staggered structure simultaneously offers mechanical strength and interwoven toughness. Finite element modeling reveals that the sodiation stress from P nanoparticles will be transferred into interlayer pillars as the elastic medium to release sodiation stress. The prepared anode achieves an ultrahigh areal capacity of 13 mAh cm-2 at a mass loading of 5.8 mg cm-2. Notably, the volume change of the anode is limited to approximately 8.2% at full sodiation, significantly lower than that of the traditional phosphorus electrodes.

2.
ACS Nano ; 18(34): 23655-23671, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39141799

RESUMEN

Low flexural strength and toughness have posed enduring challenges to cementitious materials. As the main hydration product of cement, calcium silicate hydrate (C-S-H) plays important roles in the mechanical performance of cementitious materials while exhibiting random microstructures with pores and defects, which hinder mechanical enhancement. Inspired by the "brick-and-mortar" microstructure of natural nacre, this paper presents a method combining freeze casting, freeze-drying, in situ polymerization, and hot pressing to fabricate C-S-H nacre with high flexural strength, high toughness, and lightweight. Poly(acrylamide-co-acrylic acid) was used to disperse C-S-H and toughen C-S-H building blocks, which function as "bricks", while poly(methyl methacrylate) was impregnated as "mortar". The flexural strength, toughness, and density of C-S-H nacre reached 124 MPa, 5173 kJ/m3, and 0.98 g/cm3, respectively. The flexural strength and toughness of the C-S-H nacre are 18 and 1230 times higher than those of cement paste, respectively, with a 60% reduction in density, outperforming existing cementitious materials and natural nacre. This research establishes the relationship between material composition, fabrication process, microstructure, and mechanical performance, facilitating the design of high-performance C-S-H-based and cement-based composites for scalable engineering applications.

3.
Adv Mater ; : e2406179, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003621

RESUMEN

Hydroxyapatite (HA) exhibits outstanding biocompatibility, bioactivity, osteoconductivity, and natural anti-inflammatory properties. Pure HA, ion-doped HA, and HA-polymer composites are investigated, but critical limitations such as brittleness remain; numerous efforts are being made to address them. Herein, the novel self-crystallization of a polymeric single-stranded deoxyribonucleic acid (ssDNA) without additional phosphate ions for synthesizing deoxyribonucleic apatite (DNApatite) is presented. The synthesized DNApatite, DNA1Ca2.2(PO4)1.3OH2.1, has a repetitive dual phase of inorganic HA crystals and amorphous organic ssDNA at the sub-nm scale, forming nanorods. Its mechanical properties, including toughness and elasticity, are significantly enhanced compared with those of HA nanorod, with a Young's modulus similar to that of natural bone.

4.
Anal Sci ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942981

RESUMEN

Nacre powder, often utilized to counterfeit medicinal pearl powder due to their similar chemical composition and appearance, poses a challenge in product authentication. This study introduces a rapid and efficient method for distinguishing between medicinal pearl powder and nacre powder using X-ray diffraction in conjunction with principal component analysis (PCA). The X-ray diffraction pattern underwent preprocessing techniques including smoothing denoising (Savitzky-Golay filter, 5-point) and second-order derivative analysis. Subsequently, PCA was employed for dimensionality reduction modeling. The CARS method was applied to select optimal variables for model refinement, determining the data preprocessing approach and key modeling variables. This method demonstrates the capability to accurately differentiate between pearl powder, nacre powder, and even counterfeit samples containing up to 90% pearl powder. With a high accuracy rate, swift operational speed, and potential for automation, this approach shows promise for practical implementation in the realm of pearl powder quality control.

5.
Materials (Basel) ; 17(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893798

RESUMEN

Nacre-inspired metal matrix composites have received much attention due to their excellent deformation coordination ability, which can achieve the synergy of strength and ductility. The preparation of nacre-like Al matrix composites by freeze casting has been a promising application, but the continuous ceramic-rich layer affects the corrosion resistance of the composites, facing complex corrosion problems during service. In this work, the microstructure and corrosion behavior of the nacre-inspired (TiBw-TiB2)/Al composites fabricated by freeze casting and squeeze casting were systematically studied. The results indicated that the Al layers and ceramic-rich layers had little change, about 35 µm and 31 µm, respectively, with an increasing ratio of the Ti/TiB2. Meanwhile, a high Ti/TiB2 ratio resulted in an increase in the Fe-Ti intermetallic phases, which was detrimental to the corrosion performance of the composites and was prone to pitting. The electrochemical test results showed that the 3Ti7TiB2 composite had the lowest corrosion current density (15.9 µA) and intergranular corrosion depth (231 µm), indicating that it had the best corrosion resistance, which can be attributable to its stable and dense passivation film. Two different corrosion phenomena during the intergranular corrosion test existed in the present nacre-inspired (TiBw-TiB2)/Al composites: intergranular corrosion in the Al matrix layer and pitting corrosion in the ceramic-rich layer. Among all the composites, the corrosion depth of the 3Ti7TiB2 composite was the smallest and significantly less than that of the 2024Al alloy. In addition, the continuous ceramic-rich layer acted as a corrosion channel during corrosion, significantly degrading the corrosion resistance of the nacre-like Al composites.

6.
Pharmaceuticals (Basel) ; 17(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38931380

RESUMEN

Pearl oysters have been extensively utilized in pearl production; however, most pearl oyster shells are discarded as industrial waste. In a previous study, we demonstrated that the intraperitoneal administration of pearl oyster shell-derived nacre extract (NE) prevented d-galactose-induced brain and skin aging. In this study, we examined the anti-aging effects of orally administered NE in senescence-accelerated mice (SAMP8). Feeding SAMP8 mice NE prevented the development of aging-related characteristics, such as coarse and dull hair, which are commonly observed in aged mice. Additionally, the NE mitigated muscle aging in SAMP8 mice, such as a decline in grip strength. Histological analysis of skeletal muscle revealed that the NE suppressed the expression of aging markers, cyclin-dependent kinase inhibitor 2A (p16) and cyclin-dependent kinase inhibitor 1 (p21), and increased the expression of sirtuin1 and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)- α, which are involved in muscle synthesis. These findings suggest that the oral administration of NE suppresses skeletal muscle aging. Moreover, NE administration suppressed skin aging, including a decline in water content. Interestingly, oral administration of NE significantly extended the lifespan of SAMP8 mice, suggesting that its effectiveness as an anti-aging agent of various tissues including skeletal muscle, skin, and adipose tissue.

7.
Adv Mater ; 36(29): e2401883, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38662873

RESUMEN

Improving the fracture resistance of nacre-inspired composites is crucial in addressing the strength-toughness trade-off. However, most previously proposed strategies for enhancing fracture resistance in these composites have been limited to interfacial modification by polymer, which restricts mechanical enhancement. Here, a composite material consisting of graphene oxide (GO) lamellae and nanocrystalline reinforced amorphous alumina nanowires (NAANs) has been developed. The structure of the composite is inspired by nacre and is composed of stacked GO nanosheets with NAANs in between, forming a sandwich-like structure. This design enhances the fracture resistance of the composite through the pull-out of GO nanosheets at the nanoscale and GO/NAANs sandwich-like coupling at the micro-scale, while also providing stiff ceramic support. This composite simultaneously possesses high strength (887.8 MPa), toughness (31.6 MJ m-3), superior cyclic stability (1600 cycles), and long-term (2 years) immersion stability, which outperform previously reported GO-based lamellar composites. The hierarchical fracture design provides a new path to design next-generation strong, tough, and stable materials for advanced engineering applications.

8.
Nano Lett ; 24(14): 4256-4264, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557048

RESUMEN

Biological materials exhibit fascinating mechanical properties for intricate interactions at multiple interfaces to combine superb toughness with wondrous strength and stiffness. Recently, strong interlayer entanglement has emerged to replicate the powerful dissipation of natural proteins and alleviate the conflict between strength and toughness. However, designing intricate interactions in a strong entanglement network needs to be further explored. Here, we modulate interlayer entanglement by introducing multiple interactions, including hydrogen and ionic bonding, and achieve ultrahigh mechanical performance of graphene-based nacre fibers. Two essential modulating trends are directed. One is modulating dynamic hydrogen bonding to improve the strength and toughness up to 1.58 GPa and 52 MJ/m3, simultaneously. The other is tailoring ionic coordinating bonding to raise the strength and stiffness, reaching 2.3 and 253 GPa. Modulating various interactions within robust entanglement provides an effective approach to extend performance limits of bioinspired nacre and optimize multiscale interfaces in diverse composites.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38605670

RESUMEN

Recently, conductive hydrogels have emerged as promising materials for smart, wearable devices. However, limited mechanical properties and low sensitivity greatly restrict their lifespan. Based on the design of biomimetic-layered structure, the conductive hydrogels with nacre-mimetic structure were prepared by using layered acrylic bentonite (AABT) and phytic acid (PA) as multifunctional "brick" and "mortar" units. Among them, the unique rigid cyclic multihydroxyl structure of the "organic mortar" PA preserves both ultrastretchability (4050.02%) and high stress (563.20 kPa) of the hydrogel, which far exceeds most of the reported articles. Because of the synergistic effect of AABT and PA, the hydrogel exhibits an excellent adhesive strength (87.74 kPa). The role of AABT in the adhesive properties of hydrogels is proposed for the first time, and a general strategy for improving the adhesive properties of hydrogels by using AABT is demonstrated. Furthermore, AABT provides ion channels and PA ionizes abundant H+, conferring a high gauge factor (GF = 14.95) and excellent antimicrobial properties to the hydrogel. Also, inspired by fruit batteries, simple self-powered flexible sensors were developed. Consequently, this study provides knowledge for functional bentonite filler modified hydrogel, and the prepared multifunctional ionic conductive hydrogel shows great application potential in the field of intelligent wearable devices.

10.
Mar Biotechnol (NY) ; 26(3): 539-549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652191

RESUMEN

Many organisms incorporate inorganic solids into their tissues to improve functional and mechanical properties. The resulting mineralized tissues are called biominerals. Several studies have shown that nacreous biominerals induce osteoblastic extracellular mineralization. Among them, Pinctada margaritifera is well known for the ability of its organic matrix to stimulate bone cells. In this context, we aimed to study the effects of shell extracts from three other Pinctada species (Pinctada radiata, Pinctada maxima, and Pinctada fucata) on osteoblastic extracellular matrix mineralization, by using an in vitro model of mouse osteoblastic precursor cells (MC3T3-E1). For a better understanding of the Pinctada-bone mineralization relationship, we evaluated the effects of 4 other nacreous mollusks that are phylogenetically distant and distinct from the Pinctada genus. In addition, we tested 12 non-nacreous mollusks and one extra-group. Biomineral shell powders were prepared, and their organic matrix was partially extracted using ethanol. Firstly, the effect of these powders and extracts was assessed on the viability of MC3T3-E1. Our results indicated that neither the powder nor the ethanol-soluble matrix (ESM) affected cell viability at low concentrations. Then, we evaluated osteoblastic mineralization using Alizarin Red staining and we found a prominent MC3T3-E1 mineralization mainly induced by nacreous biominerals, especially those belonging to the Pinctada genus. However, few non-nacreous biominerals were also able to stimulate the extracellular mineralization. Overall, our findings validate the remarkable ability of CaCO3 biomineral extracts to promote bone mineralization. Nevertheless, further in vitro and in vivo studies are needed to uncover the mechanisms of action of biominerals in bone.


Asunto(s)
Exoesqueleto , Calcificación Fisiológica , Carbonato de Calcio , Osteoblastos , Pinctada , Animales , Ratones , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Pinctada/metabolismo , Carbonato de Calcio/metabolismo , Carbonato de Calcio/química , Carbonato de Calcio/farmacología , Calcificación Fisiológica/efectos de los fármacos , Exoesqueleto/química , Supervivencia Celular/efectos de los fármacos , Línea Celular , Matriz Extracelular/metabolismo , Nácar/metabolismo , Biomineralización
11.
Luminescence ; 39(3): e4688, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444125

RESUMEN

Nano-biocomposites of inorganic and organic components wereprepared to produce long-persistent phosphorescent artificial nacre-like materials. Biodegradable polylactic acid (PLA), graphene oxide (GO), and nanoparticles (13-20 nm) of lanthanide-doped aluminate pigment (NLAP) were used in a simple production procedure of an organic/inorganic hybrid nano-biocomposite. Both polylactic acid and GO nanosheets were chemically modified to form covalent and hydrogen bonding. The high toughness, good tensile strength, and great endurance of those bonds were achieved by their interactions at the interfaces. Long-persistent and reversible photoluminescence was shown by the prepared nacre substrates. Upon excitation at 365 nm, the nacre substrates generated an emission peak at 517 nm. When ultraviolet light was shone on luminescent nacres, they displayed a bright green colour. The high superhydrophobicity of the generated nacres was obtained without altering their mechanical characteristics.


Asunto(s)
Grafito , Nácar , Poliésteres
12.
J Mech Behav Biomed Mater ; 154: 106511, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518512

RESUMEN

The extraordinary quasi-static mechanical properties of nacre-like composite metamaterials, such as high specific strength, stiffness, and toughness, are due to the periodic arrangement of two distinct phases in a "brick and mortar" structure. It is also theorized that the hierarchical periodic structure of nacre structures can provide wider band gaps at different frequency scales. However, the function of hierarchy in the dynamic behavior of metamaterials is largely unknown, and most current investigations are focused on a single objective and specialized applications. Nature, on the other hand, appears to develop systems that represent a trade-off between multiple objectives, such as stiffness, fatigue resistance, and wave attenuation. Given the wide range of design options available to these systems, a multidisciplinary strategy combining diverse objectives may be a useful opportunity provided by bioinspired artificial systems. This paper describes a class of hierarchically-architected block lattice metamaterials with simultaneous wave filtering and enhanced mechanical properties, using deep learning based on artificial neural networks (ANN), to overcome the shortcomings of traditional design methods for forward prediction, parameter design, and topology design of block lattice metamaterial. Our approach uses ANN to efficiently describe the complicated interactions between nacre geometry and its attributes, and then use the Bayesian optimization technique to determine the optimal geometry constants that match the given fitness requirements. We numerically demonstrate that complete band gaps, that is attributed to the coupling effects of local resonances and Bragg scattering, exist. The coupling effects are naturally influenced by the topological arrangements of the continuous structures and the mechanical characteristics of the component phases. We also demonstrate how we can tune the frequency of the complete band gap by modifying the geometrical configurations and volume fraction distribution of the metamaterials. This research contributes to the development of mechanically robust block lattice metamaterials and lenses capable of controlling acoustic and elastic waves in hostile settings.


Asunto(s)
Nácar , Nácar/química , Teorema de Bayes , Sonido , Acústica
13.
Tissue Cell ; 88: 102347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489914

RESUMEN

BACKGROUND/PURPOSE: Nano-hydroxyapatite (nHA)/ gel porous scaffolds loaded with WSM carriers are promising bone replacement materials that can improve osseointegration ability. This investigation aimed to evaluate the osteoinductive activity by implanting the composition of nano-hydroxyapatite (nHA)/ Gel porous scaffolds as a carrier of WSM via an animal model. MATERIALS AND METHODS: WSM was extracted and nHA was added to the matrix to construct porous composite scaffolds. The dose-effect curve of WSM concentration and alkaline phosphatase (ALP) activity was made by culturing rat osteoblasts and examining the absorbance. Three different materials were implanted into critical size defects (CSD) in the skulls of rats, which were further divided into four groups: WSM nHA /Gel group, n-WSM nHA /Gel group, HA powder group, and control group. RESULTS: WSM (150 µg/mL-250µg/mL) effectively improved the activity of ALP in rat osteoblasts. All rats in each group had normal healing. WSM-loaded nHA /Gel group showed better performance on newly-formed bone tissue of rat skull and back at 4th week and 8th week, respectively. At the 4th week, the network of woven bone formed in the WSM-loaded nHA/Gel scaffold material. At 8th week, the reticular trabecular bone in the WSM-loaded scaffold material became dense lamellar bone, and the defect was mature lamellar bone. In the subcutaneous implantation experiment, WSM-loaded nHA/Gel scaffold material showed a better performance of heterotopic ossification than the pure nHA/Gel scaffold material. CONCLUSION: WSM promotes osteoblast differentiation and bone mineralization. The results confirm that the nHA/ Gel Porous Scaffold with Nacre Water-Soluble Matrix has a significant bone promoting effect and can be used as a choice for tissue engineering to repair bone defects.


Asunto(s)
Durapatita , Osteoblastos , Osteogénesis , Andamios del Tejido , Animales , Andamios del Tejido/química , Osteogénesis/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Ratas , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Porosidad , Masculino , Fosfatasa Alcalina/metabolismo , Geles/química , Ratas Sprague-Dawley , Agua/química , Cráneo
14.
Bioengineering (Basel) ; 11(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38391629

RESUMEN

Bone void-filling cements are one of the preferred materials for managing irregular bone voids, particularly in the geriatric population who undergo many orthopedic surgeries. However, bone marrow mesenchymal stem/stromal cells (BM-MSCs) of older-age donors often exhibit reduced osteogenic capacity. Hence, it is crucial to evaluate candidate bone substitute materials with BM-MSCs from the geriatric population to determine the true osteogenic potential, thus simulating the clinical situation. With this concept, we investigated the osteogenic potential of shell nacre cement (SNC), a bone void-filling cement based on shell nacre powder and ladder-structured siloxane methacrylate, using older donor BM-MSCs (age > 55 years) and young donor BM-MSCs (age < 30 years). Direct and indirect cytotoxicity studies conducted with human BM-MSCs confirmed the non-cytotoxic nature of SNC. The standard colony-forming unit-fibroblast (CFU-F) assay and population doubling (PD) time assays revealed a significant reduction in the proliferation potential (p < 0.0001, p < 0.05) in older donor BM-MSCs compared to young donor BM-MSCs. Correspondingly, older donor BM-MSCs contained higher proportions of senescent, ß-galactosidase (SA-ß gal)-positive cells (nearly 2-fold, p < 0.001). In contrast, the proliferation capacity of older donor BM-MSCs, measured as the area density of CellTrackerTM green positive cells, was similar to that of young donor BM-MSCs following a 7-day culture on SNC. Furthermore, after 14 days of osteoinduction on SNC, scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) showed that the amount of calcium and phosphorus deposited by young and older donor BM-MSCs on SNC was comparable. A similar trend was observed in the expression of the osteogenesis-related genes BMP2, RUNX2, ALP, COL1A1, OMD and SPARC. Overall, the results of this study indicated that SNC would be a promising candidate for managing bone voids in all age groups.

15.
Carbohydr Polym ; 331: 121888, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388042

RESUMEN

Bioplastics have aroused significant interest in researchers to relieve the serious environmental pollution caused by the ubiquity of petroleum-based plastics. However, it remains a great challenge to construct functional bioplastics with excellent mechanical strength, water resistance, and heat resistance. Inspired by the interesting structure of nacre, a novel starch-based bioplastic was prepared via a self-assembly technique, using 2,2,6,6-tetramethylpiperidine-1-oxy-oxidized cellulose nanofibers modified starch, nano-montmorillonite, and reduced graphene oxide as raw materials. Due to the unique layered structure and rich interfacial interaction, the starch-based bioplastic exhibited excellent mechanical properties, while the tensile strength was up to 37.39 MPa. Furthermore, it represented outstanding water resistance, heat resistance, repairability, renewability and biodegradability. Especially, the starch-based bioplastic demonstrated a strong electromagnetic interference shielding effectiveness (EMI SE), which was higher than 35 dB with a thickness of 0.5 mm. These powerful properties provided the possibility for functional applications of starch-based bioplastics.

16.
Small ; 20(5): e2304183, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759411

RESUMEN

Mollusks, as well as many other living organisms, have the ability to shape mineral crystals into unconventional morphologies and to assemble them into complex functional mineral-organic structures, an observation that inspired tremendous research efforts in scientific and technological domains. Despite these, a biochemical toolkit that accounts for the formation of the vast variety of the observed mineral morphologies cannot be identified yet. Herein, phase-field modeling of molluscan nacre formation, an intensively studied biomineralization process, is used to identify key physical parameters that govern mineral morphogenesis. Manipulating such parameters, various nacre properties ranging from the morphology of a single mineral building block to that of the entire nacreous assembly are reproduced. The results support the hypothesis that the control over mineral morphogenesis in mineralized tissues happens via regulating the physico-chemical environment, in which biomineralization occurs: the organic content manipulates the geometric and thermodynamic boundary conditions, which in turn, determine the process of growth and the form of the biomineral phase. The approach developed here has the potential of providing explicit guidelines for the morphogenetic control of synthetically formed composite materials.


Asunto(s)
Nácar , Animales , Nácar/química , Minerales/química , Moluscos , Biomineralización , Fenómenos Físicos , Carbonato de Calcio/química
17.
Acta Biomater ; 173: 66-79, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016510

RESUMEN

Dental restorations are in increasing demand, yet their success rate strongly decreases after 5-10 years post-implantation, attributed in part to mismatching properties with the surrounding buccal environment that causes failures and wear. Among current research to address this issue, biomimetic approaches are promising. Nacre-like ceramic composites are particularly interesting because they combine multiple antagonistic properties making them more resistant to failure in harsh environment than other materials. With the rapid progress in 3D printing producing nacre-like structures has open up new opportunities not yet realised. In this paper, nacre-like composites of various compositions are reviewed in the context of hypothetical biomimetic dental restorations. Their structural, functional and biological properties are compared with those of dentin, enamel, and bone to determine which composition would be the most suitable for each of the 3 mineralized regions found in teeth. The role of complex microstructures and mineral orientations are discussed as well as 3D printing methods that allow the design and fabrication of such complex architectures. Finally, usage of these processes and anticipated prospects for next generation biomimetic dental replacements are discussed to suggest future research directions in this area. STATEMENT OF SIGNIFICANCE: With the current ageing population, dental health is a major issue and current dental restorations still have shortcomings. For the next generation of dental restorations, more biomimetic approaches would be desirable to increase their durability. Among current materials, nacre-like ceramic composites are interesting because they can approach the various structural properties found in the different parts of our teeth. Furthermore, it is also possible to embed self-sensing functionalities to enable monitoring of oral health. Finally, new recent 3D printing technologies now permit the fabrication of complex shapes with local compositions and local microstructures. With this current status of the research, we anticipate new dental restorations designs and highlight the remaining gaps and issues to address.


Asunto(s)
Nácar , Impresión Tridimensional , Cerámica/química , Biomimética , Minerales
18.
Exp Gerontol ; 184: 112337, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38006949

RESUMEN

Aging is associated with detrimental bone loss leading to fragility fractures in both men and women. Notably, a majority of bone loss with aging is cortical, as well as a large number of fractures are non-vertebral and at the non-hip sites. Nacre is a product of mollusks composed of calcium carbonate embedded in organic components. As our previous study demonstrated the protective effect of nacre supplementation on trabecular bone loss in ovariectomized rats, we sought to evaluate the effect of dietary nacre on bone loss related to aging in female mice which do not suffer true menopause as observed in women. The current study compared the effect of a 90-day long nacre-supplemented diet to that of Standard or CaCO3 diets on both bone mass and strength in 16-month-old C57BL/6 female mice. Multiple approaches were performed to assess the microarchitecture and mechanical properties of long bones, analyze trabecular histomorphometry, and measure bone cell-related gene expressions, and bone turnover markers. In the cortex, dietary nacre improved cortical bone strength in line with lower expression levels of genes reflecting osteoclasts activity compared to Standard or CaCO3 diets (p < 0.05). In the trabeculae, nacre-fed mice were characterized by a bone remodeling process more active than the other groups as shown by greater histomorphometric parameters and osteoblast-related gene expressions (p < 0.05). But these differences were not exhibited at the level of the trabecular microarchitecture at this age. Collectively, these data suggest that dietary nacre should be a potential candidate for reducing aging-associated cortical bone loss in the elderly.


Asunto(s)
Enfermedades Óseas Metabólicas , Nácar , Humanos , Masculino , Anciano , Femenino , Ratones , Ratas , Animales , Ratones Endogámicos C57BL , Huesos , Densidad Ósea , Hueso Cortical , Suplementos Dietéticos
19.
Biomimetics (Basel) ; 8(6)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887631

RESUMEN

Discoveries of two-dimensional (2D) materials, exemplified by the recent entry of MXene, have ushered in a new era of multifunctional materials for applications from electronics to biomedical sensors due to their superior combination of mechanical, chemical, and electrical properties. MXene, for example, can be designed for specialized applications using a plethora of element combinations and surface termination layers, making them attractive for highly optimized multifunctional composites. Although multiple critical engineering applications demand that such composites balance specialized functions with mechanical demands, the current knowledge of the mechanical performance and optimized traits necessary for such composite design is severely limited. In response to this pressing need, this paper critically reviews structure-function connections for highly mineralized 2D natural composites, such as nacre and exoskeletal of windowpane oysters, to extract fundamental bioinspired design principles that provide pathways for multifunctional 2D-based engineered systems. This paper highlights key bioinspired design features, including controlling flake geometry, enhancing interface interlocks, and utilizing polymer interphases, to address the limitations of the current design. Challenges in processing, such as flake size control and incorporating interlocking mechanisms of tablet stitching and nanotube forest, are discussed along with alternative potential solutions, such as roughened interfaces and surface waviness. Finally, this paper discusses future perspectives and opportunities, including bridging the gap between theory and practice with multiscale modeling and machine learning design approaches. Overall, this review underscores the potential of bioinspired design for engineered 2D composites while acknowledging the complexities involved and providing valuable insights for researchers and engineers in this rapidly evolving field.

20.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895974

RESUMEN

Since ancient times, the shells of marine molluscs have been used as a therapeutic and/or prophylactic resource. In Spain, they were part of practical guides for doctors or pharmacists until the 19th century. In general, seashells were prepared by dissolving in vinegar and were part of plasters or powders used as toothpaste, or to treat dyspepsia, heartburn and leprosy. Thus, the nacre or mother-of-pearl of various molluscs was regularly used in the Royal Colleges of Surgery and in hospitals during the times of the Cortes of Cadiz, as a medicine in galenic preparations based on powders. In contemporary Spanish ethnomedicine, seashells, with a high symbolic value, have been used as an amulet to prevent cracks in the breasts and promote their development during lactation, to avoid teething pain in young children, to eliminate stains on the face or to cure erysipelas. But, as in other countries, products derived from seashells have also been empirically applied. The two resources used traditionally have been the cuttlebone, the internal shell of cuttlefish and the nacre obtained from the external shells of some species. Cuttlebone, dried and pulverised, has been applied externally to cure corneal leukoma and in dental hygiene. In the case of nacre, a distinction must be made between chemical and physical remedies. Certain seashells, macerated in lemon juice, were used in coastal areas to remove spots on the face during postpartum. However, the most common practice in Spain mainland was to dissolve mother-of-pearl buttons in lemon juice (or vinegar). The substance thus obtained has been used to treat different dermatological conditions of the face (chloasma, acne), as well as to eliminate freckles. For the extraction of foreign bodies in the eyes, a very widespread traditional remedy has been to introduce small mother-of-pearl buttons under the lid. These popular remedies and practices are compared with those collected in classic works of medicine throughout history, and data on the pharmacological activity and pharmaceutical applications of the products used are provided. The use of cuttlebone powders is supported by different works on anti-inflammatory, immune-modulatory and/or wound healing properties. Nacre powder has been used in traditional medicines to treat palpitations, convulsions or epilepsy. As sedation and a tranquilisation agent, nacre is an interesting source for further drug development. Likewise, nacre is a biomaterial for orthopaedic and other tissue bioengineering applications. This article is a historical, cultural and anthropological view that can open new epistemological paths in marine-derived product research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...